
www.elsevier.com/locate/jss

The Journal of Systems and Software 78 (2005) 166–179
Two controlled experiments concerning the comparison of
pair programming to peer review

Matthias M. Müller *

Department of Computer Science, Fakultät für Informatik, Universität Karlsruhe, Am Fasanengarten 5, 76131 Karlsruhe, Germany

Received 3 June 2004; received in revised form 23 December 2004; accepted 24 December 2004
Available online 22 January 2005
Abstract

This paper reports on two controlled experiments comparing pair programming with single developers who are assisted by an
additional anonymous peer code review phase. The experiments were conducted in the summer semester 2002 and 2003 at the Uni-
versity of Karlsruhe with 38 computer science students. Instead of comparing pair programming to solo programming this study
aims at finding a technique by which a single developer produces similar program quality as programmer pairs do but with moderate
cost.

The study has one major finding concerning the cost of the two development methods. Single developers are as costly as pro-
grammer pairs, if both programmer pairs and single developers with an additional review phase are forced to produce programs
of similar level of correctness. In conclusion, programmer pairs and single developers become interchangeable in terms of develop-
ment cost. As this paper reports on the results of small development tasks the comparison could not take into account long time
benefits of either technique.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Pair programming; Peer reviews; Empirical software engineering; Controlled experiment
1. Introduction

Pair programming has become widely accepted as an
alternative to solo programming in the last years. When
working in pairs, individual developers learn from their
partners, share ideas, and when they pair off they find
solutions which none of them would have found alone.
A team of developer pairs shares responsibilities, denies
specialization and thus, reduces the risk of a project fail-
ure caused by personal change-over. And last but not
least, the pleasure of those who like pair programming
should not be underestimated. But the advantages of
pair programming are bought at the expense of nearly
doubled personnel cost.
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2004.12.019

* Tel.: +49 721 608 7333; fax: +49 721 608 7343.
E-mail address: muellerm@ipd.uka.de
So far, empirical studies only compared single devel-
opers to two person inspections methods and pairs of
programmers to single developers. For example Bisant
and Lyle (1989) showed that a two person inspection
method improves individual programming process and
Sauer et al. (2000) state that during inspections expert
pairs perform as well as any larger inspection group.
In the last years, a lot of studies compared pair pro-
gramming to solo programming. For a discussion of
these studies, see Section 2. Both techniques, two person
inspections and pair programming, lead to higher qual-
ity programs as compared to programs written by single
developers. However, current empirical software engi-
neering research lacks a comparison of the two
techniques.

This study is aimed as a step towards filling the gap
between pair programming and two person inspections.
It is a first step because it compares pair programming

mailto:muellerm@ipd.uka.de


M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179 167
to an informal code review process as opposed to the
formal process of code inspections. The following tech-
niques were compared:

Pair programming: Two persons sit in front of a work-
station and work together on the same task. Both devel-
opers share ideas in order to obtain a solution to the
actual programming task.
Review: A solo developer implements a solution to a
problem and fixes all compilation errors. Then, he hands
in his program for anonymous code review. After the
review, he receives the program source together with a
short description of the errors and finally starts testing.

The experiments took place in the summer semester
2002 and 2003 at the University of Karlsruhe. They
are referred to as Exp02 and Exp03, respectively. Partic-
ipants were 38 computer science students.

The result of the experiments is as follows. Program-
mer pairs are as cheap as single developers if both devel-
oper pairs and single programmers are forced to
produce programs of similar correctness.

Müller (2003) presents first results of Exp02. This pa-
per extends the results by a thorough analysis of the
combined data sets of Exp02 and Exp03. Throughout
the paper, the group of the single developers will be
called the review group as well.
1 The experimental settings are described too vague by Nawrocki
and Wojciechowski (2001) as to get any reliable information on this
topic.
2. Related work

Three studies compared pair programming to solo
programming.

Williams et al. (2000) studied pair programming with
41 undergraduate students. The control group consisted
of 13 students who performed the work individually.
The pair programming group was made up of 28 stu-
dents. The study lasted 6 weeks. During that time
frame, all individuals and pairs completed four assign-
ments. Concerning program correctness, the programs
of the pairs passed more of the automated post develop-
ment tests than the programs of the individuals did.
This difference was significant with p < 0.01. The data
sample of the pairs also showed a smaller variability
than the data sample of the individuals. The evaluation
of the development cost showed that, after an initial
adjustment period in which the pairs spent about 60%
more programmer hours on the completion of the tasks,
the working overhead of the pairs dropped down to
15%.

Nosek (1998) studied 15 professional programmers, 5
individuals and 15 pairs, on a database consistency
check. None of the subjects had worked on this kind
of problem before. The time needed to complete the task
was limited to 45 min. All pairs outperformed the indi-
viduals. Although the average time for completion was
more than 12 min longer for individuals (41%), the dif-
ference was not statistically significant on the 5% level.

Nawrocki and Wojciechowski (2001) studied 21 com-
puter science students on the first four assignments of
the Personal Software Process programming course
(Humphrey, 1995). The students were divided into three
groups: the first group applied the PSP-baseline process
(time and defect logging), the second group used XP tai-
lored to single programmers, and the third group used
pair programming. Overall, the pair programming
group was not faster than the other two groups. This re-
sult stands in contrast to the Williams et al. and the No-
sek studies. The variability within the pair programming
group was smaller than within the other two groups.
This observation led to the conclusion that the pair pro-
gramming process is more predictable.

Tomayko (2002) compared the defect rates of pro-
grams of teams following Extreme Programming (XP)
(Beck, 1999) and the Team Software Process (TSP)
(Humphrey, 1999). The XP team achieved a defect rate
more than half as low as the defect rate of the TSP team
(9.6–19.7 defects per thousand lines of code). The study
compared development processes, thus, the reported ef-
fect cannot be subscribed to a single technique alone, for
example pair programming or inspections.

Williams and Kessler (2000) and McDowell et al.
(2002) investigated the advantages of pair programming
for educational purposes. Other studies evaluated the
potential costs and benefits of pair programming (Cock-
burn and Williams, 2000; Müller and Padberg, 2002;
Padberg and Müller, 2003).
3. Methodological issue

Although Williams et al. (2000), Nosek (1998), and
Nawrocki and Wojciechowski (2001) conducted their
studies to evaluate the advantage of pair programming
over solo programming, the results of the first (and
maybe also of the third 1) study are inconclusive to some
extent. The results depend not only on the development
methods but also on programs� level of correctness be-
cause programs with different number of failures were
compared. The programs� level of correctness differ be-
cause the assignments were considered completed as
soon as the participants (pairs and individuals) claimed
so. Thus, the produced programs naturally differ by the
time needed for completion and by the correctness level
because of the subjects� different attitude on when it is
beneficial to stop testing and when not. It is methodo-
logically questionable to compare these program ver-
sions. The only way out of this dilemma is to keep



168 M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179
either of the two variables fixed: time to completion or
code correctness. For example, a valid comparison of
two development methods should only consider pro-
gram versions that were developed within a fixed period
of time as it was done in the Nosek study, or those that
achieve a certain level of correctness and to force rework
if a program is below this level.

As the first approach (limiting the time) faces the
problem of incomplete programs, this study implements
the second approach by issuing an additional quality
assurance phase at the end of the implementation pro-
cess. This quality assurance phase ensures a comparable
correctness of subjects� programs. Thus, the measured
programming effort solely depends on the different
implementation methods. However, in order to be con-
sistent with previous studies this paper also presents the
confounded results before the quality assurance phase.
4. The study

The two experiments had a counterbalanced design
and were held at the University of Karlsruhe during
the summer lectures 2002 and 2003, respectively. The
experiments were part of an Extreme Programming
(XP) course (Müller et al., 2004) which took place in
the summer semester. The course consisted of four short
sessions (introducing pair programming, test-first, refac-
toring, and the planning game) and a whole week of
project work. The experiments were performed from
May to June between the introductory sessions and
the project week. Java was the programming language
for both the experiments and the lab course.

4.1. Subjects

Students subscribed voluntarily to the course. They
knew from the course announcement that they had to
take part in an experiment in order to get their course
certification. All subjects were computer science gradu-
ate students who were on average in their fourth year
of study, see the leftmost plot in Fig. 1. The outlier on
the lower part of the scale originates from an exchange
2
4

6
8

0
5

10
15

Fig. 1. Students� year of study, overall programming experience in years, Jav
in lines of code.
student from Norway who reported only the time of
study he spent in Karlsruhe. The outlier on the upper
part of the scale represents a student who is also a devel-
oper in his own small software company.

The other three plots of Fig. 1 show subjects� overall
programming experience in years, the Java program-
ming experience in years, and the Java Programming
experience in lines of code. An outlier at 270000 lines
of code Java programming experience is omitted for pre-
sentation purposes in the rightmost plot. The outlier re-
fers to the previously mentioned student with his own
software company. Although, his self reported numbers
suggest high programming skills, he and his pair pro-
gramming partner did not perform best in their group
which led to the decision to not remove the data point
from the analysis. However, his data as single program-
mer was removed because of the internal threat which is
discussed in Section 4.4.1. As it is typical for student
groups, subject�s programming experience is wide
spread: some participants were almost beginners while
others have a programming experience similar to profes-
sional software developers.

Prior to the experiment, subjects were introduced to
pair programming and reviews. Each course took about
1.5 h. Pair programming was taught by XP professionals
with who the lab course was conducted. Reviews were
presented by the author. The subjects were forced to
use only these two development methods. The other
techniques of XP were not part of this study.

4.2. Tasks

Due to the counterbalanced design of the experi-
ments, the subjects solved two different tasks:

Polynomial: Find the zero positions of an arbitrary poly-
nomial of third degree. The subjects had to implement
the method findZeroPosition of a given class
Polynomial.
Shuffle-Puzzle: Find the solution of a given shuffle-puz-
zle within a given number of moves and list the moves, if
a solution exists. The subjects had to add a method
findMoves to the basic class ShufflePuzzle.
0
2

4
6

8

0
10

00
0

30
00

0

a programming experience in years, and Java programming experience



M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179 169
The classes Polynomial and ShufflePuzzle al-
ready contained constructors and methods for I/O to
facilitate implementation and final testing.

The description of the task Polynomial contained a
hint for a possible numeric solution to the problem.
However, the students were not forced to use a special
algorithm to solve the problem; they could use any algo-
rithm which they considered suitable for the problem.
As a special difficulty, the task required careful handling
of the floating point arithmetic. For most students,
solving the task involved implementing the suggested
method as well as taking care of special cases. Solving
the Shuffle-Puzzle task requires backtracking
which the students knew how to use from their first com-
puter-sciences courses.

4.3. Review technique

The usage of checklist based code reviews raises two
questions:

(1) Why were code reviews used instead of design
reviews?

(2) Why were checklists preferred to other reading
techniques?

To use code reviews and not design reviews was moti-
vated by the so far unstructured pair programming pro-
cess which does not contain a separate design phase. We
did not want to structure the process of the single devel-
opers as well. The single developers should use the devel-
opment style they were accustomed to. Thus, the only
phase constant over all development processes is coding.
Consequently, we could not issue a design review be-
cause we did not know if each single developer per-
formed a design. Another reason for the code review is
the constant review performed by the programmer pairs.
The motivation for code reviews is whether the effect of
the constant code review done by the pair programming
partner can be seen also by a distinct review done by a
single person.

Why did we use checklists and not any other reading
technique for the review? The usage of checklists
Pair Programming

Procedure

Procedure

Review
exchangeCode

ReviewCoding

ImplementatioReading

Coding and Tes

Fig. 2. Procedure for the review a
stemmed mainly from the lack of empirical studies
investigating the impact of a reading technique on the
defect finding capabilities of code reviews. A lot of stud-
ies compared ad hoc, checklist, and scenario based read-
ing techniques for requirements and design documents
but the effect of a reading technique on code reviews is
not as investigated. Dunsmore et al. (2003) compared
the effect of checklists, the use-case reading technique,
and the abstraction-driven technique on object-oriented
code reviews. In their study checklists perform in most
cases as good as the other techniques. Checklists were
also effective in the hands of less able subjects. Laiten-
berger and DeBaud (1997) and Laitenberger et al.
(2001) compared perspective based reading with check-
lists on C code. Their data suggests an advantage of per-
spective based reading as opposed to Dunsmore et al.
(2003). As the effect of scenario based reading tech-
niques on code reviews is yet not clearly understood,
we decided to use checklists for the code reviews.
4.4. Experiment plan

This section presents the review and the pair pro-
gramming procedures. The procedures consist of a
Reading, an Implementation, and a Quality Assurance

phase, see Fig. 2.
Reading was identical for both procedures. During

Reading, subjects acquaint themselves with the descrip-
tion of the programming task. They were allowed but
not forced to make any sort of comments or design
notes but subjects were not allowed to code. Reading
finished when subjects claimed to be done. Thereafter,
subjects entered Implementation.

The following sections explain the subsequent exper-
iment phases and discuss why the procedures were cho-
sen as presented.
4.4.1. Review procedure
The review procedure is outlined by the upper half of

Fig. 2. Although the subjects worked on their own, they
were paired off with their pair programming partner,
though, anonymously. The solid and the dashed line in
Testing

n Quality Assurance

Last Acceptance TestFirst Acceptance Test

ting

nd pair programming task.



170 M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179
Fig. 2 represent the work flow of the code for each of the
two subjects, respectively.

The Implementation phase of the review procedure
was split into Coding, Review, and Testing. During Cod-

ing, subjects had to implement the task until they
thought they were done. The subjects could only com-
pile but not execute their programs. This constraint
was guaranteed by the experiment environment. After
the two subjects finished Coding, they entered Review.
The program was printed out on paper and handed
out to the other subject. As the code review was anony-
mous, the author did not know who was reviewing his
code and the reviewer did not know whose code he
was reviewing.

The task of the reviewer was to find errors according
to a checklist. Design flaws, violations of any sort of
convention, and suggestions for a better solution were
of no concern to the review. The review velocity was
lower-bounded to at least 100 lines of code per hour.
On completion of the review, subjects received the code
and entered Testing. Now, the subjects were allowed to
compile and execute their programs appropriately. Sub-
jects left Testing when they claimed to be done.

At this point, they entered the Quality Assurance

phase where their programs had to pass 95 out of 100
test cases of the acceptance test. If the programs did
not reach the required 95% level, subjects received the
output of the failed tests and had to fix the errors. The
acceptance test and the subsequent rework repeated as
long as the program passed less than 95 tests. Otherwise,
the subjects concluded their work.

The presented review procedure was applied to
Exp02. When following this procedure, three subjects
admitted in the post-test questionnaire that they got
hints for their own development from the foreign pro-
gram, see Section 3.7 of Müller (2003). To remove this
threat in Exp03, only one of the two subjects, as opposed
to both in Exp02, prepared the task while the other sub-
ject performed the review. The subject who was prepar-
ing the task was randomly selected. To obtain the
modified experiment plan of Exp03 remove the dashed
line in the review part of Fig. 2.

4.4.2. Discussion of review procedure

The review procedure did not allow the subjects to
execute the code before review took place. This might
not seem intuitive because, normally, the code is exe-
cuted and tested very carefully before it is reviewed.
However, as motivated by Humphrey (1995, pp. 267–
268), the author chose not to permit execution of the
code before the review because of the following two rea-
sons. First, reviewing code that has not been executed
changes the attitude of the reviewers. They know that
the program was not executed and tested and thus, it
is worth a review. Second, the author of the program
might not want the reviewer to find any errors. Hence,
he develops his program more carefully. Actually, one
subject reported that he tried to developed his program
more understandable because of the subsequent review.

The reviews were anonymous because the reviewer�s
attitude towards the program should not have been
influenced by his knowledge of who was the author of
the program. However, the drawback of an anonymous
review is that in the case of problems concerning the re-
view the author cannot ask the reviewer for clarification.
This problem is a threat to the internal validity of the
experiments which is discussed in more detail in Section
7.1.

The lower bound for the review time of 100 lines of
code per hour is based on figures shown by Gilb and
Graham (1993, p. 154). They suggest a review speed of
one page (non-commentary, 600 words) per hour. Their
checking rate is due to cross checking against several
documents: rule sets, checklists, role checklists, and
source documents. As both tasks and their specifications
are rather small, doubling the review speed seemed
reasonable.

The main incentive of the quality assurance phase
was to ensure high and similar level of correctness of
developed programs, such that the programming effort
depends only on one independent variable: the method
used for implementation (review or pair programming).
The individual attitude to testing or program correctness
which differs from pair to pair and developer to devel-
oper is factored out. Thus, the comparison of both
methods bases solely on the effort imposed on a develop-
ment task and not on subjective decisions. However, the
exit criterion of the quality assurance phase still leaves
some room for variation in correctness. But this varia-
tion is expected to be too small to be statistically
detectable.

The acceptance test used during the quality assurance
phase consisted of 100 test cases. As 100 tests are rather
few, the aim of the test was to provide almost instant
feedback on the correctness of the program. If a larger
test had been used instead, a subject would have been
waiting for hours for the test results in the worst case.
Thus, the delay incurred by a large test would have been
an unacceptable disruption of subjects� work flow.

The output of the acceptance test was logged by the
experiment environment. Although the results from
the acceptance tests were available for analysis, the data
was not used for evaluation purposes. The results of a
separate final test, the so called large test, were used in-
stead. The large test was executed after the experiment.
It is described in Section 4.7.1.

4.4.3. Pair programming procedure

The pair programming procedure was straight for-
ward. During Implementation, the pairs were allowed
to compile and execute their programs from the very
beginning. They worked on the programs until they



M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179 171
claimed to be done. Then, they entered the Quality

Assurance phase which also iterated between executing
the acceptance test and rework. And again, the exit cri-
terion was to pass at least 95 out of the 100 test cases of
the acceptance test.

The pair programming procedure was the same in
Exp02 and Exp03.

4.4.4. Realization of experiments

The pair programming procedure could be done in
one session, while the review procedure involved at least
two different sessions: one for coding and another one
for review, testing, and quality assurance. For each ses-
sion and each task, both the pairs and single program-
mers made an appointment with the experimenter. If
the task was not be finished in the first run, a subsequent
appointment had to be made.

4.5. Issues on replication

Replication of the experiment was necessary because
of two weaknesses of Exp02. First, replication increased
the size of the data samples and therefore the possibility
of revealing an effect. And second, the replication re-
moves the previous mentioned threat that subjects could
obtain hints from the review. According to the terminol-
ogy on replications introduced by Basili et al. (1999, p.
469), the second experiment is a replication that does

not vary any research hypothesis. To be more precise,
Exp03 is no strict replication, but rather a replication
that varies the manner in which the experiment is run.

4.6. Group selection and size

Due to the counterbalanced design of the experiments,
subjects had to solve two task, each with another method.
Table 1 shows group characteristics of the four groups.
Subjects in Group 1 solved the first task Shuffle-Puz-

zle with pair programming and the second task Poly-

nomialwith solo programming. The next three columns
of Table 1 list the overall language independent program-
ming experience in years as well as the Java programming
experience in years and in lines of code.
Table 1
Task order, mean programming experience, and available data points for ea
Pol = polynomial)

Group 1. Task 2. Task Prog. Java Exp.

Years Years

1 PP.Shu Re.Pol 7.6 3.4
2 PP.Pol Re.Shu 6.3 2.1
3 Re.Shu PP.Pol 6.3 2.9
4 Re.Pol PP.Shu 6.5 2.5

Overall 6.7 2.7
Division of subjects into groups was done according
to their overall programming experience measured in
lines of code, not shown in Table 1. The measure was
collected in the pre-test questionnaire where subjects
had to mark one of the four categories: less than 3000,
less than 10000, less than 40000, or more than 40000
lines of code programming experience. Subjects� overall
programming experience served as blocking factor for
the division into experiment groups as we first arranged
equally skilled subjects into the same group. The mem-
bers of each group where then randomly assigned to
the four experiment groups which have already been
shown in Table 1.

To establish the partner relationship for pair pro-
gramming within each group, the most skilled subject
had to pair off with the lowest skilled subject, the second
best skilled subject with the second lowest skilled sub-
ject, and so on. The Java specific experience could have
been used as blocking level as well, but in the project
weeks which took place after the experiments, it turned
out that the overall experience represented the individ-
ual skill level better than the Java specific experience.

The aim of the division was to even out pairs� general
experience level. The general experience level of a pair
was obtained by calculating the mean of the individual
experience levels of the two members of the pair. The
individual experience level ranged between 1 for less

than 3000 and 4 for more than 40000 lines of code.
Fig. 3 shows for each group the distribution of the pairs�
mean experience level.

Except for group 1 where each pair had an average
experience level of 3 (see white bar in the column named
3), groups show some variability in pairs� mean experi-
ence level. For group 3 the variability is balanced at 3
while for group 4 and for group 2 the mean experience
level is shifted towards the lower and the upper direc-
tions of the scale, respectively.

Most of the subjects had no experience in the tech-
niques under study: 7 subjects admitted some experience
in reviews; 7 subjects reported to have some experience
with pair programming; and one subject had tried both
reviews and pair programming prior to the experiment
to some extend.
ch group (PP = pair programming, Re = review, Shu = shuffle-puzzle,

Size Data pts.

LOC Exp02 Exp03 PP Rev

29450 6 4 5 6
3438 4 4 4 4
7550 6 4 5 7
9020 4 6 5 6

12834 20 18 19 23



2.5 3 3.5

Group 1
Group 2
Group 3
Group 4

Mean Experience Level

N
um

be
r 

of
 P

ai
rs

0
1

2
3

4
5

Fig. 3. Group wise distribution of pairs� mean programming
experience.

172 M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179
The last four columns of Table 1 list the group sizes
and the number of data points. Due to the experiment
design, each subject pair is supposed to contribute one
pair programming data point as well as two review data
points in the case of Exp02 and one review data point in
the case of Exp03. However, three subjects did not finish
the review task in Exp02. They belonged to the groups
2, 3, and 4, respectively. Additionally, two review data
points of group 1 and one review data point of group
2 had to be deleted to avoid the previous discussed inter-
nal threat of Exp02. In Exp03 all data points could be
used for analysis. Overall, there were 38 participants
yielding 19 pair programming and 23 review data-
points.
4.7. Data

4.7.1. Correctness

For each task two tests were created: the large test
and the acceptance test. The large test consisted of
700000 test cases for the polynomial task and of
15000 test cases for the shuffle-puzzle task.

The test cases for the large polynomial test were con-
structed by calculating the corresponding coefficients of
a polynomial of third degree from randomly generated
zero positions. The shuffle-puzzles of the large test were
generated by shuffling a solved shuffle-puzzle by a num-
ber of moves. For each shuffle-puzzle test, the number of
moves was generated randomly with an upper bound of
allowed moves.

With the large tests we tried to simulate a usage sce-
nario which lasts over a long time. For the polynomial
task, we divided the polynomials into categories of
one, two, and three zero positions. For each category,
we created 100000 test cases for integer and for floating
point zero positions. A final fourth category contained
all three types of polynomials with integer and floating
point zero positions mixed. The usage scenario for the
shuffle-puzzle test contained puzzles of an arbitrary size
between 2 · 2 and 6 · 6. The values for the x- and y-
dimensions could differ. We then shuffled a puzzle
according to a randomly generated number of moves
n. The number n ranged between 3 and 14 moves. The
test itself contained a description of the puzzle, a num-
ber n 0 which indicated how deep the program should
search for a solution, and whether a solution can be
found within n 0 moves. We had three test categories:
one where n 0 = n, one where n 0 = n � 1, and one where
n 0 = n + 1. Each category contained 5000 test cases.

Each acceptance test consisted of 100 test cases which
have been randomly selected from the appropriate large
test. The test cases were selected once before the exper-
iment and never changed afterwards. The acceptance
tests did not only test implementations but also archived
submitted Java files. In detail, the acceptance test stored
the issued program version, executed the test cases,
logged the results, and reported the results to the
subject.

The correctness (Correct) of a program was measured
for two different program versions: the program version
after the implementation phase (CorrectImp) and the final
program version (CorrectTask) on exit of the quality
assurance phase. The level of correctness of a program
is defined as the fraction of the number of passed tests
divided by the number of all tests:
Correct ¼ jfpassed testsgj
jfall testsgj
4.7.2. Cost

The cost of both methods (CostPair,CostRev) is com-
pared for implementation (Imp), quality assurance
(QA), and the whole task (Task). The cost is measured
in man minutes. The cost is calculated using the follow-
ing measures: time spent for reading the problem
description (TRead), the time spent for implementation
(TImp), the review time (TRev), and the time spent for
quality assurance (TQA).

CostPairImp ¼ 2 � ðTRead þ T ImpÞ
CostRevImp ¼ TRead þ T Imp þ T Rev

CostPairQA ¼ 2 � TQA

CostRevQA ¼ TQA

CostPairTask ¼ CostPairImp þ CostPairQA

CostRevTask ¼ CostRevImp þ CostRevQA

The time for quality assurance consists of the rework
time only and does not include the execution time of the
acceptance test. The cost of the review does not account
for any additional waiting time, for example the review
synchronization overhead.

The data was gathered with the pplog-mode, a major
mode for Emacs which supports logging of work-time
and interrupts (PSP Resources Page, 2003). Time log-
ging was started and stopped by the experimenter.



M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179 173
4.8. Hypotheses

The experiments were designed to evaluate whether
the average cost l to complete a programming assign-
ment is the same for pairs and for single developers
assisted by a separate peer review phase:

H0 : lðPair ProgrammingÞ ¼ lðReviewÞ
HAlt : lðPair ProgrammingÞ 6¼ lðReviewÞ:

We consider the cost for the whole task and the
implementation phase.
5. Evaluation plan

This section deals with several questions concerning
the statistical evaluation of the data:

• Can the data sets of Exp02 and Exp03 be pooled
together although the process of the review group
was changed in the repetition?

• Complies the data with the requirements of the anal-
ysis of variance?

• What is the expected power of the statistical tests?
• To what extend can we trust the results?

5.1. Pooling of data sets

Data sets of both experiments are characterized by
the combinations of the different levels of the treatment

(pair programming and review) and block (shuffle-puz-
zle and polynomial). The combinations are shown by
the two 2 · 2 matrices on the left hand side of Fig. 4.
To combine the appropriate data samples of both data
sets, data samples must be taken from the same popu-
lation. In our case, the review data samples originate
from two different processes. Although the process
modifications are rather small and possible differences
in the data samples might depend on other not control-
lable factors such as the subjects� educational back-
ground we performed for each data set a two-sided
Mann–Whitney test on the respective data samples.
The Mann–Whitney test showed no difference on the
PP Re

Shu

Pol

PP Re

Shu

Pol

PP R

Shu

Pol

Exp03

Exp02

yes

no

different ?

data sets
Pooled

analyze
separately

Fig. 4. Overview of ev
5% level for the CostTask, CostImp, CorrectTask, and
CorrectImp data sets. The data samples of these data
sets were pooled to form one data set for further
evaluation.

The data samples of the CostQA data set were not
pooled because the Re.Pol data samples differ on a
4.6% level. As a consequence, the analysis of CostQA
has to be done separately for each experiment.

Analysis of variance requires normally distributed
data sets with homogeneous variances. The Shapiro–
Wilk test was used to test for normality. Homogeneity
was tested with the Bartlett-Test. Except CostTask, every
data set had a data sample where the normality test
showed a difference on the 10% level. As the Bartlett test
shows a difference in variances of the CostTask data set
on a 20% level, analysis of variance is only applied on
the CostTask data set. The remaining three data sets
CostImp, CorrectTask, and CorrectImp are evaluated using
the Mann–Whitney test.

Analysis of variance was performed with the treat-
ment level pair programming and review and the block-
ing level shuffle-puzzle and polynomial. All other
statistical evaluations where done in an experiment wise
manner. The Mann–Whitney test was used in these
cases.

Significance was set to 5% for all tests.
5.2. Power analysis

The power of the analysis of variance is calculated
according to Cohen (1988, p. 364). The power for a large
effect f = 0.4 (medium effect f = 0.25) is 70 (34) percent
(n 0 = 20, u = 1). From the alternative hypotheses per-
spective, we detect in seven out of ten replications of
both experiments a difference between the review and
the pair programming group, if there is any. The combi-
nation of both experiments has a good chance of reveal-
ing an effect, though, this effect has to be large.

The power of the Mann–Whitney test is calculated
using the power of the t-test. The power of the two-sided
t-test is 71%. The power of the t-test was calculated with
R (Ihaka and Gentleman, 1996) using two samples, the
harmonic mean of both group sizes n = 20.8, an effect
size of 0.8, and a significance level of a = 0.05. If we
e

no

yes
distributed &

homogene ?

normal-

analyze
separately

analysis

of variance

aluation process.



174 M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179
had chosen the interesting effect size to be equal to 0.5,
the power of the t-test would have been 35%. The power
of the Mann–Whitney test is in the worst case 84.6% the
power of the t-test, see Hollander and Wolfe (1999, p.
139). In any case, if tests do not reveal a significant dif-
ference between data sets then there are two possibilities:
either the effect is too small to be seen and therefore, our
sample size is too small, or there is no effect to detect at
all.

Cohen (1988) suggests that a study should have at
least a power of 80% in order to have a real chance to
reveal an effect. According to his suggestion the power
of 71% for the combination of both experiments is
rather low. But as the course held in 2002 already ex-
ceeded the maximum number of 18 students by 2 we
could not afford additional students.
5.3. Trustworthiness of the results

Evaluation plan of the experiments outlined in Sec-
tion 5.1 is not intuitive and in most cases, the non-para-
metric Mann–Whitney test is used instead of the
parametric t-test or analysis of variance. Thus, the sta-
tistical evaluation is rather conservative. Conservative
means that the Mann–Whitney test may suggest to not
reject a hypotheses although a parametric test would
indicate a difference on a 5% level. This conservative
evaluation has two consequences. First, a difference on
a 5% level is not caused by a false use of a test. And sec-
ond, if a test suggests to not reject a hypotheses, there is
still the possibility of difference as the rather low power
of the tests suggests.
Table 2
Correctness of programs

Group CorrectTask CorrectImp
6. Results

Results are shown with box plots. The boxes within a
plot contain 50% of the data points. The lower (upper)
border of the box marks the 25% (75%) quantile. The
lower (upper) t-bar marks the most extreme data point
which is no more than 1.5 times the length of the box
away from the lower (upper) side of the box. Outliers
from the above scheme are visualized with circles. The
median is marked with a thin line. The M associated
with the dashes on each side marks the mean value with-
in a range of one standard deviation on each side. In ta-
bles, the abbreviations �x, s, and ex are used for the mean,
the standard deviation, and the median of the data sam-
ples, respectively.
x s ex x s ex

PP.Pol 93.3 3.2 93.3 49.4 35.0 50.5
PP.Shu 99.7 0.4 99.9 59.6 30.9 53.1
PP 96.7 3.9 99.2 54.8 32.4 50.5

Re.Pol 96.5 2.1 96.4 48.7 29.0 37.3
Re.Shu 98.3 3.1 99.7 36.1 35.6 29.6
Re 97.3 2.7 98.0 42.4 32.3 32.8
6.1. Correctness

The aim of the quality assurance phase was to ensure
high and similar program correctness. This section
investigates whether this aim was achieved.
6.1.1. Correctness of final programs

The first three data columns of Table 2 and Fig. 5
present the correctness of the final programs measured
with the large test.

First of all, all groups achieve a reasonable level of
correctness. The mean values range between 93.3% for
PP.Pol and 98.3% for Re.Shu with a standard deviation
varying between 0.4 for PP.Shu and 3.2 for PP.Pol. The
reason that data points fall below the 95% exit criteria of
the quality assurance phase is that the results of the large
test and not the acceptance test are shown. The differ-
ences in the PP and Re data sets shown in Table 2 are
statistical negligible.
6.1.2. Correctness of programs after implementation

The three rightmost columns in Table 2 and Fig. 6
show program correctness after the implementation
phase.

The achieved level of correctness is not as high as for
the final programs. The mean values for the groups vary
between 36.1 for Re.Shu and 59.6 for PP.Shu. The var-
iability in the data sets is higher as well. The standard
deviation ranges between 29.0 for Re.Pol and 35.6 for
Re.Shu. The average level of correctness for programs
developed by pairs is 29% higher than for programs
developed by single programmers (54.8% versus
42.4%). Although there is a visible difference in location
in the PP and Re data sets, the Mann–Whitney test does
not indicate a difference on the 10% level.
6.1.3. Summary correctness

We note two results from the analysis of the correct-
ness of the programs:

(1) The quality assurance phase served its purpose:
programs of both groups have high and similar
level of correctness.

(2) The pairs developed programs with an observable
higher level of correctness.

The second result is statistical insignificant, though, it
complies to the results reported by Williams et al.
(2000).



PP.Pol PP.Shu Re.Pol Re.Shu

40
0

80
0

12
00

C
os

t [
m

an
 m

in
ut

es
]

M
M

M

M

Fig. 7. Cost for whole task (CostTask).

PP.Pol PP.Shu Re.Pol Re.Shu

0
20

40
60

80
10

0

C
or

re
ct

ne
ss

 [%
]

M
M

M

M

Fig. 6. Correctness level after implementation CorrectImp.

PP.Pol PP.Shu Re.Pol Re.Shu

90
92

94
96

98

C
or

re
ct

ne
ss

 [%
]

M

M

M

M

Fig. 5. Correctness level for task CorrectTask.

M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179 175
6.2. Cost

6.2.1. Cost of whole task

The three left most data columns of Table 3 and Fig.
7 show the cost for the whole task.

The pair programming and review data sets lead to
two observations. First, the average cost of the two pair
programming groups ranges between the cost of the re-
view groups. And second, either group solved the
Polynomial task quicker than the Shuffle-Puzzle
task. Combining the two pair and the two review data
sets, pairs (mean of 546.6) are on average 7% more
expensive than reviews (mean of 511.8). However, anal-
ysis of variance does not support this difference
(p = 0.614).
Table 3
Cost for whole task (CostTask) and implementation phase (CostImp)

Group CostTask CostImp

x s ex x s ex

PP.Pol 521.1 164.5 512 434.9 166.7 420
PP.Shu 569.6 213.8 516 444.0 125.8 395
PP 546.6 188.4 512 439.7 142.4 400

Re.Pol 427.9 121.7 413 362.2 111.5 321
Re.Shu 603.4 327.7 529 418.7 175.1 446
Re 511.8 253.5 458 389.2 144.9 330
6.2.2. Cost for implementation
The three right most data columns of Table 3 and

Fig. 8 show the cost of the implementation phase.
On average, the review groups are cheaper than the

pair programming groups and again, the Polynomial

task was solved more quickly by either group. When the
pair data sets and the review data sets are combined, the
pairs (mean value of 439.7) are on average 13% more
expensive than the single developers (mean value of
389.2). However, a p-value of 0.225 of the Mann–Whit-
ney test does not support this difference.
6.2.3. Cost for quality assurance

Table 4 and Fig. 9 show the cost of the quality assur-
ance phase for both experiments. The result of Exp03 is
surprising: the review group is cheaper than the pair
programming group, although the single developers
had to make up for a lower level of correctness after
the implementation phase. The data of Exp02 does not
show this effect. In this case, the pairs are cheaper than
the single developers. However, both differences are
insignificant. Further studies are sought to study
whether pairs or single developers are more productive
during quality assurance.
PP.Pol PP.Shu Re.Pol Re.Shu

20
0

40
0

60
0

C
os

t [
m

an
 m

in
ut

es
]

M M

M
M

Fig. 8. Cost for implementation (CostImp).



Table 4
Cost for quality assurance (CostQA)

Group CostQA

x s ex

PP.Exp02 81.0 98.9 31.0
Re.Exp02 122.4 152.7 73.5
PP.Exp03 135.8 112.7 82.0
Re.Exp03 122.9 152.9 43.0

PP.Exp02 Re.Exp02 PP.Exp03 Re.Exp03

0
20

0
40

0
60

0

C
os

t [
m

an
 m

in
ut

es
]

Fig. 9. Cost for quality assurance (CostQA).

Table 6
Comparison of number of acceptance tests (AT) and final program size
in lines of code

Data set PP Re

x s ex x s ex

Program size 144 35.8 144 160 48.8 140
Number of ATs 3.3 1.9 3.0 4.9 4.9 3.0

Table 5
Differences between first and second assignment averaged over groups
and tasks

Data set 1. Assignment 2. Assignment

x s ex x s ex

CorrectTask 97.9 2.5 99.4 96.1 3.9 96.9
CorrectImp 42.8 33.6 32.9 54.3 31.1 63.9
CostTask 579.8 230.0 536.0 470.1 208.8 414.0
CostImp 449.4 135.7 450.5 371.0 145.5 348.0

176 M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179
6.2.4. Summary cost

Results from the cost analysis:

(1) If a similar level of program correctness is enforced,
pairs cost as much as single developers with reviews
do.

(2) If a similar level of program correctness is of no con-
cern, programmer pairs tend to develop programs
with a higher level of correctness at slightly increased
cost as compared to single developers with reviews.

The 13% cost increase of the pairs stated in the sec-
ond result seems to comply to the 15% working over-
head reported by Williams et al. (2000). However,
Williams et al. compared pair programming to solo pro-
gramming while in this study the individual program-
mers are assisted by a separate review phase.

6.3. Sequence analysis

Sequence analysis aims at revealing effects that have
their roots in the consecutive treatment of the two devel-
opment tasks. The focus lies on the order of the assign-
ments ignoring the specific method and the specific
problem. The sequence analysis of Müller (2003) showed
a learning effect from the first to the second assignment.
Thus, it is essential to repeat the sequence analysis on the
combined data sets of Exp02 and Exp03. All data sets of
Table 5 show a general tendency, though, the Mann–
Whitney test reveals no statistical significance on any
data set.

Concerning correctness, there is a divergent picture.
While the correctness level of the final programs de-
creased from the first to the second assignment (mean
value of 97.9 versus 96.1), the correctness of the interme-
diate programs after implementation increased (mean
value of 42.8 versus 54.3). Although this effect could
be seen also in Exp02 the reason for this counterintuitive
behavior is unclear. Concerning development cost, there
is a unique trend to cost reduction from the first to the
second assignment. The average cost for the whole task
and the implementation phase alone decreases.

In summary, even though the final level of correctness
decreased from the first to the second assignment, all
other measures indicate that subjects improved their
programming skill during the experiment.
6.4. Additional results

The reviews lasted on average 63 min or about 12%
of the development time of the single developers. The
average size of reviewed programs was 124 lines of code
and the average review speed was 118 lines of code per
hour.

Final program sizes and number of acceptance tests
are listed by Table 6 and shown by Fig. 10.

The programmer pairs wrote on average smaller pro-
grams and required on average less acceptance tests than
the single developers. However, the review group has a
smaller median for the program size than the pair pro-
gramming group. The larger mean of the review group
is caused by two programs of the Re.Shu group with
292 and 276 lines of code, see left plot of Fig. 10. The
reason for the three outliers in the two review groups
for the number of required acceptance tests might be
the lower inhibition threshold of the single developers.
While in a pair situation the two partners must agree
on the next acceptance test, a single programmer has



PP.Pol PP.Shu Re.Pol Re.Shu

10
0

15
0

20
0

25
0

30
0

M

M M M

PP.Pol PP.Shu Re.Pol Re.Shu

5
10

15
20

M M M

M

Fig. 10. Program sizes in lines of code (left plot) and number of acceptance tests (right plot).

M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179 177
to salve only his own conscience. Thus, he asks earlier
for the next test and has a smaller difference between
program versions than the pairs. As a result, the single
developer requires more acceptance tests.

In addition to the quantitative data analyzed so far,
the remainder of this section evaluates subjects� opinion
on pair programming and reviews. The post-test ques-
tionnaire asked for subjects� opinion on which method
is considered more effective. Subjects had to answer
three questions: how effective are reviews; how effective
is pair programming; and what is considered more effec-
tive reviews or pair programming. Answers were given
on a five point ordinary scale. The scale ranged from
not at all (=1) to very effective (=5) for the first two
questions. For the last question, the scale ranged from
Review is better (=1) to Pair Programming is better

(=5). Fig. 11 shows histograms of the answers. Numbers
in the middle of each plot indicate the given number of
answers for each category.

The plots on the left and in the middle show that sub-
jects are more committed to efficacy of pair program-
ming than of reviews. The result is supported by the
right shift of the answers for the third question, see right
plot in Fig. 11. Only one subject believes in the higher
efficacy of reviews as compared to pair programming.
The tendency of answers in favor of pair programming
is quite natural if subjects� preferences are taken into ac-
count. As it is pointed out in Section 7.2, all subjects
subscribed voluntarily to an extreme programming
course where they expect to program in pairs. Thus,
their answers might base on their positive attitude
towards pair programming and not on its real
performance.
1 2 3 4 5

0
10

20

1 6 11 5 0

1 2 3

0
10

20

0 1 7

Fig. 11. Answers for ratings (from left to right): how effective are reviews; ho
programming.
7. Threats to validity

7.1. Internal threats

Some perils threat the internal validity of both exper-
iments. First, different persons teaching the lectures on
pair programming (professionals) and reviews (the
author) could cause differences in skill and motivation
among the groups. An alternative approach would have
been, that only one person would have taught both
courses. However, the author judged the risk of skews
in skill and motivation to be higher in the one teacher
scenario than in the two teacher scenario. This judge-
ment is due to the fact that subjects could have been
biased by the teacher�s assumptions if he had taught
both topics instead of only one topic. Thus, it was quite
reasonable to let each lecture be taught by another
teacher.

The second threat concerns the possibility, that a sub-
ject did not apply the process it was told to follow. This
threat can be ignored because the experimenter attended
every programming session and forced the subjects to
follow the process.

The anonymous review is another threat to validity
because the author of a program could not ask the re-
viewer for clarification. As a matter of fact, one subject
(subject 23) reported that he would have liked to ask the
reviewer for clarification because of the meaningless
descriptions of the defects. However, further study re-
vealed that subject 23 was the second best subject in
the Re.Pol group of Exp03. If the comments in the
review of subject�s 23 program had been more meaning-
ful, he might have finished earlier. In that case, the
4 5

26 4

1 2 3 4 5

0
10

20

0 1 8 9 7

w effective is pair programming; what is more effective reviews or pair



178 M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179
evaluation would have shown a better result for the re-
view group. Thus, we decided to not remove the data
point from the analysis.

7.2. External threats

Several threats may have an impact on the generaliz-
ability of the study.

First of all, participants were students who sub-
scribed voluntarily to an extreme programming lab
course. Students take part in the course because they
want to develop in pairs and probably, they prefer pair
programming to reviews, as well. The tendency to favor
pair programming over reviews might affect the results
in such a way that the performance of pair programming
as compared to reviews might be better than it is in prac-
tice. To eliminate this threat in further studies a more
neutral group of subjects should be used.

Another threat concerns subjects� pair programming
and review experience. This threat exists because the
subjects did not meet before the pair programming task
and because none of the subjects had performed reviews
prior to the experiment to that extent that can be ex-
pected from a professional. The attempt to even out
pairs� general experience level as described in Section
4.6 turned out to be another source of danger. We ini-
tially thought that the mean programming skill level of
a pair is an indicator for the productivity of a pair.
However, studies performed after the experiments show
that the programming experience level does not contrib-
ute to a pairs productivity as much as we thought, see
Müller and Padberg (2004). At our present experience,
we should have assigned the pairs randomly.

Students� in most cases rather low programming
experience is a threat as well. As a possible consequence
of the low programming experience, Section 6.3 showed
a learning effect from the first to the second assignment.
This learning effect might have been avoided, if the
experiments had been conducted after the programming
lab course. However, this procedure would have meant
that the experiments fell into the exams preparation
phase which might have posed additional stress on the
participants.

Usage of checklists for the code review is a threat as
well. Checklists are a rather conservative choice. How-
ever, as the impact of other reading techniques on the er-
ror finding capabilities of code reviews are not yet
understood in detail, usage of checklists seemed a rea-
sonable choice. If other techniques are shown to be bet-
ter than checklists, the presented experiments should be
repeated to account for the improvement of the code
reviews.

Other problems originate from the algorithmic struc-
ture of the polynomial and shuffle-puzzle task. First,
both tasks are more complex but require less effort than
every-day development tasks. And second, the short
duration of the tasks as compared to every-day develop-
ment tasks might favor solo programming because the
strengths of pair programming might pay off only dur-
ing longer development tasks.

Another peril originates from bundling the experi-
ment with a lab course. The author is aware of the eth-
ical issues that might arise with this approach (e.g.
Singer, 2002) but so far, we have gained positive experi-
ence with it. Our empirical research group is known
among the students for its empirical studies and con-
trolled experiments. Hence, the students know from pre-
vious experiment participants what to expect when
subscribing for a bundle of lab course and experiment.
The students are motivated and most of them are eager
to hear the results of the study. And finally, the individ-
ual performance of a student in the experiment does not
influence the decision whether he participated success-
fully in the course or not.
8. Conclusions

This paper presented two controlled experiments
comparing pair programming to single programmers.
The latter were assisted by a separate code review phase.
The main contribution concerns the development cost
associated with both techniques. Programmer pairs are
as cheap as single developers if both developer pairs
and single programmers are forced to produce pro-
grams of similar correctness. Thus, pair programming
and solo programming become interchangeable. This
result might imply a first management guideline for
those who refrain from using pair programming but
who are seeking for an (traditional) alternative. Another
result takes programs of different level of correctness
into account. In this case, programmer pairs produce
programs with less failures at a higher expense as com-
pared to single developers. Although this difference is
visible in our data set, the result is not statistically sig-
nificant. Possible reasons for the absence of statistical
significance is that either there is no effect to detect or
the effect is too small as that it can be detected with
the used sample size.

However, there are open questions. What would have
been the outcome of this comparison if professional pro-
grammer pairs and experienced reviewers had been used
instead of students? The two groups might have per-
formed better in terms of personnel cost. Other ques-
tions concern long term issues of the two development
techniques. For example, what impact has the informa-
tion flow during pair programming on the productivity
and the skill level of the individual developers? And, is
that information flow similar to the information flow
of reviews or inspections? These questions can not be
answered by one single study. Other studies have to be
conducted to address these issues.



M.M. Müller / The Journal of Systems and Software 78 (2005) 166–179 179
Acknowledgments

The author would like to thank Frank Padberg for
the discussions and suggestions, Marcel Modes for
supervising the second experiment, Vlad Olaru and
Guido Malpohl for proof reading, and the anonymous
reviewers for their comments on previous versions of
this paper.
References

Basili, V., Shull, F., Lanubile, F., 1999. Building knowledge through
families of experiments. IEEE Transactions on Software Engineer-
ing 25 (4), 456–473, Jul./Aug.

Beck, K., 1999. Extreme Programming Explained. Addison-
Wesley.

Bisant, D., Lyle, J., 1989. A two-person inspection method to improve
programming productivity. IEEE Transactions on Software Engi-
neering 15 (10), 1294–1304.

Cockburn, A., Williams, L., 2000. The costs and benefits of pair
programming. In: eXtreme Programming and Flexible Processes in
Software Engineering (XP2000). Cagliari, Italy.

Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences.
Academic Press.

Dunsmore, A., Roper, M., Wood, M., 2003. The development and
evaluation of three diverse techniques for object-oriented code
inspection. IEEE Transactions on Software Engineering 29 (8),
677–686.

Gilb, T., Graham, D., 1993. Software Inspection. Addison-Wesley.
Hollander, M., Wolfe, D., 1999. Noparametric Statistical Methods,

second ed. John Wiley & Sons.
Humphrey, W., 1995. A Discipline for Software Engineering. Addison-

Wesley.
Humphrey, W., 1999. Introduction to the Team Software Process.

Addison-Wesley.
Ihaka, R., Gentleman, R., 1996. R: A language for data analysis and

graphics. Journal of Computational and Graphical Statistics 5 (3),
299–314.

Laitenberger, O., DeBaud, J., 1997. Perspective-based reading of code
documents at Robert Bosch GMBH. Journal of Information and
Software Technology 39, 781–791.

Laitenberger, O., Emam, K.E., Harbich, T., 2001. An internally
replicated quasi-experimental comparison of checklist and perspec-
tive-based reading of code documents. IEEE Transactions on
Software Engineering 27 (5), 387–421.

McDowell, C., Werner, L., Bullock, H., Fernald, J., 2002. The effects
of pair-programming on performance in an introductory program-
ming course. In: SIGCSE Technical Symposium on Computer
Science Education. Cincinnati, Kentucky, USA, pp. 38–42.

Müller, M., 2003. Are reviews an alternative to pair Programming? In:
Conference on Empirical Assessment In Software Engineering
(EASE). Keele, UK, pp. 3–12.

Müller, M., Link, J., Sand, R., Malpohl, G., 2004. Extreme program-
ming in curriculum: Experiences from academia and industry. In:
Conference on Extreme Programming and Agile Processes in
Software Engineering (XP2004). Garmisch-Partenkirchen,
Germany.

Müller, M., Padberg, F., 2002. Extreme programming from an
engineering economics point of view. In: International Workshop
on Economics-Driven Software Engineering Research (EDSER).
Orlando, Florida, USA.

Müller, M., Padberg, F., 2004. An empirical study about the feelgood
factor in pair programming. In: International Symposium on
Software Metrics (Metrics). Chicago, Illinois, USA.

Nawrocki, J., Wojciechowski, A., 2001. Experimental evaluation of
pair programming. In: European Software Control and Metrics
(Escom). London, UK.

Nosek, J., 1998. The case for collaborative programming. Communi-
cations of the ACM 41 (3), 105–108.

Padberg, F., Müller, M., 2003. Analyzing the cost and benefit of pair
programming. In: International Symposium on Software Metrics
(Metrics). Sydney, Australia.

PSP Resources Page, 2003. PSP resources page. Available from:
<http://www.ipd.uka.de/PSP/>.

Sauer, C., Jeffrey, R., Land, L., Yetton, P., 2000. The effectiveness of
software development technical reviews: A behaviorally motivated
program of research. IEEE Transactions on Software Engineering
26 (1), 1–14.

Singer, J., 2002. Ethical issues in empirical studies of software
engineering. IEEE Transactions on Software Engineering 28 (12),
1171–1180.

Tomayko, J., 2002. A comparison of pair programming to inspections
for software defect reduction. Computer Science Education 12 (3),
213–222.

Williams, L., Kessler, R., 2000. The effects of pair-pressure and pair-
learning on software engineering education. In: Conference on
Software Engineering Education and Training. Austin, Texas,
USA, pp. 59–65.

Williams, L., Kessler, R., Cunningham, W., Jeffries, R., 2000.
Strengthening the case for pair-programming. IEEE Software (7/
8), 19–25.

Matthias M. Müller received the diploma and PhD degrees in infor-
matics from the University of Karlsruhe, Germany, in 1996 and 2000.
In his dissertation, he worked on the topic of optimizing compilers for
parallel architectures. In the last four years, he has focused on software
process improvement, especially lightweight software processes. In
particular, he works on the empirical and economical evaluation of the
techniques proposed by extreme programming.

http://www.ipd.uka.de/PSP/

	Two controlled experiments concerning the comparison of pair programming to peer review
	Introduction
	Related work
	Methodological issue
	The study
	Subjects
	Tasks
	Review technique
	Experiment plan
	Review procedure
	Discussion of review procedure
	Pair programming procedure
	Realization of experiments

	Issues on replication
	Group selection and size
	Data
	Correctness
	Cost

	Hypotheses

	Evaluation plan
	Pooling of data sets
	Power analysis
	Trustworthiness of the results

	Results
	Correctness
	Correctness of final programs
	Correctness of programs after implementation
	Summary correctness

	Cost
	Cost of whole task
	Cost for implementation
	Cost for quality assurance
	Summary cost

	Sequence analysis
	Additional results

	Threats to validity
	Internal threats
	External threats

	Conclusions
	Acknowledgments
	References


