
The Effect of Experience on the

Test-Driven Development Process ∗

Matthias M. Müller Andreas Höfer

Systeme Infrastruktur Support GmbH Fakultät für Informatik

EnBW AG Universität Karlsruhe

Durlacher Allee 93 Am Fasanengarten 5

D-76131 Karlsruhe D-76131 Karlsruhe

Germany Germany

matt.mueller@enbw.com ahoefer@ira.uka.de

Abstract

We conducted a quasi-experiment to compare the characteristics of experts’ and novices’

test-driven development processes. Our novices were 11 computers science students who par-

ticipated in an Extreme Programming lab course, the expert group consisted of 7 professionals

who had industrial experience in test-driven development. The novices as well as two of the

experts worked in a laboratory environment whereas the remaining five experts worked in their

office. The experts complied more to the rules of test-driven development and had shorter

test-cycles than the novices. The tests written by the experts were of higher quality in terms

of statement and block coverage as well. All reported results are statistically significant on

the 5 percent level. We conclude that the results of studies which evaluate performance of

test-driven development using subjects inexperienced in TDD are not easily generalisable.

Keywords: test-driven development, process, quasi-experiment, experts, novices

1 Introduction

Test-driven development (TDD) alongside pair programming is one of the central programming
techniques of Extreme Programming (XP) and has been investigated in several studies. The
qualification of the subjects in these studies ranges between two extremes: On the one hand there
are (TDD) experts, who have major industrial programming experience and have applied TDD
for several years; on the other hand there are (TDD) novices, who have no or little industrial
programming experience and have just been trained in TDD techniques. Experts usually are
professional programmers, who work or have worked on an XP-project. Novices, in contrast, are
mostly students, who have just learned TDD in an XP- or Java-course.

It seems obvious that the difference in expertise between these two types of subjects is reflected
in their TDD processes. Yet, it is not obvious what the actual differences are and how the TDD
processes of experts and novices are characterised. So far, nobody has examined how the charac-
teristics of an actual TDD process look like, although the knowledge about the characteristics of
experts’ and novices’ TDD processes is helpful for training in TDD as well as for the assessment
of studies about TDD. Hence, we have conducted a quasi-experiment which compares the TDD
processes of 7 experts to the process data of 11 novices. Our expert group consists of professional
programmers with industrial TDD experience, whereas our novice group comprises students who
finished an XP lab course at our university. We collected detailed process data transparently

∗The study and the second author were sponsored by the German Research Foundation (DFG), project “Leicht”
Ti 264/8-1.

1

for each of the participants. The collected data includes for example the point in time of each
unit-test invocation, the development behaviour in the Eclipse programming environment, and
all changes made to the application and test code. The data was used to determine the confor-
mance of application-code changes to the rules implied by test-driven development and to identify
differences between novices’ and experts’ TDD processes.

This paper is organised as follows: After a review of the relevant literature in Section 2 we
explain the formalised TDD rules and our data collection method in Section 3 and Section 4. One
aim of the latter two sections is to explain the reader the data collection mechanism and how we
obtained the results from the quasi-experiment. The second aim of these sections is to provide
enough information for other scientist to redo our analysis with different subjects in different
locations. The quasi-experiment itself is described in Section 5, the results follow in Section 6.
Section 7 discusses threats to validity and Section 8 presents our conclusions.

2 Related Work

In recent years, several studies have been published which compared TDD to other development
processes. Müller and Hagner [18] compared test-first programming to a traditional test-last
approach. All of their 19 subjects – 10 in the test-first group, 9 in the control group – were sixth-
semester computer science students. Both groups had to complete the main class of a graph library.
The subjects had to work alone in a laboratory environment. The researchers compared problem
solving time, reliability of the programs and correct calls of existing methods. The results showed
no difference concerning problem solving time and reliability of the programs but the test-first
group made less errors when reusing existing methods more than once.

George and Williams [9] compared TDD with a waterfall-like development process in a con-
trolled experiment. The participants were 24 professional developers programming in their usual
working environments. They were assigned to work in pairs and asked to develop a bowling game
application. The TDD pairs’ programs passed 18 percent more test cases of a black-box test
than the control group pairs’ programs but the TDD pairs also needed 16 percent more time for
development. A moderate but statistically significant correlation between the development time
and the resulting code quality was found.

Pančur et al. [20] conducted an experiment with 38 undergraduate computer science students
in their fourth year. They compared TDD to an highly iterative test-last development process.
The results of their work are preliminary and show hardly any difference between the test-first
and the test-last approach.

Geras et al. [10] studied the differences between test-first and test-last programming concerning
the amount of unplanned failures. Their subjects were professional programmers, which were
assigned to write two programs in the domain of business information systems. Due to the small
number of participants the results of this study remain inconclusive.

Erdogmus et al. [6] conducted an empirical study, which compared test-first to test-last pro-
gramming. The 11 participants in the test-first and the 13 participants in the test-last (control)
group were third-year computer science students from an eight-week Java course. The program-
ming task was the same bowling game application that was also used in George’s and Williams’
study mentioned above. Their results indicate that the test-first programmers wrote more tests
per unit of effort but there was no difference between the two groups concerning quality of the code
and productivity. A second finding of their study is that more tests lead to a higher productivity.

Canfora et al. [3] performed a controlled experiment with 28 professionals. They compared
TDD to a test-last approach. In their analysis they report statistical evidence that TDD is more
time-consuming but does not produce more assertions in the test code than test-last programming.

Bhat and Nagappan report on two industrial case studies performed at two divisions of Mi-
crosoft [2]. In their case studies, they describe two projects using TDD and compare them with
similar non-TDD projects at Microsoft. They conclude that development using TDD took more
time but the resulting quality in terms of defects per kilo lines of code was at least two times
better than the quality of comparable non-TDD projects.

2

Another relevant paper was written by Erdogmus and Wang [7]. They present a tool that
uses data collected by Hackystat [11] sensors to compute metrics about the programmer’s TDD
process. These metrics include the total time spent on development between two successful test
executions as well as the ratio of test code to production code. In opposition to our work, the tool
was not used to check process conformance in an empirical study on TDD.

3 TDD Recognition

To be able to decide whether a change of the application code conforms to test-driven development
or not the TDD process has to defined. The presented definition is not our own. It is based on
definitions found in literature.

3.1 TDD Rules

Beck [1, p. IX] explains TDD as conformance to two rules:

• Write new code only if an automated test has failed.

• Eliminate duplications.

He derives three different tasks of programming from these two rules. For our definition of those
tasks of programming, we use the terms application code and test code. Application code is later
shipped to the customer while test code is only used for unit testing purposes. Furthermore, we
use the terms passing unit test and failing unit test. A passing unit test is a unit test where all
tests pass (green JUnit bar) whereas a failing unit test is defined as a unit test where one or more
tests fail (red JUnit bar). With these terms, we define the three tasks of programming as follows:

Test task Write a test that fails. If necessary, write few lines of application code such that your
test compiles1. A test task starts with a passing unit test and ends with a failing one.

Application task Write the application code to make all tests pass. An application task starts
with a failing unit test and ends with a passing one.

Refactoring task Eliminate all duplication from the test and application code which has been
introduced during the two preceding tasks. A refactoring task starts and ends with a passing
unit test.

P F P P PF P P

FP

Cycle CycleCycle

TDD Iteration

Cycle Cycle Cycle

TDD Implementation Process

A unit test where all tests pass A unit test where at least one test fails

0 Time

TDD Iteration

Test Task Test TaskRef. Task Ref. TaskApp. TaskApp. Task

Figure 1: The TDD implementation process.

1Beck allows a test that does not even compile. We omit this case because we can not measure this kind of error
in our data evaluation framework presented in section 4.

3

In its ideal form each task maps to exactly one cycle which is the time frame between two successive
unit-test executions. The mapping of tasks on cycles in an idealised TDD process leads to an one-
to-one relationship between them as depicted in Figure 1. Though, it may happen that a task
comprises more than one cycle, e. g. if the developer breaks a test during a refactoring. Test
task, application task and refactoring task compose an ideal TDD iteration2. Note that the order
of the tasks is important for process conformance. Link [15, p. 12] suggests that the length of a
TDD iteration should not exceed fifteen minutes. Finally, the TDD implementation process itself
consists of a sequence of TDD iterations.

Based on the definition of the TDD implementation process we define three rules. An imple-
mentation process is said to be TDD conform if every code change or refactoring complies to one
of the following TDD rules3:

Rule 1 A change in application code is only allowed in methods which were previously called by
a test that failed and thereby caused the failure of the whole unit test.

Rule 2 A new method can only be introduced if it is later called by a test that fails thus causing
the whole unit test to fail.

Rule 3 A refactoring changes the structure of the code but not its observable behaviour (see
Fowler [8, pp. 53]).

Conformance to the first two rules can be determined automatically if all the changes made by the
developer have been recorded. However, the evaluation whether a given set of code changes belongs
to a refactoring or not is not automatically decidable, yet. Thus, every framework that tries to
evaluate conformance to the TDD process needs some human intervention to classify whether a
change belongs to a refactoring or not.

3.2 Formalisation of TDD Rules

In order to calculate whether an application-code change complies to Rule 1 or 2 we have to
distinguish between different points in time: the point in time of a modification tmod ; the point
in time tprev of the unit-test invocation preceding tmod ; the point in time tnext of the unit-test
invocation following tmod . Methods(t) and Tests(t) describe the set of application and test methods
available at time t, respectively. Changes(t1, t2) is the set of all changes from point in time t1 to
t2. calls(tm,m, t) evaluates to true if the test method tm calls the application-code method m at
time t. The predicate fail(tm,m, t) evaluates to true if test method tm fails and calls(tm,m, t) is
true.

Rule 1 requires every application-code change in a method to be preceded by a unit-test
invocation which executed a test method that failed and called the changed application method.
failureBefore models this circumstance:

failureBefore(m, tmod) := ∃ tm ∈ Tests(tprev) : fail(tm,m, tprev) = True

Rule 2 describes another TDD compliant change: the introduction of a new method.

newMethod(m, tmod) := ∄ t < tprev : m ∈ Methods(t)

However, this new method has to be called by a test method that fails at the next unit test:

failureAfter(m, tmod) := ∃ tm ∈ Tests(tnext) : fail(tm,m, tnext) = True

To sum up, a change of an application method m at time tmod conforms to TDD if one of the
following rules applies:

TDDRule1 := failureBefore(m, tmod)

TDDRule2 :=newMethod(m, tmod) ∧ failureAfter(m, tmod)

2In some cases the refactoring task may be skipped, e. g. if there was no duplication introduced.
3Such a strict conformance of all changes to the rules may not be achievable in practice. Therefore, introduction

of a threshold may be desirable.

4

In addition, we also consider the notion of a weak TDD process. In a weak TDD process, the
developer does not attempt to get a failed unit test after each test-code change. Instead, he skips
the unit-test invocation part and starts to modify the method in the application code right away.
testModBefore accounts for this situation:

testModBefore(m, tmod) := ∃ c ∈ Changes(tprev , tmod) : c = (tm, t) ∧ calls(tm,m, tnext)

A change on which none of the TDD rules evaluates to true but which complies to testModBefore
is said to be weak TDD.

4 Data Collection

The decision whether a given change of the application code follows the rules implied by test-driven
development requires the analysis of multiple process and application measures. We developed a
system which collects these measures transparently for a developer and which inserts the desired
measures into a database. Figure 2 shows the components of our system. It consists of a plug-ins
part and a back-end part. The plug-ins part is responsible for data collection during a programming
session. The back-end comprises the postprocessor which prepares the data and fills it into the
database and the evaluator. The evaluator checks whether changes are made in conformance to
TDD.

Division of the system into plug-ins part and back-end part has the advantage of an easy to
install data-collection mechanism with almost no prerequisites. The only requirement is a running
Eclipse programming environment. One problem of every field study is the installation of data-
collection tools in the context of changing work environments and different operating systems.
Thus, installation of Eclipse plug-ins is an easy means to accomplish the data-collection task with
almost no effort for the experimenter and the participant.

The remaining part of this section presents the Eclipse plug-ins and the back-end part of our
system in more detail.

4.1 Plug-ins

The two Eclipse plug-ins are called user-action logger and JUnit-action logger. The user-action
logger performs two tasks. First, it writes window actions within Eclipse to the user-actions
log. The logger captures focus changes from one part of the Eclipse GUI to another part of the
GUI. For each focus change, the timestamp is recorded and the part which received the focus is
described. The second task of the user-action logger is to store backup copies of each modified
file into the file store. Storage of backup copies is triggered when the user performs a save-file or
compile operation. The file store uses the same directory structure as the project that is monitored.

Eclipse

JUnit−Action
Logger

User−Action
Logger

P
os

tp
ro

ce
ss

or

Database

File Store

Evaluator

JUnit Actions

User Actions

Plug−ins Back−end

Figure 2: System overview.

5

The only difference between the actual project sources and the file-store sources is an attached
timestamp which indicates the point in time the storage took place.

The JUnit-action logger protocols JUnit invocations in the JUnit-actions log. The protocol
contains the start and stop time of the whole JUnit run, the number of executed test methods,
and for each test method the information whether it passed or failed.

The usage of the plug-ins during development is transparent for the developer. Thus, it is
possible to collect data without the knowledge of the developer. However, as the collected data
provides details on the personal development behaviour the developer should have agreed on the
usage of the two plug-ins. We have signed agreements from all our participants which allowed us
to monitor their development process.

4.2 Postprocessor

Before post-processing takes place the sources in the file store are pretty-printed using Jalopy
[13]. Jalopy removes all comments and makes the layout of the source files consistent. Then, the
postprocessor prepares the data to be suitable for storage in a relational database. It extracts the
following information:

• A list of files which were modified during development and a classification of them into test
or application code.

• The differences between two successive versions of a file.

• For each version of a file, the begin- and end-lines of each method.

• For each JUnit invocation: the timestamp, the number of tests, each test method together
with the information whether it passed or failed, and the point in time.

• Trace information from the unit tests.

Classification of files in the file list is done according to the name of the file: a ’Test’, ’Mock’,
or ’Dummy’ in the file name indicates a test file, all other files are classified as application files.
Differences between two successive file versions are calculated using the Unix diff-command. The
trace information is necessary in order to decide which application method was executed by which
test method during a specific unit test. Trace information is calculated for every user-triggered
JUnit invocation. First, the file system that represents the state of the Java classes at the point
in time of the JUnit invocation is reconstructed. Reconstruction is based upon the file-version
timestamps. The Java sources are then enriched with call backs at each method entry which
log the package, class, and name of the method. The system is compiled and the JUnit tests
are executed. The call hierachy for each executed unit-test method is constructed from the log.
Finally, the timestamp of the JUnit run, the name of the user who triggered it, the name of the
test method, and the names of the application methods which are called by this test method are
written into the database.

4.3 Evaluator

The TDD evaluator works with the data in the database as well as with the Java files in the file
store. It evaluates semiautomatically whether changes made in the application code conform to
the process requirements imposed by TDD. For example, TDD rule 1 states that every application-
code change should be preceeded by a unit test that failed. Assume the change occurred at line l

in file f at time t. The check for conformance to this TDD rule requires 5 steps.

1. Check whether file f belongs to the application code. If yes, proceed.

2. Search for the name of the method m that surrounds line l in file f at time t.

3. Search for the point in time tprev of the latest JUnit invocation triggered before t. If tprev is
found, proceed.

6

4. Check whether a unit-test method tm exists in the JUnit invocation at time tprev that called
m. If tm exists, proceed.

5. Check whether tm failed. If tm failed, the change at line l in file f at time t conforms to
TDD.

Changes which cannot be classified automatically by the evaluator might belong to a refactor-
ing. In this case, the evaluator shows the difference between the original and the modified file.
Now, it is the task of the experimenter to decide whether this change belongs to a refactoring or
not. Manual classification of changes took less time than we had expected. The largest number
of changes which had to be classified manually for a participant was 34. But for 9 of our 18
participants not more than ten changes had to be inspected manually. The more a developer’s
implementation process conforms to TDD the less effort for manual inspection is necessary.

For a full automation of the TDD qualification process refactorings have to be recognised.
Therefore, one possible improvement for future versions of the evaluator would be to use the
renaming detector from Malpohl et al. [17].

5 The Study

The following subsections report on data which has been collected from May 2005 to January
2006.

5.1 Participants

The novice group consisted of 18 students. All of them took part in an XP lab course [19] in which
they learned the basic principles of TDD and applied them in a project week. They participated
in the experiment in order to get their course credits. They were on average in their fourth year
of study and had on average 6 years of programming experience including 2.4 years experience in
Java. Only one of them had tried TDD before the programming lab course and four of them had
used JUnit before. The experts were seven professional developers. Two of them took part in the
experiment because of a personal invitation, two responded to an anonymous poll in a local XP
user group mailing list, and the remaining three were selected by a participating company. As the
experts were not selected randomly from a defined group of software developers this study is a
quasi- and not a randomized experiment [21, p. 14].

All members of the expert group were paid for their participation4. The experts received
no additional TDD training, because they already had a high level of work experience in TDD:
On average, they had 7.3 years industrial programming experience including on average 3.4 years
experience with TDD, 4.3 years experience with JUnit, and 6.2 years experience with Java. Table 1
in the appendix lists the programming experience for each participant.

We dropped 7 from the originally 18 novice data-sets because they were not able to develop a
solution to the problem within the allocated time frame of eight hours5. These drop-outs do not
introduce a bias into our data set because ignoring them means to decrease the difference between
the experts and the novices. Further more, if the seven novice data-sets had been used in the
analysis, another alternative explanation for the difference between experts and novices had been
introduced: missing implementation skill. Thus, it is harder for the experts to perform better in
this comparison if the seven novice data-sets are omitted from the analysis.

5.2 Implementation Task

The participants had to complete the control of an elevator system. The elevator system resides in
a building with multiple floors. The system distinguishes between requests and jobs. A request is

4Actually, four of them were paid by us, the other three performed the implementation during their official
working hours.

5Interestingly, one of the drop outs was the previously mentioned participant with a half year of TDD experience.

7

triggered if an up- or down-button outside the elevator is pressed. A job is assigned to the elevator
after a passenger chooses the destination floor inside the elevator. The elevator system is driven by
a discrete clock. For each cycle, the elevator control expects a list of requests and jobs and decides
according to the elevator state which actions have to be performed next. The elevator control
is driven by a finite automaton with four states: driving-up, driving-down, waiting, and open.
The task description contained a state transition diagram explaining the conditions for switching
from one state to another and the actions that had to be performed during a state switch. To
keep the effort predictable, only the open-state of the elevator control had to be implemented.
The participants received a program skeleton which contained the implementation of the other
three states. This skeleton comprises ten application- and seven test-classes with 388 and 602 non-
commented lines of code, respectively. The set of unit tests provided with the program skeleton use
mock objects [16, 14] to decouple the control of the elevator logic from the logic that administrates
the incoming jobs and requests. However, the mock-object implementation in the skeleton does
not provide enough functionality to develop the whole elevator control. Other functionality has
to be added to the mock-object implementation to test all desired features of the elevator control.
Thus, the number of lines of test code may be higher than the number of lines of application code
and it also may be higher than for solutions to problems which do not require the usage of mock
objects.

5.3 Realisation

Implementation took place during a single programming session. There was no explicit time limit
given, however the task description suggested that the task should be solvable in approximately
four to five hours. Each participant recorded interrupts such as going to the bathroom or lunch
breaks. The experimenter also recorded these interrupts as well as start and stop times of the
implementation session. The two logs were later checked for consistency. The novices and two
experts performed their work in our programming lab at the university. The novices worked in
three rooms of our programming lab at the university and started with the task at the same time.
Two of the programmers worked in our lab, too. They sat together in one room and started
working simultaneously. The other five experts worked in their usual work environment. Two of
them performed the task in one room, the remaining three worked in separate rooms.

Our analysis focuses on the implementation phase which started with a problem description and
a running Eclipse working environment. The user-action logger and the JUnit-action logger were
installed and the Eclipse working environment already contained the skeleton of the elevator system
and all tests of the provided JUnit test-suite passed. The participants worked on the problem until
they thought they had finished the job. At this point, participants entered the quality-assurance
phase. During the quality-assurance phase, participants had to pass an acceptance test which
ensures similar quality of the developed programs6. We excluded the quality-assurance phase
from our analysis because we wanted to study the core TDD feature-development process and not
a process with a focus on bug-fixing.

5.4 Research Hypotheses

This study was motivated by the following research hypotheses:

RHConf The experts achieve a higher conformance to the rules of the test-driven development
process than the novices.

RHLen The average length of the cycles is shorter for the experts than for the novices.

RHVar The variation of the cycle lengths is smaller for the experts than for the novices. The
variation of the cycle length is measured for each participant as the standard deviation from
the mean.

6Expert e5 quit after the first acceptance test because the experiment conflicted with a private appointment.

8

RHCLOC The number of changed lines of code (CLOC) during the whole implementation process
is smaller for the experts than for the novices. We assume that this is true for application
and test code.

RHEdit The experts are faster in changing application code and test code. The editing speed is
measured in changed lines of code per hour.

RHCov The tests developed by the experts achieve a higher coverage on the application code
than the tests of the novices. Code coverage is measured on statement and block level using
Emma [5].

5.5 Power Analysis

As the data samples are small, the non-parametric one-sided two-samples Wilcoxon-Rank-Sum
Test [12, pp. 106] is used for evaluation. The power of the respective t-Test at a significance level
of 5 percent, an effect size of 0.8 and an harmonic mean of 8.5 is 0.47. The power of the Wilcoxon-
Test is in the worst case 13.6 percent smaller than the power of the t-Test [12, pp. 139]. Thus, the
probability of detecting an effect is only 40.1 percent. This probability is fairly small opposed to
the suggested value of 80 percent [4, p. 531]. To sum up, if a difference on the 5 percent level can
be shown, everything is fine. But the probability that we miss the chance to reveal an existing
difference with our data set is about 60 percent.

6 Results

Some results of our experiment are visualised using box plots. The boxes within a plot contain 50
percent of the data points. The lower (upper) border of the box marks the 25 percent (75 percent)
quantile. The lower (upper) t-bar marks the most extreme data point which is not more than 1.5
times the length of the box away from the lower (upper) side of the box. If the number of data
points per group equals the size of the group, each data point is depicted by a circle, otherwise,
only the outliers from the above scheme are visualised. The median is marked with a thick line.

In our presentation of the results we distinguish between internal and external process proper-
ties. The internal process properties, presented in Section 6.1, could only be detected by analysing
the detailed data collected by our loggers, whereas the external process properties in Section 6.2
were obtained with an analysis of the common experiment artifacts such as time sheets and the
participants’ programs.

6.1 Internal Process Properties

In this part, we examine the conformance of participants to the rules of test-driven development
as defined in Section 3.2, present the analysis of the test cycles, followed by an evaluation of the
number of changed lines of code and the editing speed.

6.1.1 Conformance to TDD

Research hypothesis RHConf is evaluated. It states our assumption that the experts achieve a
higher conformance to the rules of the test-driven development process than the novices. Figure 3
shows the classification of all changes made by the participants. Table 1 in the appendix shows
the raw data set. Data sets of the experts start with an ’e’ while the data sets of the novices start
with a ’n’. First, we look at the TDD changes. These are changes which conform to the TDD
rules 1 and 2. For the expert group, the ratio of TDD changes lies between 45 percent and 85
percent. The corresponding range for the novice group starts at 0 percent and ends at 91 percent.
This difference in the ranges leads to the following observations. First, the range of values for the
novices’ ratio of TDD changes is larger than the range of values for the experts. And second, there
are members of the novice group who achieve a higher ratio of TDD changes than the experts.

9

Now, we examine conformance to the test-driven development process:

TDD conformance =
|TDD changes | + | refactorings |

| all changes |

Figure 4 shows the conformance to the TDD rules for both groups. The experts seem to achieve
higher values than the novices. The medians for both data sets are 82 percent for the experts
and 67 percent for the novices. The p-value of 0.028 supports the visible difference between both
groups. Thus, the experts achieve a higher conformance to the test-driven development process.

6.1.2 Analysis of Cycles

While the analysis of changes was done semiautomatically, all remaining charts were obtained
automatically from the system. The research hypothesis RHLen that the average length of the
cycles is shorter for the experts than for the novices is analysed. Figure 5(a) shows the average
length of the cycles for each group. The median of the average cycle lengths of the experts is 1.9
minutes whereas the one of the novices is 3.4 minutes. The average cycle length of the experts
varies between 1.6 and 3.1 minutes. The values for the novices start at 1.3 and end at 16 minutes.
The Wilcoxon-Test supports the visible difference between both data sets with a p-value of 0.022.
That is, our research hypothesis RHLen and the assumption behind it could be confirmed.

Figure 5(b) shows the standard deviation of the cycle lengths. We see a picture similar to the
average length of the cycles. The data set of the novices is wide spread across the value range
while the data set of the experts spans only across a small range. The medians of the standard
distributions are 3.4 minutes for the experts and 6.3 minutes for the novices. The Wilcoxon-Tests
supports the assumption of RHVar that the experts have a smaller variation in the length of the
programming cycles than the novices with a p-value of 0.017.

Both hypotheses RHLen and RHVar could be confirmed. However, not all novices have problems
with the TDD process. There are novices which fall into the value range given by the experts.
These are the novices n4, n5, n9, and n10. The novices n4 and n5 also achieve a TDD conformance
like the experts. Thus, it is possible for novices to achieve similar TDD process characteristics as
experts after just one week of intensive training.

We also examined the number of cycles needed to implement a solution. We did not have an
expectation whether there is a difference between both groups, nevertheless, it is interesting to
look at the distribution of both data sets which are shown in Figure 6. Again, the data set of the
novices has a larger variation as opposed to the data set of the experts. But now, in contrast to
the length and the variation of the cycles there is no visible difference between the medians of the

e1 e2 e3 e4 e5 e6 e7 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11

fr
ac

tio
n

[%
]

0
20

40
60

80
10

0

TDD Refactoring Weak TDD Not TDD

Figure 3: Classification of changes.

10

experts novices
0

20
40

60
80

10
0

T
D

D
 c

on
fo

rm
an

ce
 [%

]

Figure 4: Conformance to TDD process.

experts novices

5
10

15

av
er

ag
e

cy
cl

e
le

ng
th

 [m
in

]

(a) Length of cycles

experts novices

5
10

15
20

25
30

st
d.

 d
ev

ia
tio

n
[m

in
]

(b) Variation of cycle length

Figure 5: Cycle characteristics.

two groups. The larger spread of the novices’ data set is again caused by their differing ability to
apply the TDD process. The process of the experts is more stable and thus, there is less variation.

experts novices

50
10

0
15

0

nu
m

be
r

of
 c

yc
le

s

Figure 6: Number of cycles.

11

6.1.3 Changed Lines of Code and Editing Speed

Figures 7(a) and 7(b) show the number of changed lines of application and test code. For each data

experts novices

0
50

15
0

25
0

35
0

ch
an

ge
s

[L
O

C
]

(a) Application-code changes

experts novices

0
50

15
0

25
0

35
0

ch
an

ge
s

[L
O

C
]

(b) Test-code changes

Figure 7: Code changes.

point in the figure, the change effort in each cycle has been calculated. These values were then
summed up. Thus, it is not surprising that the lines of changed application code are larger than
the size of 33 lines of code of our own solution. The test-code changes shown in Figure 7(b) were
calculated the same way as the application-code changes. If both plots are taken into account,
change effort in lines of code differs only slightly, if at all, between the novice and expert group.
Both data sets have almost the same median, although, the data set of the novices seems to
have a larger variation. The p-values for both data sets is 0.675 for the application-code changes
and 0.4649 for the test-code changes. We could not confirm research hypotheses RHCLOC, but
this might be due to our small data set. We examined whether the number of changed lines
of application code correlates with the number of changed lines of test code. The Spearman’s
Rank-Correlation Test was used [12, pp. 394]. The Spearman-Test indicates a correlation on the
pooled data set with a p-value of 0.001. This correlation also holds for the data set of the novices
(p = 0.003) but not for the data set of the experts (p =0.236). The reason for the correlation in
the novices’ data set might be the ability to follow the TDD process. Actually, the Spearman-Test
indicates a correlation (p = 0.0003) of the TDD conformance with the changed number of lines of
code for the novices. A similar correlation could not be found for the experts (p=0.088). Thus,
a novice who is able to follow the TDD process changes the test code more than a novice who is
not able to apply test-driven development.

Figures 8(a) and 8(b) show the editing speed for application-code and test-code changes.
RHEdit stated our assumption that the experts change the application and test-code more quickly.
While there is a visible difference for the application-code changes, the picture is somehow blurred
for the test-code changes. The median of the experts is higher than the median of the novices
(147 LOC/h vs. 106 LOC/h) but the data set of the experts has a larger variability than the one
of the novices. The p-values of the corresponding Wilcoxon-Test support the impression that the
editing speed of the experts for application-code is higher than the novices’ one (p =0.013). But
the same statement does not hold for the editing speed of the test-code changes (p =0.212). Thus,
RHEdit holds for application-code changes but not for test-code changes.

The second result is quite interesting because we assumed that a higher skill level in applying
test-driven development would increase the editing speed. It seems as if this assumption is false
at first glance for test-code changes.

12

6.2 External Process Properties

This section continues with the analysis of external properties of the TDD process. We study the
duration of the implementation until the first acceptance test, the quality of tests, the quality of
the program versions at this point in time, and the size of the implemented solutions.

6.2.1 Duration of Implementation

Figure 9 shows the duration of the implementation until the first acceptance test. The experts
are significantly faster than the novices (p-value of two-sided Wilcoxon test of 0.018). This result
is not surprising because the experts had a higher editing speed for application-code changes and
the experts have more programming experience than the novices.

6.2.2 Quality of Tests

Figures 10(a) and 10(b) show the quality of the developed tests in terms of statement and block
coverage. The experts achieve higher values for each of the investigated coverage metrics. For
statement coverage, the medians are 91 percent for the experts and 90 percent for the novices.
The medians for block coverage are 92 and 91 percent, respectively. However, for block coverage
the data set of the experts has a smaller variability than for statement coverage. The p-values
of the Wilcoxon-Test are 0.057 for statement coverage and 0.018 for block coverage. Thus, the
research hypothesis RHCov that the tests developed by the experts achieve a higher coverage on
the application code than the tests of the novices holds for block coverage. The difference for
statement coverage is not significant on the 5 percent level but this might be due to the small data
set.

We saw in Section 6.1.3 that experts are not quicker in writing test code than novices. This
statement still holds but the result of the comparison of the code coverage values sheds new light
on the editing speed of the expert group. The experts do not change test code in a faster speed
than the novices but their tests are of higher quality, i. e. their tests achieve higher code coverage
values. This higher quality is bought at the expense of speed in terms of lines of code per hour.

6.2.3 Number of Failed Tests

Figure 11 shows the number of failed test at the first acceptance test. The proportion of novices
whose programs pass the acceptance test is higher than the corresponding proportion of the
programs of the experts (7 of 11 vs. 2 of 7). Although this difference is visible to the naked eye,
it is not statistically significant. We do not know exactly why the programs of the novices tend
to be of better quality than the programs of the experts. We assume that the project experience

experts novices

50
10

0
15

0
20

0
25

0

ed
iti

ng
 s

pe
ed

 [L
O

C
/h

]

(a) Application

experts novices

50
10

0
15

0
20

0
25

0

ed
iti

ng
 s

pe
ed

 [L
O

C
/h

]

(b) Test

Figure 8: Editing speed for changes.

13

experts novices
15

0
25

0
35

0

du
ra

tio
n

[m
in

]

Figure 9: Duration of implementation.

experts novices

84
86

88
90

92

co
ve

ra
ge

 [%
]

(a) Statement coverage

experts novices

84
86

88
90

92

co
ve

ra
ge

 [%
]

(b) Block coverage

Figure 10: Quality of tests.

of the experts plays an important part. As a result, the experts have a lower threshold to ask for
the acceptance test than the novices who see the acceptance test as a formal criteria whereas the
experts interpret it as just another means for testing.

6.2.4 Size of Developed Programs

Figures 12(a) and 12(b) show the size of the application and test code at the time of the first
acceptance test. Concerning the size of the application code, the experts seem to develop smaller
programs than the novices. The difference is not statistically significant which might be due to
our small data set. In contrast to the potential difference in application code size, the size of the
test code does not seem to differ between both groups. The median of the experts is smaller but
the boxes and the upper whiskers are similar. Remember the analysis of the quality of the tests
in Section 6.2.2: The experts wrote tests with a higher block coverage than the novices. Since the
amount of test code written by experts and novices is approximately equal, the experts seem to
test more effectively than the novices.

6.3 Summary of Results

The analysis of the TDD processes of novices and experts lead to the following observations:

• The experts achieve a higher conformance to the rules of test-driven development than the
novices. The research hypothesis RHConf holds.

14

number of failed tests

nu
m

be
r

of
 p

ro
gr

am
s

0 5 10 15 20

0
1

2
3

4
5

6
7

(a) Experts

number of failed tests

nu
m

be
r

of
 p

ro
gr

am
s

0 5 10 15 20

0
1

2
3

4
5

6
7

(b) Novices

Figure 11: Histograms of the number of failed test at first acceptance test.

experts novices

20
30

40
50

60
70

ad
de

d
ap

pl
ic

at
io

n
co

de
 [L

O
C

]

(a) Application code

experts novices

0
50

10
0

15
0

20
0

ad
de

d
te

st
 c

od
e

[L
O

C
]

(b) Test code

Figure 12: Number of added lines of code at first acceptance test.

• The analysis of the test cycles yielded that the experts have shorter test cycles than the
novices and the test cycles of the experts show a smaller variation. The hypotheses RHLen

and RHVar could be confirmed.

• A novice who is able to follow the TDD process changes the test code more often than a
novice who is not able to apply test-driven development.

• The research hypotheses RHCLOC could not be confirmed, neither for application nor for
test-code changes.

• The experts have a higher editing speed for application code changes than the novices. A
similar result could not be found for the test-code changes. Thus, the research hypotheses
RHEdit holds for application-code changes but not for test-code changes.

• The experts reach the first acceptance test in a shorter period of time than the novices.
During that time frame, the experts write smaller programs and better tests than the novices
in terms of block coverage.

15

7 Threats to Validity

Apart from the different TDD experience of the experts and novices other possible explanations
for the observed differences in the data set might exist. First of all, the novices do not only have
less experience with TDD but also less programming experience than the experts. As mentioned
before, we tried to minimise this threat by dropping the data sets of those novices who were not
able to finish the implementation task. Secondly, our data might not present the typical TDD
process as the participants knew that they took part in an experiment. Thus, their development
behavior might be different from their actual development style.

Another cause for differences in the observed data could be the fact that experts were paid for
their participation and novices not which might have lead to a bias in motivation. Figures 13(a)
and 13(b) show the frequency of answers for the question of the post-test questionnaire “Did you
enjoy programming in the experiment?” The experts’ distribution of answers seems to be shifted

fr
eq

ue
nc

y

0
1

2
3

4
5

6

ye
s,

 v
er

y
m

uc
h

ye
s

do
n’

t k
no

w no

no
, n

ot
 a

t a
ll

(a) Experts

fr
eq

ue
nc

y

0
1

2
3

4
5

6

ye
s,

 v
er

y
m

uc
h

ye
s

do
n’

t k
no

w no

no
, n

ot
 a

t a
ll

(b) Novices

Figure 13: Distribution of answers to the question “Did you enjoy programming in the experi-
ment?”

to the left compared to the novices’ one which might indicate a higher motivation of the experts.
But as our data set is small, this difference is not statistically significant.

The next threat concerns the usage of mock objects which increases the number of lines of test
code. Thus the presented numbers of test-code changes and application-code changes may not be
representative for the typical TDD process.

And finally, changes which were not classified to be conform to TDD by our system where
inspected manually. Manual classification might introduce bias into the data set. However, both
authors did the classification independently. Later on, the two change classifications were searched
for differences. The few observed differences were caused by misinterpretations of the classification
scheme and could be resolved without long discussions.

8 Conclusions and Future Work

This paper presented a comparison of TDD experts’ and novices’ test-driven development pro-
cesses. The processes of 7 TDD experts and 11 TDD novices have been protocolled and analysed.
This data set lead to the following results:

• The experts achieve a higher conformance to the rules of test-driven development than the
novices. However, none of the participants achieved a conformance of 100 percent.

16

• The average elapsed time between two successive unit-test execution, the cycle time, is
smaller for the experts than for the novices. The variation of the cycle time is smaller for
the experts as well.

• The experts do not have more application-code and test-code changes than the novices. But,
the experts achieve a higher editing speed for the application-code changes than the novices.
The latter statement does not hold for the test-code changes.

• The developed tests of the experts have a higher block coverage than the tests of the novices.

Additional results show the correlation between application-code and test-code changes. A par-
ticipant who had many changes of lines of application code also had many changes in lines of test
code. This result holds for the pooled data sets as well as for the data set of the novice group
alone. Another results states, that the degree of novices’ process conformance correlates with the
number of changed lines of test code. Thus, the ability of novices to comply to the rules of test-
driven development leads to more changes of test code. The reported differences and correlations
are statistically significant on the 5 percent level.

These results implicate that studies investigating TDD can not be easily generalised if they
use novices (e. g. students without prior TDD experience) as subjects. Studies that want to avoid
this problem need to provide evidence that the subjects are able to apply the TDD process to
the same extent as programmers experienced in TDD. One way to show process conformance is
a protocol of subjects’ programming activities. Such a protocol might also ease comparison to
other TDD studies and theory building. For a better understanding of the TDD process further
questions need to be answered. Among others, these questions include the following:

• How long does it take for the majority of our novices to acquire comparable skills as the
experts?

• How do the TDD processes of professional programmers without any prior experience in
TDD look like?

• How does a typical TDD process look like? Since none of our experts achieved 100 percent
process conformance, strict conformance to the rules may not be observable in practice.

• Does pair programming lead to a higher conformance to the TDD process?

To answer the above questions further experiments and field studies are sought.

9 Acknowledgements

The authors would like to thank David Burkhart for developing the Eclipse plug-ins and Urs
Reupke for providing the tools to fill the database.

References

[1] K. Beck. Test Driven Development: By Example. Addison-Wesley, 2002.

[2] T. Bhat and N. Nagappan. Evaluating the efficacy of test-driven development: industrial
case studies. In Procedings of the 2006 International Symposium on Empirical Software En-
gineering (ISESE’06), pages 356–363, Rio de Janeiro, Brazil, September 2006. ACM Press.

[3] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C. A. Visaggio. Evaluating advantages of
test driven development: a controlled experiment with professionals. In Procedings of the 2006
International Symposium on Empirical Software Engineering (ISESE’06), pages 364–371, Rio
de Janeiro, Brazil, September 2006. ACM Press.

[4] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Academic Press, 1988.

17

[5] http://emma.sourceforge.net.

[6] H. Erdogmus, M. Morisio, and M. Torchiano. On the effectiveness of the test-first approach
to programming. IEEE Transactions on Software Engineering, 31(3):226–237, March 2005.

[7] H. Erdogmus and Y. Wang. The role of process measurement in test-driven development. In
Proceeding of XP Agile Universe 2004: 4th Conference on Extreme Programming and Agile
Methods, Calgary, Canada, August 2004.

[8] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

[9] B. George and L. Williams. An initial investigation of test driven development in industry. In
ACM symposium on Applied computing, pages 1135–1139, Melbourne, Florida, USA, 2003.

[10] A. Geras, M. Smith, and J. Miller. A prototype empirical evaluation of test driven develop-
ment. In International Symposium on Software Metrics (Metrics), pages 405–416, Chicago,
Illinois, USA, September 2004.

[11] Hackystat. csdl.ics.hawaii.edu/Tools/Hackystat.

[12] M. Hollander and D. Wolfe. Nonparametric Statistical Methods. John Wiley & Sons, 2nd
edition, 1999.

[13] http://jalopy.sourceforge.net.

[14] J. Link. Unit Testing in Java: How Tests Drive the Code. Morgan Kaufmann, 2003.

[15] J. Link. Softwaretest mit JUnit: Techniken der testgetriebenen Entwicklung. dpunkt.verlag,
2005.

[16] T. Mackinnon, S. Freeman, and P. Craig. Endo-testing: Unit testing with mock objects. In
Extreme Programming and Flexible Processes in Software Engineering - XP2000, Cagliari,
Sardinia, Italy, June 2000.

[17] G. Malpohl, J. Hunt, and W. Tichy. Renaming detection. In Automated Software Engineering,
pages 73–80, Grenoble, France, September 2000.

[18] M. Müller and O. Hagner. Experiment about test-first programming. IEE Proceedings Soft-
ware, 149(5):131–136, October 2002.

[19] M. Müller, J. Link, R. Sand, and G. Malpohl. Extreme programming in curriculum: Ex-
periences from academia and industry. In Conference on Extreme Programming and Agile
Processes in Software Engineering (XP2004), pages 294–302, Garmisch-Partenkirchen, Ger-
many, June 2004.

[20] M. Pančur, M. Ciglarič, M. Trampuš, and T. Vidmar. Towards empirical evaluation of test-
driven development in a university environment. In EUROCON 2003. Computer as a Tool.
The IEEE Region 8., volume 2, pages 83–86, September 2003.

[21] W. Shadish, T. Cook, and D. Campbell. Experimental and Quasi-Experimental Designs for
Generalized Causal Inference. Houghton Mifflin, 2002.

18

Table 1: Original data set.
U

se
r

D
u
ra

ti
o
n

[m
in

]

N
o
.

o
f
fa

il
e
d

te
st

s
a
t

fi
rs

t
a
c
c
e
p
ta

n
c
e

te
st

D
id

y
o
u

e
n
jo

y
p
ro

g
ra

m
m

in
g

in
th

e
e
x
p
e
ri

m
e
n
t?

N
o
.

o
f
ch

a
n
g
e
s

T
D

D

R
e
fa

c
to

ri
n
g

W
e
a
k

T
D

D

N
o
t

T
D

D

O
v
e
r-

a
ll

e
x
p
.

[y
r]

J
a
v
a

e
x
p
.

[y
r]

J
U

n
it

e
x
p
.

[y
r]

T
D

D
e
x
p
.

[y
r]

A
v
e
r.

c
y
c
le

le
n
g
th

[m
in

]

D
e
v
.

c
y
c
le

le
n
g
th

[m
in

]

N
o
.

o
f
c
y
c
le

s

A
p
p
.

ch
a
n
g
e
s

[L
O

C
]

T
e
st

ch
a
n
g
e
s

[L
O

C
]

A
d
d
e
d

a
p
p
.

c
o
d
e

[L
O

C
]

A
d
d
e
d

te
st

c
o
d
e

[L
O

C
]

A
p
p
.

e
d
it

.
sp

e
e
d

[L
O

C
/
h
]

T
e
st

e
d
it

.
sp

e
e
d

[L
O

C
/
h
]

L
in

e
c
o
v
.

[%
]

B
lo

ck
c
o
v
.

[%
]

e1 160 12 yes 42 34 0 2 6 6 6 6 6 3.1 5.8 45 76 223 55 214 77 178 91 92
e2 119 0 don’t know 18 14 0 0 4 6 5.5 5.5 6 1.6 1.6 51 35 142 20 105 79 147 91 92
e3 163 9 yes, very much 28 24 3 0 1 4 4 3 1 1.9 3.7 73 47 108 17 58 49 73 91 92
e4 202 12 yes 86 39 16 1 30 10 9 3 1 1.9 3.0 71 82 310 20 60 72 191 89 91
e5a 265 12 no 62 51 0 2 9 8 4 0.75 0.75 2.2 3.4 86 94 128 15 59 64 74 88 89
e6 206 0 yes 86 51 30 1 4 10 8 6 5 1.9 3.3 111 125 271 63 187 116 163 93 93
e7 145 12 yes 37 27 8 0 2 7 7 6 4 2.6 4.6 41 47 107 13 76 52 103 90 92
n1 222 17 no, not at all 16 0 0 0 16 9 5 0 0 16.0 33.4 12 19 13 14 11 12 15 86 87
n2 300 7 no 34 20 3 0 11 7 7 0 0 4.1 6.0 70 86 164 39 104 50 95 88 89
n3 255 0 don’t know 31 14 0 3 14 2 0.5 0 0 3.4 6.3 67 63 162 36 88 35 105 90 91
n4 181 0 yes 90 75 10 0 5 8 3 0.5 0 1.3 1.9 119 129 373 42 135 155 255 90 91
n5 303 0 yes 35 32 0 0 3 6 3 0 0 1.6 2.9 165 65 321 42 206 74 126 89 90
n6 434 0 don’t know 72 47 0 3 22 10 4 0 0 3.2 6.8 128 124 225 76 88 34 102 86 85
n7 218 0 don’t know 30 13 0 0 17 12 5 0.5 0 6.4 11.0 23 45 20 22 5 25 33 83 83
n8 242 13 yes 24 16 0 2 6 13 0 0 0 5.2 10.7 43 73 191 43 115 49 136 91 92
n9 261 0 don’t know 33 23 0 0 10 10 2 0 0 3.0 5.8 79 65 258 38 149 53 147 90 91
n10 186 9 yes, very much 57 22 0 1 34 3 2 0 0 2.4 4.4 59 47 82 16 39 34 89 90 91
n11 222 0 don’t know 9 8 0 0 1 2 0 0 0 8.2 10.4 23 41 156 34 127 25 122 91 92

aQuit after first acceptance test.

19

