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ABSTRACT
The emergence of inexpensive parallel computers powered by
multicore chips combined with stagnating clock rates raises
new challenges for software engineering. As future perfor-
mance improvements will not come “for free” from increased
clock rates, performance critical applications will need to be
parallelized. However, little is known about the engineering
principles for parallel general-purpose applications.

This paper presents an experience report with four diverse
case studies on multicore software development for general-
purpose applications. They were programmed in different
languages and benchmarked on several multicore computers.
Empirical findings include:

• Multicore computers deliver: Real speedups are achiev-
able, albeit with significant programming effort and
speedups that are typically lower than the number of
cores employed.

• Massive refactoring of sequential programs is required,
sometimes at several levels. Special tools for paral-
lelization refactorings appear to be an important area
of research.

• Autotuning is indispensable, as manually tuning thread
assignment, number of pipeline stages, size of data
partitions and other parameters is difficult and error
prone.

• Architectures that encompass several parallel compo-
nents are poorly understood. Tuneable architectural
patterns with parallelism at several levels need to be
discovered.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
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ming—Parallel programming ; D.2.11 [Software Engineer-
ing]: Software Architectures —Patterns

General Terms
Experimentation, Performance, Design, Algorithms

Keywords
Multicore Systems, Design Patterns, OpenMP, Autotuning

1. INTRODUCTION
Inexpensive multicore chips (chips with several proces-

sors) are pushing parallel computing out of the relative niche
of high performance computing into the mainstream. Al-
ready in 2005, affordable dual-core laptops, quad-core PCs,
and eight-core servers were available on the market. Largely
unnoticed went the fact that Cisco, also in 2005, developed
a packet routing chip with 188 (!) processors [10]. The
roadmaps of the semiconductor industry predict several hun-
dreds of cores per chip in future generations [25, 30]. This
development presents an opportunity that the software in-
dustry cannot ignore.

The bad news is that the era of doubling performance
every 18 months has come to an end [23]. This means that
the implicit performance improvement “for free” with every
chip generation has also ended. Thus, future performance
gains, required for new or improved applications, will have
to come from parallelism.

Unfortunately, one cannot rely solely on compilers to per-
form the parallelization work [6], as the choice or paralleliza-
tion strategy has a significant impact on performance and
often requires massive program refactorings. Software engi-
neering now faces the problem of developing parallel appli-
cations, while keeping cost and quality of software constant
[6].

This paper takes stock of the current situation in mul-
ticore programming and suggests areas for future research
and development. What are the tools and techniques we
have right now to develop general-purpose software for mul-
ticore systems? What are the problems and difficulties? Is
multicore programming worth the additional effort? Where
do we need extensions and future research? To answer these
questions, we conducted four case studies with applications
from different areas, written in different programming lan-



guages (C++ with OpenMP [8], Java, C#), and tested them
on multicore computers manufactured by Intel and Sun Mi-
crosystems.

The paper is organized as follows. Section 2 discusses re-
lated work. The first application is a commercial biological
data analysis program (Section 4). It is the most complex
application in this study, as it requires parallelization at
several levels. Parallelization is at a course level, viewing
individual algorithms as black boxes. The next case study
deals with fine-grained parallelism. It dissects a Monte Carlo
simulation for project management. This case study demon-
strates that an application that initially appears easy to par-
allelize nevertheless requires careful attention to shared data
structures. It also shows that the choice of compiler can
cause dramatic performance differences at different thread
numbers. The next two case studies drill down to the algo-
rithmic level: A parallelization of the shortest path problem
demonstrates that significant algorithm engineering may be
required to achieve speedup and that the available paral-
lelism can be limited by the problem itself, not the number of
available processors. The final case study, Section 7, briefly
describes the parallelization of another classic algorithm, the
traveling salesman problem. This problem provides ample
parallel work, but the caches and memory accesses become
a bottleneck as the number of threads increases. Section 8
distills the lessons learned.

2. RELATED WORK
Parallel programming is difficult, because it adds synchro-

nization as a new problem area to be dealt with. Synchro-
nization defects such as race conditions, deadlocks, and live-
locks are known to be difficult to detect [4]. Furthermore,
software developers need a thorough understanding of par-
allel algorithms. Although previous work in algorithms [14],
operating systems [29], database systems [12], and high-
performance computing (including cluster computing) [24,
32] dealt with these problems, the novel challenge now is to
develop general-purpose engineering approaches for assist-
ing ordinary programmers with the creation of potentially
large, parallel applications. These approaches must not only
target algorithmic levels, but also higher abstraction levels
such as design patterns [20]. Strategic engineering aspects
on how to approach parallelization on different abstraction
levels are not well-developed. At the moment, development
environments offer only low-level support for design, test-
ing, or debugging. Other approaches with different underly-
ing paradigms, such as transactional memory [28] or stream
programs [13], are active areas of research. Asanovic et al
[6] identified further gaps in the current landscape of par-
allel computing research. They collect elementary compu-
tation kernels with characteristic patterns of computation
and communication that may occur in parallel programs.
These kernels (nicknamed “dwarfs”) include numerical and
non-numerical problems and are meant primarily for perfor-
mance evaluation of multicore architectures. Our case study
covers the following dwarfs: Monte Carlo computations (as
a special case of the Map/Reduce pattern), graph traver-
sal, dynamic programming, backtracking, and branch and
bound. Numerical dwarfs are not covered, as their paral-
lelization is well understood in the HPC community.

3. CASE STUDIES OF MULTICORE
SOFTWARE APPLICATIONS

Following the guidelines of [34], we conducted four inde-
pendent case studies, carried out by different researchers,
to asses the research question concerning the present state
of multicore software development, as seen from the per-
spective of an ordinary software engineer. All case studies
started with a sequential program version that needed to
be parallelized. The case studies have a descriptive and ex-
planatory character as they describe how the parallelization
was done with the available languages and tools, and explain
the observed behavior or performance issues where appropri-
ate. Validity is constructed by collecting evidence from the
application context, the created software artifacts, the lan-
guages/tools documentations, from qualitative observations
during the development process, and from quantitative re-
sults (such as run-time data). The evaluation is done in two
stages: the first stage appears at the end of each case study;
the second stage appears in Section 8, combining the lessons
learned from all four case studies.

The programs for the case studies were carefully selected.
The first two are complete applications, a large, complex one
and a short, simple one. Both applications include all pro-
cessing steps, including all I/O. We also selected two classic
(non-HPC) algorithms, again a complex and a simple one,
because for some applications, it is enough to parallelize one
or a few algorithms where most of the runtime is spent. Be-
cause of the diverse choices, and because we started with
sequential algorithms in all cases, we can expect to achieve
adequate coverage of the dominant phenomena that arise
when parallelizing sequential applications in the context of
this limited study.

4. MULTICORE BIOLOGICAL DATA
ANALYSIS

The first case study subject is a commercial biological
data analysis application (Agilent Technolgies’ MassHunter
Metabolite ID [2]). The focus is on coarse-grained paral-
lelism at higher abstraction levels and on parallel design pat-
terns. The sequential version of the application is written in
C#.NET 2.0 and runs on ordinary desktop PCs.

4.1 Field of Application
The application performs a so-called metabolite identifi-

cation. Metabolites are the intermediate and final products
of metabolism; metabolism is the sum of chemical reactions
that take place within the cells of a living organism.

Metabolite identification is an important method for test-
ing drugs. For example, it can test how drugs are actually
taking effect and helps with assessing the impact or adverse
effects of drugs. The identification process begins with sam-
ples of body fluids, taken at certain points in time after the
application of a drug. From these samples, mass spectro-
grams are produced. The problem studied here is to com-
pare each of the mass spectrograms of the samples with a
control sample taken before the application of the drug, in
order to identify the metabolites caused by the drug. The
drug’s chemical structure is also used in this process.

4.2 How it Works
The application’s main module is the metabolite identifi-

cation unit, which executes a series of algorithms that iden-



tify and extract the metabolite candidates. Figure 1 shows
the relevant processing steps. In the original program, the
entire identification process runs sequentially; potential par-
allelism is not exploited.
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Figure 1: Conceptual structure of the sequential ap-
plication.

The input data consists of the metabolite samples and the
control sample. After preprocessing the samples (i.e., for-
matting the raw data and initializing the application’s data
structures), the algorithms try to identify metabolite can-
didates using various criteria and strategies. As depicted
in Fig. 1, the algorithms are each wrapped by an execu-
tion module (M1, . . . , Mn) that provides the required input
data for the respective algorithm and retrieves the results.
When the identification process is finished, a post-processing
step consolidates and presents all identified metabolite can-
didates to the user. The algorithm sequence is repeated for
each metabolite sample.

4.3 Experience
Our main point of interest was how this complex applica-

tion can be parallelized at higher abstraction levels without
touching the internals of the algorithms contained in the
executions modules M1, . . . , Mn. This way, we wanted to
assess whether speedup gains can be achieved by restructur-
ing rather than by algorithmic improvements.

We were faced with the following challenges:

• Choosing appropriate levels of parallelization and iden-
tifying logical application layers was the first sticking
point, especially as the application’s architecture and
structure was never designed for parallel execution.

• As parallel sections continued to grow and cover more
program logic, we had to keep track of a larger number
of data and task dependencies.

• The application with many parallel sections on differ-
ent application levels was hard to tune because of in-
terdependencies. Parameters for one particular paral-
lel section, such as the number of threads or the size of
data partitions, had to be set in concert with parame-
ter values of other sections in order to achieve the best
possible performance. This task was too complex to
be managed manually.

We used the .NET threading library to implement thread-
related functionality. We addressed the challenges by using

the Data Decomposition Pattern, Task Decomposition Pat-
tern, and Pipeline Pattern described in [20]. In addition, we
tackled the tuning problem by constructing an autotuner [6].
The details are presented next.

Parallel Design Patterns.
We followed a methodical approach using the Parallel Pat-

tern Language described in [20]. This pattern language is
designed to systematically guide a software engineer through
the process of developing parallel applications. We employed
a bottom-up strategy to identify different parallelization lay-
ers. This approach was also useful for testing, as the layers
at higher levels were parallelized only after the paralleliza-
tion of the levels below was working. Figure 2 outlines the
various sources of parallelism.

 

Stage 1 Stage 2 Stage 3 Stage 4

M1

M2

M3

M4

M10

M5

M10

(Instance 1)Input bin 1

Input bin 2

Input bin m

Result 
bin 1

Result 

bin 2

Result 

bin m

M10

(Instance 2)

M10
(Instance m)

R
e
su

lt
 D

a
ta

 
C

o
n
so

lid
a
ti
o
n

D
a
ta

 

P
a
rt

iti
o
n

in
g

P
ip

e
li

n
e

 L
a

y
e
r

M
o

d
u

le
 L

a
y
e

r
D

a
ta

 L
a

y
e

r

Pre-

Processing
Post-

Processing

In
p
u

t 
d
a
ta

R
e
su

lt 
d
a
ta

M7 M8

M6

M9

Figure 2: Conceptual structure of the parallelized
application.

The data layer, on the lowest abstraction level, applies
the Data Decomposition Pattern [20]. Using code inspec-
tions, we figured out that it is possible to divide the input
data into several partitions and let different instances of an
execution module work in parallel on each partition. As
sketched in Fig. 2, the data layer partitions the input data
into different bins for each execution module, starts the par-
allel execution of several instances of the module, and finally
collects and consolidates the results.

The module layer applies the Task Decomposition Pat-
tern [20] and ensures the correct initialization and execution
order of the modules. Where possible, it forks the control
flow to execute the algorithms concurrently. In our context,
however, only certain orderings were possible. Also, we had
to replicate the respective data structures and introduce bar-
riers for joining the control flow back to a single thread (cf.
Fig. 2).

The pipeline layer uses the Parallel Pipeline Pattern
[20]. To increase throughput, the pipeline can be fed a new
sample as soon as the first stage is idle. Thus, this layer
processes several samples at once in a true pipeline fashion.

We made the following observations throughout the usage
of parallel patterns:



• Using the Parallel Pattern Language enabled us to take
a systematic approach to converting the sequential ap-
plication to a parallel one.

• Converting a sequential application to a parallel ver-
sion comes, however, with a high refactoring effort.
The sequential application consists of about 100k of
non-commented source lines, not including the iden-
tification algorithms and data access modules. The
regions of code relevant for parallelization sum up to
about 8, 000 lines. All of those had to be analyzed,
about 1, 000 were changed and 1, 500 added. Tools
for this process are definitely needed, and parallelizing
compilers are not sufficient for this task.

• It would have been helpful to have predefined code
templates for parallelization patterns. These should
be extensible by the programmer and provide switches
for configuring the template not only during program-
ming, but also during performance tuning.

These observations influenced our approach to autotun-
ing, which is described next.

Autotuning.
After converting the application from sequential to paral-

lel, tuning all parallel sections was required to get the best
possible performance. The most influential parameter was
the number of threads used for a parallel section. In addi-
tion, the size of data partitions, the number of input samples
as well as the number of pipeline stages had an impact on
the overall performance (cf. Fig. 2). The identification of
the optimal values for these parameters – especially for the
number of threads – posed the following challenges:

• From a local point of view, a parallelized module could
obtain considerable speed-up compared to its sequen-
tial version. However, from a global perspective, the
parameters under which each parallelized module achieves
its optimal speedup, differs from module to module.
Due to the pipeline structure, one inadequately con-
figured stage slows down the entire application. So a
homogeneous thread assignment does not work well.

• The number of available processors differs from com-
puter to computer. Therefore, the upper bound of
threads that could be active varies as well, and this
number does not necessarily equal the number of cores.
Porting the application to another machine with a dif-
ferent number of cores or different memory organiza-
tion requires re-tuning.

To overcome these obstacles, we created an autotuner –
a program that automatically executes the parallel applica-
tion within a predefined search space of parameter values,
in order to find the parameter configurations that yields op-
timal performance. Even though we have prior experience
with autotuning [33], no suitable autotuner was available
that fully suited our needs, so we built our own.

Our autotuner was implemented as a .NET library. We
defined the tuning parameters in a configuration file, and
implemented the parallel patterns in a configurable way by
making their behavior dependent on predefined parameters.
The novel aspect is that the autotuner can vary not only
numerical values (such as the number of threads or the size of

data partitions), but also performs architectural variations
(e.g., configuring the pipeline pattern with different numbers
of stages).

The tuning results were not intuitive. With the help of the
autotuner, we noticed that our manual assignments tended
to use too many threads. Due to critical sections, I/O op-
erations, or the total number of threads which were simul-
taneously active, the optimal value was often lower than
expected. The performance gain between the worst and the
best parameter combination on one machine could be as high
as 40% (when using the max. number of cores).

The application was tuned on two different machines with
two and eight cores, resp. On the two-core machine (In-
tel Core 2 Duo E6600 at 2.4 GHz, 2 GB RAM, Windows
Vista) we achieved a total speedup of 1.7. On the eight-core
machine (2x Intel XEON E5320 Quadcore at 1.86GHz, 8
GB RAM, Windows 2003 Enterprise Edition R2) the total
speedup was 2.9. In both cases, about 30% of the achieved
speedup resulted from the restructuring of the data and
module layer, whereas the remaining 70% came from the
pipeline layer. The reason why we had no linear speedup
with respect to the number of cores was because of un-
avoidable locks and critical sections. As we have no ac-
cess to the metabolite identification algorithms, we do not
know whether parallelizing them beyond the data partition-
ing would speed up the application further.

In sum, this case study demonstrates the need for paral-
lelization patterns, refactoring, and autotuning.

5. MULTICORE MONTE CARLO SIMULA-
TION IN PROJECT MANAGEMENT

This case study focuses on a Monte Carlo simulation that
uses random numbers to compute project completion times.
It offers fine-grained parallelism and is thought to be triv-
ially parallelizable, as the computation pattern consists of
individual computations that are independent of each other.

The application was written in C++, and the paralleliza-
tion was done with OpenMP [8]. The Microsoft Visual C++
2005 Compiler and the Intel C++ 10 Compiler, which both
have built-in support for OpenMP, were used under the Win-
dows operating system.

5.1 Field of Application
The Monte Carlo simulation computes a probability distri-

bution for the completion time of a project, given a schedule
for the project. A project schedule (e.g., for building soft-
ware or a skyscraper) consists of several tasks linked in a
dependency relation that specifies the partial order of the
tasks. As the durations of the individual tasks are not ex-
actly known, one uses probability distributions instead (cf.
Fig. 3).

The computational problem is to determine the probabil-
ity distribution of the finishing times for the entire project.
As an analytical solution is infeasible, one employs Monte
Carlo simulation. The basic idea of this approach is to draw
a random number for each task according to its probability
distribution and to compute the total completion time with
the given set of random numbers, taking into account the
partial order of the tasks. This process is repeated thousands
of times, and the computed durations are accumulated in a
histogram. This histogram approximates the true distribu-
tion of completion times, i.e., for a given number of days
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Figure 3: Example for an assignment of probability
distributions to tasks of a project schedule.

one can determine the probability of the project complet-
ing in this many days. One can also compute the expected
completion time and the variance.

5.2 How it Works
We use Microsoft Project to specify input files with prob-

abilistic project schedules. For each task, user-defined at-
tributes are set to specify the distribution type and dis-
tribution parameters. The following distribution types are
available: Uniform, Triangle, Exponential, Weibull, Gauss,
Gamma, Beta, or Erlang (see [16] for details). The com-
pleted schedule is piped into the Monte Carlo simulator.

The sequential version of the C++ application uses an ar-
ray for representing the partial task order as an adjacency
matrix, as well as other arrays for earliest and latest com-
pletion times, the distribution type and the distribution pa-
rameters for each task.

During a simulation step, the program assigns each task a
randomly computed duration from its distribution, using the
methods described in [15, 16]. Then it computes the earliest
and latest completion times for each task (cf. [21]). At the
end of a simulation step, the program collects the earliest
completion time of the last task and updates the histogram
of total completion times. At the end, the histogram is
written to disk.

5.3 Experience
The parallelization of the sequential C++ application was

done using OpenMP, a de-facto standard for programming
shared-memory multiprocessors. Its philosophy is to insert
directives into regular C++ code, which specify the creation
of threads for parallel computations. For example, such di-
rectives may define parallel loops or critical sections [8, 19].
It is left to the operating system to schedule threads onto
different cores or processors. OpenMP has a fork/join model
of programming and assumes that a program has one master
thread. When a parallelization directive is encountered, the
control flow is forked into additional worker threads. Upon
their completion, the control flow is joined again to the mas-
ter thread. The OpenMP language is embedded into other
languages, such as C++. Non-OpenMP compilers treat par-
allelization directives as comments and generate sequential

programs.
Parallelizing this application was simple, as arbitrarily

many instance of the main computational step can be ex-
ecuted in parallel and there are no dependencies. (This is
also called an embarrassingly parallel computation). It is
also completely straight forward to express this paralleliza-
tion with OpenMP. We simply create a certain number of
threads with an OpenMP directive. Each thread draws ran-
dom numbers for each task, computes the completion time,
and repeats. However, there were two issues that needed
to be addressed: parallel random number generation and
collecting the results in the completion time histogram.

If we had started the random number generator for each
thread with the same seed, then each thread would operate
on the same sequence, which would be useless. Following
the approach proposed by Anderson [5] we use an initial run
of the generator to produce one random number per thread,
which is then used as the seed for the thread. In a separate
run, we analyzed the total set of generated random numbers
for independence and randomness with appropriate tests and
plots [31].

The second problem, updating the shared histogram, per-
mits three different solutions, which were all implemented.

• Strategy 1: the update of the histogram vector is
enclosed by a critical section directive, which locks the
whole array (i.e., only one thread at a time can access
the array).

• Strategy 2: every thread owns a private histogram for
accumulating results. This approach has the advan-
tage that no locking is needed during the computation
stage. At the end, however, the private histograms
must be summed into a final histogram. This step is
a simple, repeated vector addition and easily paral-
lelized: each thread sums a section of the vectors.

• Strategy 3: histogram update uses the atomic direc-
tive. In contrast to strategy 1, this directive locks vec-
tor elements individually, rather than the whole vector.
This has the effect that update operations can proceed
in parallel, as long as the threads write to different vec-
tor elements.

We varied the number of threads used in parallel sections
and measured the execution times (including reading in the
schedule and writing the histogram to disk) of each strategy
on different multicore computers. The resulting speedups
on an eight-core machine are shown in Fig. 4. We used all
appropriate compiler optimizations, and in particular the
special options offered by the Intel compiler for its own pro-
cessors.

As can be seen, respectable speedups can indeed be
achieved. For the Microsoft compiler, the three strategies
do not differ much. For the Intel compilers, locking the en-
tire histogram has a high cost for large numbers of threads.
Above 25 threads, the parallel program is slower than the
sequential one! It is also interesting to note that the Intel
compiler delivers the best application performance when the
number of threads is about equal with the number of cores.
At higher thread numbers, performance drops markedly,
while the Microsoft compiler produces a more or less steady
performance increase as the number of threads goes up. The
best absolute execution time (not shown in the Figure) was
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All programs were compiled and run on a machine with 2x Intel XEON E5320
Quadcore at 1.86GHz, 8 GB RAM, Windows 2003 Standard x64 R2. The
simulation used 1 million steps, a project schedule graph with 16 tasks, and 40
bins for the result histogram.

Figure 4: Performance results for the parallel
Monte Carlo application with different implemen-
tation strategies.

obtained with strategy 2, eight threads, and the Intel Com-
piler.

Further experiments were conducted on two dual-core ma-
chines: a Toshiba Tecra M5 Laptop (Intel Core Duo T2500
at 2 GHz, 2 GB RAM, Windows XP) and a Dell Desktop PC
(Intel Core Duo E6400 at 2.13 GHz, 3 GB RAM, Windows
Vista). With the same simulation parameters, the speedup
on these machines was in a corridor between 1.4 and 2; the
Intel compiler with strategy 1 behaved in a similar way as
in Fig. 4. The best absolute execution times were obtained
with strategies 2 and 3 and the Intel Compiler. We also ob-
served marked temperature increases on the processor chips
when all processor cores were working at full capacity. The
laptop chip was the hottest with 85◦C, pointing to a poten-
tial cooling problem.

Other Observations.

• Overall, OpenMP had the advantage that the exist-
ing sequential program could be parallelized incremen-
tally. In addition, the parallelization was expressed on
a higher abstraction level than threading.

• A drawback was the transparency of the OpenMP lan-
guage for the C++ compiler. Compiler and debugger
messages are not mapped back to the OpenMP source,
but to some intermediate representation, which makes
the error messages unintelligible and debugging com-
plicated. The integration among OpenMP, underlying
language, debuggers, and development environments
should be seamless.

• Some refactoring was necessary for parallel random

number generation and histogram access. For exam-
ple, the initial sequential application grew from about
650 lines of code to 870 lines of code for strategy 2
(approx. 850 for strategies 1 and 3). About 40% of
the parallel code was obtained by refactoring. Only
a few lines of OpenMP (2–4) were needed for each
version. There appears to be a vast potential for semi-
automatic refactoring or redesign of data structures,
which could work in conjunction with static program
analysis.

• As shown in Fig. 4, the achieved speedup depends
on different factors: number of threads, parallelization
strategy, and compiler. Again, autotuners would help
find the optimum.

6. MULTICORE SHORTEST PATH COMPU-
TATIONS IN GRAPHS

This case study analyzes the parallelization of computa-
tions on road network graphs, and discusses a parallel im-
plementation of the computation of shortest paths.

The employed compiler was the SUN C++ 5.8 compiler
with the SUN implementation of OpenMP. The experiments
were conducted under the Solaris 10 operating system. To
achieve comparable results, we turned off the Java garbage
collection and took care of it explicitly within or application.

6.1 Field of Application
The Single-Source Shortest Path (SSSP) problem is de-

fined as follows: Given a directed graph with nodes, weighted
edges, and a distinguished start node, the problem is to find
the path with the minimum sum of weights from the start
node to all other nodes. The SSSP problem is important for
navigation systems or finding train connections.

We used the SSSP problem to analyze the parallelization
of a graph traversal application. For a realistic context, we
used the following road networks:

Graph Nodes Edges Source
Western Europe 18,598,616 41,836,920 PTV Co.

USA 23,947,347 58,333,344
9th DIMACS

Challenge [1]

6.2 How it Works
The SSSP problem is well-studied in the literature [18].

There are two major classes of algorithms: label-setting and
label-correcting. Label-setting algorithms, such as the one
proposed by Dijkstra [9], partition the node set into three
subsets: 1) settled nodes whose distance from the start node
is definitely known; 2) queued nodes that have a tenta-
tive distance, but which still can be modified; 3) unreached
nodes, whose distance from the start node is not known.
Edge relaxations are performed on nodes in subset 2) to im-
prove the tentative distances (see [22] for details). By con-
trast, label-correcting algorithms do not designate settled
nodes, and all distance computations are considered tempo-
rary until the final step [22]. For our case study, we focused
on algorithms that do not preprocess the data.

6.3 Experience
Due to the special characteristics of the road network

graphs (e.g., the graph of Western Europe has an average
outdegree of 2.25) which differ from random graphs, first
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est path computation on an eight-core system.

parallelization experiments showed that label-correcting al-
gorithms were likely to perform better than label-setting
algorithms, because the set on which relaxations could be
performed was larger [11].

We used C++ and OpenMP to implement a label-
correcting, parallel shortest path algorithm based on the
∆-stepping approach proposed in [22]. We extended that
algorithm to support variable deltas instead of fixed deltas,
to keep the number of nodes relaxed in each step constant.
There is not enough space available here to explain the al-
gorithm adequately, but the reader is referred to the M.S.
thesis on this topic [11]. A few points about the implemen-
tation follow.

The data structure used to store nodes to be relaxed is a
distributed radix heap [3]. Each thread has its own radix
heap, and each node is owned by exactly one thread. Each
thread is allowed to relax only its own nodes, which en-
hances locality effects. When a thread has to modify an-
other thread’s node, it generates a relaxation request instead
of modifying it directly; every thread must also process the
relaxation requests generated by other threads. Due to the
data structures and various assumptions, the program runs
with a number of threads that is a power of two.

The total implementation was 2200 lines of code, only
about 10 were related to OpenMP. The core of the serial
version is about two dozen lines of code.

As one of the machines this algorithm was measured on
was the SUNFire T2000 with the first Niagara chip, and
since this chip is known to have only modest floating point
power (only one floating point processor), we implemented
the algorithm with integer arithmetic. The performance of
our implementation is depicted in Fig. 5; a speedup of 4.3
on an eight-core SUNFire T2000 machine is reasonable. By
contrast, an experimental study of the ∆-stepping approach
of [18] with fixed deltas on a Cray MTA-2 with 40 Processors
had a speedup of only 2.95 for road networks (for random
graphs, the speedup was 31).

This case study is an example for a problem that offers lit-
tle opportunity for parallelism, mainly because of the small
amount of work that could be processed in parallel. Ex-
tracting this work was extremely difficult (an entire Master’s
thesis [11]).

The case study also shows that parallel algorithms can
behave differently on realistic data than on synthetic data.

7. MULTICORE TRAVELING SALESMAN
We focus in this case study on an multicore implemen-

tation of the Traveling Salesman Problem (TSP) in Java,
using a branch and bound algorithm (integer version).

We used the Java 6 compiler. The parallel program was
studied on two different eight-core machines, one under Win-
dows Server 2003 and one under the Solaris 10 operating
system.

7.1 Field of Application
The traveling salesman problem is a well-known NP-

complete problem in combinatorial optimization. For its
large number of applications see [17].

7.2 How it Works
Generally speaking, a branch and bound approach suc-

cessively divides the set of possible solutions into smaller
subsets, calculates bounds of the objective function value
for these subsets, and uses these bounds to exclude appro-
priate subsets from further consideration. The process stops
when either each subset has produced a feasible solution, or
when it has been detected that a particular solution is not
better than the one available so far. In the TSP context, the
branch and bound algorithm repeatedly divides the solution
space into two parts: a part with a given edge and a part
without it, and evaluates them with the objective function
on the length of the tours (see also [7]).

7.3 Experience
We briefly sketch the key points of the parallelized version

of the TSP program. It has a total of 1300 lines of code;
about 50 of them contain parallelization constructs. The
partial problems resulting from the branching operations are
stored in a thread-safe task queue, which is a priority queue
sorted by the lower bound of the problems. The lower bound
for each branch is computed as described in [27].

A thread processes and evaluates a branch with a given
edge, and pushes the other branch without the given edge on
the task queue. The task queue is a means of distributing
work between cores and to achieve dynamic load balance.
Branches with a higher lower bound are processed first, as
they have a higher probability to get pruned and thus might
not create new branches.

Figure 6 shows the performance results on two different
eight-core machines. It can be observed that as the problem
grows and the amount of data increases, the speedup im-
proves as well. This means that the cores and the memory
bandwidth are well-exploited when there are enough data
and threads running in parallel. However, when the prob-
lem scale passes a certain point, speedup drops.

Due to the task queue with many partial solutions, the
branch and bound algorithm is memory intensive. There-
fore, it is important to implement this data structure in such
a way that it can cope with this situation. In addition, when
comparing the results of Fig. 6, it becomes obvious that the
SUN processor can cope much better with the heavy use of
memory, presumably because of the cache memory architec-
ture. The SUN T1 processor has 3 MB shared L2 cache for
all 8 cores, whereas the Intel Xeon processor has its cores
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Figure 6: Performance results for the Traveling Salesman Problem on eight-core machines.

grouped into pairs on one die, and a pair of cores share a 4
MB L2 cache.

The results imply that a developer currently needs to be
aware of the cache architecture when designing the data
structures or communication patterns in multicore programs.
However, from a longer-term perspective, automated or semi-
automated support is needed.

Another difficulty is that Java only supports paralleliza-
tion constructs on a low level. The programmer is bur-
dened with manually creating, destroying, or synchronizing
threads. In many cases, developers might not need such a
fined-grained control over parallelization. OpenMP-like ex-
tensions of Java would help.

8. LESSONS LEARNED FOR MULTICORE
SOFTWARE ENGINEERING

Based on the empirical results and observations of all of
the presented case studies, we summarize the lessons learned
for multicore software engineering and discuss opportunities
for future research.

• Our performance results show that parallelization works
on multicore and is worth the effort.

• The parallelization strategy is important. Multicore
performance issues are not merely a matter of compil-
ers or operating systems.

• Threading is currently the dominating concept for par-
allelization. The mainstream programming languages,
such as C# or Java, support threading concepts. How-
ever, managing threads explicitly is tedious and error
prone.

• OpenMP eliminates explicit thread management. Se-
quential programs can be parallelized incrementally.
Compared to alternatives (e.g., threading APIs or li-
braries, cf. [4]) OpenMP programs are easier to port
to different platforms. Due to the poor integration of
OpenMP into a host language (e.g., C++), developers
get unspecific error messages if something goes wrong

in the parallel program sections. Debugging is cur-
rently difficult as well. Better integration of OpenMP
into host languages and debuggers is needed, or pro-
gramming languages in which parallel constructs are
“first-class citizens”.

• Refactoring/restructuring are crucial for paralleliza-
tion. This is also the case when an application uses
thread-safe libraries, such as [26]. Future research seems
promising for semi-automatic techniques which allow
developers to consistently modify data structures or
introduce certain access patterns with the click of a
mouse. There is additional automation potential when
restructuring techniques are used in conjunction with
program analysis tools.

• There are typically several sources of parallelism. Se-
quential applications can be parallelized on different
abstraction levels, and speedups can be gained from
each of these levels.

• Parallel patterns are useful. Configurable parallel pat-
terns appear to have significant potential. Parameters
for such patterns could be set at design-time in order to
configure a predefined pattern to a certain context. In
addition, setting pattern parameters at run-time (e.g.,
which communication rules are to be used) will ease
application tuning and make it possible to try out dif-
ferent architectures in a systematic way.

• Synchronization defects arise when developers work at
low abstraction levels (e.g., the locking of data struc-
tures) and are not aware of the emergent behavior on
higher abstraction levels (e.g., on a protocol level).
Parallel patterns can help in this context to reduce
such errors, as they can be pre-tested and pre-configured.

• I/O is in many cases the limiting performance factor.
Using parallel patterns, developers can create initial
program skeletons that show how to spread computa-
tions while waiting for I/O.

• Autotuning is indispensable for multicore software en-
gineering. We definitely need future work in this area,



especially on intelligent heuristics that reduce the pa-
rameter space. It might be possible to prune the search
space by analyzing a parallel program with static or
dynamic program analysis techniques.

• Though not a result of these case studies, we can re-
port from our experience with parallel programming
on clusters that a shared address space model is vastly
simpler to program than message passing, for exam-
ple à la MPI. Though the increasing number of cores
per chip will make it difficult to impossible to pro-
vide shared memory, a machine model in which pro-
grammers must explicitly send messages to access data
should be avoided at all costs.

9. CONCLUSION
“The future is parallel” [25] - modern processors already

have multicore architectures that offer true hardware par-
allelism at affordable cost, and the number of cores will
continue to grow. This development will have fundamental
impacts on software engineering theory, practice, and edu-
cation, as every programmer will be confronted with pro-
gramming parallel systems. The software engineering and
research community needs to prepare for that situation. The
case studies presented in this paper that, on a rudimentary
level, multicore programming already works and is worth
the effort, but that we also need significant advances before
parallel programming becomes routine.
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