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Abstract. This paper describes Paradis-Net, a typed event-driven mes-
sage-passing interface for designing distributed systems. Paradis-Net fa-
cilitates the development of both peer-to-peer and client-server archi-
tectures through a mechanism called “Cooperation”. We introduce the
programming interface and compare its mechanisms to active messages
and remote procedure calls. Finally we demonstrate how the interface
can be used to implement communication patterns typical for distributed
systems and how peer-to-peer functionality can be mapped onto Paradis-
Net.

1 Introduction

There is a growing interest in large-scale distributed systems consisting of a
large number of cooperative nodes. Cluster computing, peer-to-peer-systems,
grid computing and ad-hoc networks are examples of current active research
areas. All these directions have in common the development of complex commu-
nication protocols. The architecture of these systems has recently shifted from
the traditional client-server paradigm to decentralized cooperative peer-to-peer
models and towards hybrid approaches combining both client-server and peer-
to-peer paradigms.

Paradis-Net is a typed message-passing interface for distributed applications
and operating system services. It is suitable for designing distributed systems for
both high speed networks (e.g. Myrinet [1] or Infiniband [2]) or for relatively slow
transport mediums (Internet). Paradis-Net offers a simple interface facilitating
the implementation of complex communication patterns and abstracting away
from particular network hardware.

Paradis-Net emerged from our experience in developing the Clusterfile par-
allel file system [3, 4] and addresses the problems of communication paradigms
such as RPC and active messages, that have been described by the developers of
xFS [5]. In a paper describing their experience with xFS [6], the authors identify
the mismatch between the service they are providing and the available interfaces
as a main source of implementation difficulties. We show in section 2 how our
work on Paradis-Net addresses these issues.
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The contributions of this paper are:

– Paradis-Net offers a low-level transport independent interface (for both, user
and kernel space).

– Multi-party protocols are supported through the Cooperation mechanism,
allowing several nodes to collaborate in order to serve a request.

– A Paradis-Net message handler can delegate the request to a remote handler.
This mechanism is similar to continuation passing.

In addition to these points there are several notable details about the Paradis-
Net interface:

– Paradis-Net and its Cooperation and continuation passing mechanisms
match the needs of P2P overlay networks. (see section 4.2)

– The semantics of Cooperations suit the requirements of the RDMA protocol,
which consists of memory registration and effective data transfer. Therefore,
the low-level RDMA mechanism can be transparently exposed to the appli-
cations. (see section 4.3)

– For efficient utilization of SMPs, Paradis-Net has been designed as a multi-
threaded library and offers a thread-safe implementation.

We have implemented Paradis-Net on top of TCP/IP sockets in user-level and
in kernel-level. A user-level implementation for the Virtual Interface Architecture
(VIA [7]) demonstrates that RDMA can be used transparently.

2 Related Work

Active messages (AM [8]) is a low-level message passing communication interface.
An AM transaction consists of a pair of request and reply messages. Each request
activates a handler associated with the message, that extracts the data from
the network and delivers it to the application. The low-level interface of AM
allows exposing the features of Network Intelligent Card (NIC) such as zero-copy
RDMA to the applications. Paradis-Net can also map low-level NIC intelligence
on the Cooperation communication abstraction (see section 4.3).

Remote Procedure Calls (RPC [9]) are a common standard for distributed
client-server applications, e.g. NFS [10]. Both AM and RPC paradigms are suit-
able for client-server application due to their point-to-point request-reply nature.
However, Wang et al. [6] found them unnatural for the multi-party communi-
cation needed by a peer-to-peer system: A point-to-point RPC call has to be
followed by a reply from the liable peer. If the request is delegated to an an-
other peer, the reply has to travel back on the same way, as shown in figure 1.
On the other hand, Paradis-Net through its continuation passing mechanism,
allows a direct reply from the last peer as depicted in figure 2. In general, for n
delegations, RPC needs 2n messages, Paradis-Net only n + 1.

The Parallel Virtual Machine (PVM [11]) and the Message Passing Interface
(MPI [12]) are used to specify the communication between a set of processes
forming a concurrent program. With many communication and synchronization
primitives they target the development of parallel applications following the
SPMD paradigm and are not well suited for distributed system development.
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Fig. 1. Delegation through RPC

1 2

3

Peer2

Peer1 Peer3

Fig. 2. Delegation in Paradis-Net

Solid arrow: Request – Dashed Arrow: Reply

Table 1. The Paradis-Net API

General
int initialize (end point ep []) section 3.1
void finalize () section 3.1
peer id get peer id (char name[]) section 3.1

Communication
int send(peer id to, msg type type, coop nr nr, void ∗msg, int

msg size)
section 3.1

int forward(peer id to, msg type type, void ∗msg, int msg size) section 3.2
Handlers

void set handler(msg type msg, int opt, handler fun ∗handler) section 3.2
void <handler fun>(peer id from, msg type type, coop nr nr, void ∗msg

, int msg size)
section 3.2

Cooperations
coop nr start cooperation(rcv desc ∗rcvec, int vec size ) section 3.3
int end cooperation(coop nr nr, int timeout) section 3.3

3 The Paradis-Net Architecture

Paradis-Net offers a peer-to-peer communication model in which every commu-
nication endpoint can be a server and a client at the same time. The Paradis-
Net library is a layer between the application and the native network interface.
Applications see a simple, uniform interface that is independent of the actual
network technology used, thus easing the development of complex distributed
protocols. Paradis-Net can be extended to support different network technolo-
gies. For a more detailed description of the API see our technical report on
Paradis-Net [13].

3.1 Initialization, Peer IDs and Sending Data

The initialize method (see table 1) is needed to initialize the internal data struc-
tures and to open local endpoints. The ep argument contains the configuration
options for the different network interfaces supported by this peer. The inverse
operation finalize closes down all the endpoints and releases the corresponding
data structures.
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Every Paradis-Net endpoint has a unique peer name. This name usually
consists of protocol and address information used to address other peers and
to send messages to them. For example a TCP endpoint name is: “tcp:<ip-
address>:<service-port>”. For convenience and performance reasons get peer id
(see table 1) returns peer IDs that help refering to remote endpoints through
handles rather then full endpoint names.

The Paradis-Net library offers only one explicit communication primitive:
send (see table 1). This operation sends a typed message to the peer represented
by the peer ID (to). In case of an error the error number is returned. Upon
return of this function the memory area that contains the message can be reused
immediately.

3.2 Request Handlers

Paradis-Net does not offer a function to receive data from other peers. Instead, it
uses handler functions that are called upon the arrival of a message. A handler
function for a certain message type is set using the set handler (see table 1)
function. This event-driven mechanism requires an agreement between peers with
respect to the message type they use. In contrast to Active Messages, Paradis-
Net handlers are not limited in their execution time and can initiate calls to the
library, including arbitrary send operations.

Handlers facilitate server implementation: Request reception and invocation
of the appropriate user-defined handler is being taken care of by the library. A
handler usually fulfills the request service and sends the reply back to the client.

The traditional client-server model can be expanded in Paradis-Net with
the forward (see table 1) function. When called from within a handler, forward
allows sending the message to a different peer and thereby also delegating the
obligation to answer. The handler on the next peer will be invoked with the
local peer id that corresponds to the peer which was the original source of the
request. Section 4.1 will give an example communication pattern the uses this
operation.

3.3 Cooperations

The handler concept on its own is not convenient for the implementation of
protocols involving several peers. For this reason Paradis-Net introduces “Co-
operations”. A Cooperation is a concept that defines a relationship between the
outgoing requests and the incoming answers by creating a token that accompa-
nies all involved messages. The function start cooperation (see table 1) registers
a Cooperation at the client side. The parameter (rcvec) describes the expected
reply.

We will exemplify the life-cycle of a typical Cooperation in a client-server sce-
nario: A Cooperation starts at the client by having the function start cooperation
registering the Cooperation and returning a token that represents the Coopera-
tion. A Cooperation is registered using a receive descriptor containing memory
locations to store the replies. Receive descriptors also define criteria to distin-
guish between different message types and origins. Next, the client will send
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a request to the server and afterwards call end cooperation (see table 1). This
function blocks until the expected result is available. The token accompanies
the request message on its way to the server by using the optional parameter
of the send operation that attaches the token to the message. On the servic-
ing peer, Paradis-Net will invoke the handler that has been assigned to the
message type with the Cooperation token as a parameter (see the signature of
handler functions in table 1). When the reply is sent, the Cooperation token is
again attached to the message and travels back to its origin. On the client site,
Paradis-Net identifies the reply as being part of a Cooperation by the type of
the message. Although there is still the possibility to invoke a handler function
upon the arrival of such a message, the library will first check if the attached
cooperation token matches any of the currently active Cooperations on this peer.
If this is the case, the service thread will store the message at the memory lo-
cation that was declared when calling start cooperation and afterwards wake up
the thread that is waiting for the cooperation to finish.

4 Applications

In this section we will illustrate flexibility and simplicity of Paradis-Net in par-
allel and distributed file systems and P2P systems as well as its ability to trans-
parently support remote zero-copy operations (RDMA).

4.1 Parallel and Distributed File Systems

Here are two examples that stem from our own experience developing the parallel
file system Clusterfile [3] and the observations that were made building the
distributed file system xFS [6].

Delegation. xFS illustrates the delegation pattern with respect to cooperative
caching (see figure 2): A client (Peer1 ) reading from a file incurs a read miss in
the local cache and sends a block request to the cache manager (Peer2 ) in order
to retrieve the cached data from a different peer. The manager consults its map,
finds the responsible cache server (Peer3 ) and forwards the request to it. The
cache server then responds back to the client with the cached data. The same
pattern can be also be employed for routing in a peer-to-peer system (section
4.2). Although this scenario appears to be simple, it is difficult to realize with
traditional message passing interfaces. Wang et al. [6] demonstrate that RPCs
are unsuitable to implement it because of the strict semantics imposed by the
model.

On Peer1 the method start (listing 1) registers a Cooperation, sends the
request to a peer (Peer2 ) and waits for an answer.

The start function can be used for typical client-server communication as
well. If Peer2 answers the request directly, start does not have to be changed
at all, since the receive descriptor accepts replies from any peer, as long as the
reply carries the Cooperation token issued by the local Paradis-Net library.
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void s t a r t ( pe e r i d to , void ∗msg , int msg len ) {
coop nr coop ;
r c v de s c desc = // r e c e i v e d e s c r i p t o r

{ memory : NULL, s i z e : 0 , // a l l o c a t e memory f o r
r ep l y au t oma t i c a l l y

type : REPLY, // only accep t messages
wi th type ”REPLY”

opt ions : RCV FROM ANY } ; // accep t messages from
any peer

coop = s t a r t c o op e r a t i o n (&desc , 1) ; // r e g i s t e r
coopera t ion

send ( to , REQUEST, coop , msg , msg len ) ; // send
r e que s t

. . . // even tua l
computation

end cooperat ion ( coop , 0) ; // wai t f o r
r e p l y (no t imeout )

}

Listing 1. Sending the request

When Peer2 receives the request from Peer1, Paradis-Net invokes the handler
function forward handler, which has been registered for messages with the type
REQUEST. The handler first inspects the incoming message to find the peer
responsible for answering the request and then forwards the message to it:

void f o rward hand l e r ( pe e r i d from , msg type type , coop nr
coop , void ∗msg ,

int msg len ) {
pe e r i d l i a b l e p e e r = f i n d l i a b l e p e e r (msg , msg len ) ;

forward ( l i a b l e p e e r , msg type , msg , msg len ) ;
}

Listing 2. Forwarding the request

This implementation of the forward handler ignores errors that might happen
when forwarding the message. In the case of an error, Peer2 could reply back to
Peer1 with an error message, or try to forward the request to a different peer.

The message from Peer2 to Peer3 carries the address of Peer1 that will allow
Peer3 to identify the requester and to reply to him. On Peer3 Paradis-Net calls
the local handler function (serve request, listing 3) with the peer ID of Peer1 as
first parameter, so that the handler function will not be able to see the mediator
that forwarded the request.
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void s e r v e r e q u e s t ( pe e r i d from , msg type type , coop nr coop ,
void ∗msg ,

int msg len ) {
rep ly msg r ep ly ; // t h i s v a r i a b l e w i l l ho ld the r e p l y
int r e p l y l e n ; // the l en g t h o f the r e p l y

f u l f i l l r e q u e s t (msg , msg len , &reply , &r e p l y l e n ) ; //
app l i c a t i o n s p e c i f i c

send ( from , REPLY, coop , &reply , r e p l y l e n ) ;
}

Listing 3. Serving the request

Scatter/Gather. Scatter/Gather is a one-to-many communication pattern in
which a peer sends requests in parallel to many peers and waits for all individual
responses. Figure 3 illustrates the procedure.

Clusterfile [3] uses this pattern to con-

Peer1

Peer2

Peer3

Peer4

Fig. 3. The Scatter/Gather pattern
Solid arrow: Request – Dashed Arrow:
Reply

tact several data servers storing stripes
of a given file. Although the requests are
sent out in a particular order, the order
of the replies is arbitrary.

The peers which play the server role
in this pattern (Peer2, Peer3, . . . ), define
a handler function to process the request.
This handler will, after assembling an an-
swer, reply back to Peer1. The procedure
accords with the one of Peer3 in the del-
egation example and therefore the imple-
mentation is the same: see listing 3.

As an extension of the pattern, it is
also possible to forward the request to a different peer using the forward function,
akin to listing 2. This would result in a combination of the Scatter/Gather and
the Delegation pattern.

For simplicity reasons we send the same message to every peer and expect
reply messages of type reply type (listing 4). After sending the requests, Peer1
will block in end cooperation until all answers have been received.

4.2 Structured P2P Overlays

Three groups from MIT, Berkeley and Rice University joined their efforts in
order to define a common three tier API for structured overlays [14]. The lowest
tier 0 is the key-base routing layer, which provides basic communication services.
Tier 1 provides higher level abstractions like distributed hash tables, while the
applications at tier 2 use these abstractions in order to offer services like file
sharing and multicasting. The researchers describe the tier 0 implementation of
the four most influential structured overlay systems: CAN [15], Chord [16], Pas-
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try [17] and Tapestry [18]. We will outline how the routing messages operations
of tier 0 can be straightforward implemented using Paradis-Net.

An overlay node is identified by a nodehandle that encapsulates its network
address (e.g. IP), in our case the unique peer name in Paradis-Net (section 3.1).
Overlay nodes are assigned uniform random node ids from a large identifier space
by hashing their network addresses. The application objects are mapped on the
same identifier space by computing a key. The objects are placed on the overlay
nodes by assigning their keys to node ids (for instance the longest prefix match
in Tapestry). In order to efficiently sent a message from one node to the other,
each node maintains a routing table. The routing table is used for choosing a
next hop whose node id is closer (for instance by using the Hamming distance)
to the node id of the destination. The routing strategy is system specific and is
not discussed here. Given a node and a message to be routed, we assume the
routing table delivers the node id of the next hop.

At tier 0, two sets of API functions are proposed: routing messages and
routing state access. The latter set refers to strictly local operations and is
therefore not relevant for our discussion. The first set consists of three API
functions: route, forward and deliver. The call route(key K, msg M) delivers
the message M to the node storing the object associated with the key K. The
optional argument hint specifies the first hop to be used. The route operation
can be implemented using the continuation passing mechanism of Paradis-Net
as a chain of handlers assigned to the message type ROUTE, running on the
peers from the source to the destination. Each handler consults the local routing
table in order to chose the next hop and then invokes the local forward(key K,
msg M, nodehandle nextHop), as provided by the application. This function may
change K, M or nextHop, according to the application needs. Upon returning
from it, send can be used for sending K and M to the node nextHop. At the
destination, the up-call deliver(key K, msg M), informing the application that a
message for object K arrived, will be called from a Paradis-Net handler.

4.3 Transparent RDMA

The capabilities of direct access transport (DAT) standards such as the Virtual
Interface Architecture [7], Infiniband [2] and Remote Direct Data Placement
(RDDP [19]) reduce memory copy operations and minimize CPU load when
transfering data from the network interface to the main memory. The DAT
Collaborative defines DAT requirements and standard APIs that include RDMA,
memory registration, kernel bypass and asynchronous interfaces. RDMA allows
direct memory-to-memory transport of data without CPU involvement. Memory
registration facilitates the specification of granting access to the local memory
regions used as destinations of RDMA operations. The kernel bypass eliminates
unwanted kernel involvement in the communication path.

Paradis-Net cooperations allow the transparent use of RDMA as validated by
an implementation of Paradis-Net over VIA. Memory registration is implemented
in the start cooperation routine. A prerequisite for the use of RDMA is that the
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r e p l y t y p e ∗ s t a r t ( pe e r i d ∗ peers , int num peers , void∗ msg ,
int msg len ) {

coop nr coop ;
int i ;
// We a l l o c a t e memory f o r a l l r e p l i e s :
r e p l y t y p e r e p l i e s [ ] = mal loc ( num peers ∗ s izeof ( r e p l y t y p e )

) ;
// i n i t d e s c a l l o c a t e s r e c e i v e d e s c r i p t o r s to accomodate the

r e p l i e s :
r c v de s c ∗desc = i n i t d e s c ( peers , num peers , r e p l i e s ) ;

coop = s t a r t c o op e r a t i o n ( desc , num peers ) ; // r e g i s t e r
coopera t ion

for ( i =0; i<num peers ; i++) // send r e qu e s t s
send ( pee r s [ i ] , REQUEST, coop , msg , msg len ) ;

. . . // even tua l
computation

end cooperat ion ( coop , 0) ; // wai t f o r r e p l y
(no t imeout )

f r e e ( desc ) ; // f r e e the
d e s c r i p t o r s

return r e p l i e s ;
}

Listing 4. Sending requests

remote peer is known and identifiable through the from flag. When memory is
registered, its handles, which are required for remotely accessing the memory,
will be attached to the request along with the Cooperation token. The remote
peer then has the information needed to directly write the reply into the client’s
memory without involving the CPU of the other machine.

Similarly, requests can be sent using RDMA and pre-registered buffers. In all
cases, the kernel is bypassedwith a complete user-level implementation overRDMA.

5 Conclusion

This paper introduced Paradis-Net, a low-level network interface which targets
easier implementation of complex multi-party protocols. Paradis-Net emerged
from our experience with parallel file systems and was motivated by the need of
collaborative communication patterns.

To this end Paradis-Net introduces Cooperations, a mechanism that allows
the user describing the result of collaborative work between several participat-
ing peers. We described the mechanism and its potential use by demonstrating
how two common communication patterns used in parallel file systems can be
implemented. Aside from distributed system development, we outlined how peer-
to-peer functionality can be mapped onto Paradis-Net and how the library can
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transparently use remote direct memory access (RDMA) when available to in-
crease performance.
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