
Impact of Software Engineering Research on
the Practice of Software Configuration
Management

JACKY ESTUBLIER GEOFFREY CLEMM
Grenoble University Rational Software
DAVID LEBLANG WALTER TICHY
Massachusetts Institute of Technology Universität Karlsruhe
ANDRÉ VAN DER HOEK and
University of California, Irvine DARCY WIBORG-WEBER
REIDAR CONRADI Telelogic
NTNU

Software Configuration Management (SCM) is an important discipline in professional software
development and maintenance. The importance of SCM has increased as programs have become
larger, more long lasting, and more mission and life critical. This article discusses the evolution

This article has been developed under the auspices of the Impact Project. The aim of the project is
to provide a scholarly study of the impact that software engineering research—both academic and
industrial—has had upon the practice. The principal output of the project is a series of individual
papers covering the impact upon practice of research in selected major areas of software engineer-
ing. Each of these papers is being published in ACM TOSEM. Additional information about the
project can be found at http://www.acm.org/sigsoft/impact.
This article is based on work supported by the US National Science Foundation (NSF) under
award number CCF-0137766, the Association of Computing Machinery Special Interest Group
on Software Engineering (ACM SIGSOFT), the Institution of Electrical Engineers (IEE), and the
Japan Electronics and Information Technology Industries Association (JEITA).
Any opinions, findings and conclusions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the NSF, ACM SIGSOFT, IEE, or
JEITA.
Authors’ addresses: J. Estublier, Grenoble University, 220 rue de la Chimie, BP53 38041, Grenoble,
France; email: Jacky.Estublier@imag.fr; D. Leblang, 24 Oxbow Road, Wayland, MA 01778; email:
leblang@alum.mit.edu; A. van der Hoek, Department of Informatics, University of California,
Irvine, Irvine, CA 92697-3425; email: andre@ics.uci.edu; R. Conradi, Department of Computer
and Information Science, NTNU, NO-7491, Trondheim, Norway; email: Reidar.Conradi@idi.
ntnu.no; G. Clemm, Rational Software, 20 Maguire Road, Lexington, MA 02421; email: Geoffrey.
Clemm@us.ibm.com; W. Tichy, Department of Informatics, Universität Karlsruhe, 76128
Karlsruhe, Germany; email: tichy@ira.uka.de; D. Wiborg-Weber, Telelogic 9401 Geronimo Road,
Irvine, CA 92618; email: darcy@telelogic.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1049-331X/05/1000-0383 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005, Pages 383–430.

384 • J. Estublier et al.

of SCM technology from the early days of software development to the present, with a particular
emphasis on the impact that university and industrial research has had along the way. Based on
an analysis of the publication history and evolution in functionality of the available SCM systems,
we trace the critical ideas in the field from their early inception to their eventual maturation
in commercially and freely available SCM systems. In doing so, this article creates a detailed
record of the critical value of SCM research and illustrates how research results have shaped the
functionality of today’s SCM systems.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding Tools and Techniques;
D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement; D.2.9 [Software
Engineering]: Management—Software configuration management

General Terms: Algorithms, Experimentation, Management

Additional Key Words and Phrases: Versioning, data model, process support, workspace manage-
ment, software configuration management, software engineering, research impact

1. INTRODUCTION

In 2000, the authors were invited to mount an effort to document the impact of
software engineering research on the practice of software configuration man-
agement (SCM). What followed was a lengthy and in-depth debate among the
authors to determine what conceptually should be considered impact, how it
should be measured, what specific SCM research we believed had impact, and
how it should be presented. The cumulative result of this debate is documented
in this article, which we believe makes an honest and balanced attempt at de-
scribing the impact that three decades of SCM research has had on shaping the
functionality of today’s commercial and free SCM tools.

SCM concerns itself with controlling change in large and complex software
systems. The discipline has been in existence for multiple decades, but has
seen a sharp rise in popularity during the last one. Early SCM tools had lim-
ited functionality and applicability, but modern SCM systems provide advanced
functionality through which it is possible to effectively manage the evolution of
many different artifacts as they arise in the development of complex, multimil-
lion line of code systems. This change from small, simple tools to entire SCM
environments can be largely attributed to a steady flow of research, undertaken
in both academic and industrial settings, that identified and incrementally im-
proved many ideas, approaches, tools, features, and so on. Some of these ideas
were simply so compelling that they quickly made the transition to widespread
practice. Other ideas, however, never made this transition, or did so only after
much additional research and (re)-engineering.

To distinguish the research that did have impact from the research that did
not, we extensively discussed what defined “impact.” In doing so, we reached
the following consensus: for research to have had impact, it must have been:
(1) published in the literature (including scholarly papers, patents, user man-
uals, and technical reports that are publicly available), and (2) incorporated
in actual SCM products that are (or were) on the market, commercially or
freely. From this definition, we went back and evaluated the functionality of
SCM products and compared that functionality against published results. Ad-
ditionally, we traced these results to their early beginnings, going back through

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 385

references and the functionality of older versions of SCM tools. In this process,
we also interviewed some of the lead designers of early SCM products, which
gave us interesting insights into the importance of events such as conferences,
workshops, and other venues at which research is typically presented. Slowly
but surely, a picture emerged of a vibrant field in which both academic and
industrial research had a significant impact on the practice of SCM.

In this article, we report on this study. We first, in Section 2, discuss in more
detail the ground rules underlying our approach to documenting the impact of
SCM research. Then, in Section 3, we provide background material to introduce
the field of SCM and briefly sketch its historical evolution and importance. In
Sections 4 to 8, we describe, per area of SCM functionality, the research that was
historically performed and summarize its impact on actual commercial and free
tools. Section 9 brings together the impact from all areas of SCM functionality,
presenting an overall picture of the volume and critical role of SCM research
impact. To further illustrate why impact occurs, the section also takes a closer
look at a few successful and failed transitions of research into practice. Sections
10 and 11 finish the report with a word of caution and our high-level conclusions.

2. APPROACH

During the preparation of this report, there was a lively debate among the au-
thors about what defines impact and which research to include. We first looked
at the state of the field: a successful, billion dollar industry in software configu-
ration management tools has arisen. SCM tools have become so pervasive that
virtually all major projects use them. SCM provides tangible and recognized
benefits for software professionals and managers; software development stan-
dards even prescribe their use. There are now over a dozen textbooks dealing
exclusively with SCM, and most textbooks on software engineering include a
chapter on that topic. Software engineering conferences and workshops reg-
ularly seek contributions in this area. Finally, there is a lively international
community of SCM researchers and an international SCM workshop series.

To measure impact, we decided to focus on the relationship between SCM
tools and the research that predated the existence of the tools. Our decision to
focus on tools is easily explained: it is difficult to imagine performing any kind
of configuration management without using an appropriate SCM tool. More-
over, other contributions such as methods or best practices usually make their
way into the tools anyways, sometimes as predefined processes, other times as
new features in support of the method or best practice. We believe impact can
therefore be gauged by the extent to which SCM tools and their features are
used. This includes both commercial and free tools. While a significant fraction
of projects adopts a commercial tool, a massive number of projects rely on CVS
[2000] and now Subversion [Wheeler 2004], in particular in the open source
community.

Identifying whether research had a role in the development of the tools was
more difficult. We (the authors) came quickly to the conclusion that citing only
academic research would be far too narrow, because corporate research had
contributed a great deal of results and ideas. In fact, the software configuration

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

386 • J. Estublier et al.

management community owes much of its liveliness to a healthy and compet-
itive mix of researchers and developers from both academia and industry. Our
first ground rule was therefore to take an inclusive view of research.

We discovered quickly that it was futile to determine who contributed “more”,
academia or industry. Our opinions about what was more important diverged
widely, depending on our personal points of view. We will therefore leave the
evaluation of the relative merits of research contributions to our readers and to
historians. Our goal is to provide an honest and accurate picture of the major
research ideas in SCM and show how and where they had an impact.

Given the long lead time for research results to show up in practice, some
yet-unused results may have their impact still ahead of them. Thus, we decided
to discuss current research even if it has not yet had any discernible impact on
practice.

These three ground rules, though important, do not help in identifying rele-
vant research. After some debate we decided to concentrate on publications in
the open literature (scholarly papers, patents, user manuals, and technical re-
ports that are widely available, etc.). This criterion is not perfect, since it leaves
out unpublished work, in particular results that go directly into products. How-
ever, fortunately for the community, research results were vigorously published
even by industry, notably Bell Labs, Apollo, Atria, and others. While we cannot
be a hundred percent certain, we believe that the research literature contains a
publication record of most major research ideas and results in the field of SCM.
Of course, there is a chance of some unpublished invention being heavily used
in some real product. However, this is unlikely, because competition among the
SCM vendors forces the major players to offer comparable functionality and fea-
ture sets. By comparing what is known about the functionality of current SCM
tools with scholarly published material, it does appear that the major research
results incorporated in products were actually published. Conversely, consider
what happens to research results that are not published. The probability is
high that these results will be forgotten once the people who were engaged in
the work move on. The impact of such work is severely limited; after a while, it
appears as if it never happened. Others cannot extend the work without actu-
ally redoing it. We concluded that basing this report on research published in
the open literature would be adequate.

We thus reached the following definition for impact in the field of SCM: for
research to have had impact, it must have been: (1) published in the literature
(including scholarly papers, patents, and technical reports that are publicly
available), and (2) incorporated in actual SCM products that are (or were) on
the market, commercially or freely.

Feature creep may invalidate this viewpoint: for impact to occur, features of
tools should be used in practice. We observe, however, that SCM tools are com-
plicated, and that vendors do not gain in making them more complicated. On
the contrary, simplicity and elegance drive the incorporation of new features.
SCM vendors have therefore been vigorous in user testing potentially new fea-
tures, and have no qualms about not incorporating less useful features or even
taking out existing features that are no longer used. Section 7.3 contains one
example of functionality that was “taken out”, but many other examples exist.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 387

We therefore believe that our position of defining impact based on a comparison
of the literature with the features in SCM tools remains valid.

The emphasis on publications and tools leaves out other activities that have
had impact. A major impact is caused by people, in particular university gradu-
ates moving to industry. Graduates with Ph.D. topics in SCM directly benefit the
SCM industry, but even at the B.S. and M.S. levels many computer science stu-
dents have been exposed to SCM in software engineering courses and projects.
Nevertheless, it has been observed that SCM remains an “under-taught” topic
and that improvements can be achieved in promoting SCM in computer science
education [Lethbridge 2000]. Recent graduates may lack the necessary experi-
ence, but it is generally acknowledged that young people bring with them fresh
and new ideas.

Industry also impacts academia via people. Career moves from industry to
academia are relatively rare, but many of the academics in the SCM field have
enjoyed long and fruitful relations with the SCM industry, through consulting,
sabbaticals, joint projects, or spear-heading start-up companies. Moreover, in-
dustrial contacts are a source for new problems to solve and act as a corrective
of what is important and what is not.

Last but not least, workshops and conferences have had a significant impact
on the SCM community. Given the competitive nature of the software business,
it has fallen to the academics to organize vendor-independent meetings in which
the latest results in SCM are presented and new, unpublished ideas discussed.
It is unlikely that even the authors of this report would all have met without
the SCM workshops that brought together researchers and developers in the
SCM field for over a decade.

3. BACKGROUND

3.1 A Brief History

Configuration management (CM) is the discipline of managing change in large,
complex systems. Its goal is to manage and control the numerous corrections,
extensions, and adaptations that are applied to a system over its lifetime. Soft-
ware configuration management (SCM) is configuration management applied
to software systems. The objective of SCM, then, is to ensure a systematic
and traceable software development process in which all changes are precisely
managed, so that a software system is always in a well-defined state at all
times.1

What sets SCM apart from other applications of CM (e.g., product data man-
agement, content management) is its focus on managing files and directories.
Most current software engineering tools still rely on the presence of the file
system view and many software developers still rely on actually seeing and
manipulating files in the file system for their day-to-day operation. While a
recent trend in SCM is to hide this view from developers through sophisti-
cated user interfaces and integrations with programming environments such

1Ideally, SCM also enforces the quality attributes of the software under control, but clearly there
is a gap between this theoretical ideal and the current state of the practice.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

388 • J. Estublier et al.

as Eclipse [2004], the file system view remains (in the foreseeable future) one
of the core underpinnings of SCM systems.

The discipline of configuration management initiated in the aerospace indus-
try in the 1950s, when production of spacecraft experienced difficulties caused
by inadequately documented engineering changes. Several decades later, soft-
ware started to pose some of the same challenges in terms of managing change.
It became clear that similar techniques could be used to manage any textual
software system. At first, the relatively primitive method of using different col-
ored punch cards indicated changes. As an alternative, special “correction cards”
were used on the UNIVAC-1100 EXEC-8 operating system in the late 60s. For-
tunately, software quickly became an on-line entity and hence could easily be
placed under the control of a dedicated and automated SCM system. Unfor-
tunately, most knowledge regarding the early SCM systems has disappeared.
Scientific conferences for what is now known to be software engineering did not
exist, SCM was largely integrated in the operating systems of that time (which
are now obsolete), and any documentation describing the early SCM systems
is difficult to find.

SCM (re-)emerged as a separate discipline in the late 1970s, with the ad-
vent of tools such as SCCS [Rochkind 1975]; RCS [Tichy 1982]; Make [Feldman
1979], and Sablime [Bell Labs 1997]. Each system targeted a specific function-
ality and focused either on what is now known as “version control” or on sup-
porting an efficient build process for generating an executable program out of
source files. In a relatively short time thereafter, these functionalities were in-
tegrated in single SCM systems with the following main functionalities: (1) to
manage the files involved in the creation of a software product, (2) to track
changes to these files in terms of their resulting versions, and (3) to support
the building of an executable system out of the files. Fundamentally, this focus
has not changed to date.

Pushed by increasingly complex software development and maintenance
practices, advances in hardware and software technology, demands by other
software engineering tools, and pressures in the ever-changing business envi-
ronment, SCM functionalities evolved over time. For example, throughout the
1980s, debates raged on the most efficient type of storage and retrieval mech-
anism, which lead to the development of various, text-based delta algorithms
(these can be used inside SCM tools to store differences among versions instead
of entire versions; see Section 4.2). However, in the 1990s, management of non-
textual objects became much more common and new algorithms were required
for efficiently storing and retrieving those objects. By 2000, disk storage became
so inexpensive, CPUs so fast, and nontextual objects so common, that the use of
deltas became unimportant—many new tools simply use (zip-like) compression.

As illustrated in Figure 1, the context in which SCM systems operate has
changed significantly. First, they were used for managing critical software by
a single person on a mainframe. This resulted in a need for versioning and
building support, which was typically provided by some homegrown system. Use
of SCM systems then changed to primarily supporting large-scale development
and maintenance by groups of users on a Unix system. This resulted in a need
for workspace management, which was quickly provided by newer, more ad-hoc

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 389

Fig. 1. Evolution of the context of SCM systems.

SCM systems. Now, SCM systems manage the evolution of any kind of software
by many different people in many, perhaps distributed locations utilizing many
kinds of machines. This often requires explicit process support, which today’s
advanced, off-the-shelf SCM systems integrally provide. Indeed, SCM is one of
the few successful applications of automated process support.

The overall result is that modern SCM systems are now unanimously consid-
ered to be essential to the success of any software development project (CMM).
The basic tools are pervasive, and the underlying techniques are no longer just
found in SCM systems, but also in many other environments such as 4GL tools,
web protocols, programming environments, and even word processors such as
Microsoft Word. Indeed, the change-tracking facility in Word has been used to
produce countless drafts of this article. Furthermore, there is a lively interna-
tional research community working on SCM, and a billion dollar commercial
industry has developed (see Table I; note that this table represent tool pur-
chases only and does not include expenses on consultancy, dedicated staff, and
so on).

3.2 SCM Spectrum of Functionality

As compared to early SCM systems, modern SCM systems provide a wide range
of high-level functionality. Dart [1991] classified this functionality into eight
closely related categories (shown in Figure 2), where a category is identified as
a box, and where a box on top of another one indicates that the top box relies
on features provided by the underlying one. Each of Dart’s category addresses
a distinct user need [Dart 1991]:

� Components. SCM systems must support their users in identifying, storing,
and accessing the parts that make up a software system. This involves man-
aging multiple versions (both revisions and variants), establishing baselines
and configurations, and generally keeping track of all aspects of the software
system and overall project.

� Structure. SCM systems must support their users in representing and using
the structure of a software system, identifying how all parts relate to each
other in terms of, for instance, interfaces.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

390 • J. Estublier et al.

Table I. Market Share of Modern SCM Tools ($M, Heiman 2003)

Worldwide Software CM, 2001, 2002, and 2003 ($M) Revenue by Vendor
2003 2002,

2001 2002 2003 Share (%) 2003 Growth (%)
IBM 325.40 291.19 340.70 36.7 17.0
Computer Associates Intl. Inc. 66.69 110.00 115.00 12.4 4.5
Merant PLC 114.29 102.00 107.79 11.6 5.7
SERENA Software 91.29 89.00 96.52 10.4 8.5
Telelogic AB 56.50 63.09 71.94 7.7 14.0
Microsoft Corp. 35.61 35.49 38.15 4.1 7.5
MKS 24.39 26.99 27.97 3.0 3.6
Borland Software Corp. 47.00 35.00 24.20 2.6 −30.9
Perforce Software 10.29 13.00 16.20 1.7 24.6
Quest Software 2.70 9.50 10.62 1.1 11.8
Visible Systems Corp. — 2.30 2.50 0.3 8.7
Cybermation Inc. 0.79 1.80 1.50 0.2 −16.5
McCabe & Associates 2.00 2.29 1.48 0.2 −35.5
AccuRev 0.40 0.82 1.25 0.1 52.5
Subtotal 777.33 782.47 855.80 92.1 9.4
Other 91.36 81.95 73.03 7.9 −10.9
Total 868.70 864.42 928.83 100.0 7.5

Fig. 2. Functionalities of SCM systems [Dart 1991].

� Construction. SCM systems must support their users in building an exe-
cutable program out of its versioned source files, and doing so in an efficient
manner. Moreover, it must be possible to regenerate old versions of the soft-
ware system.

� Auditing. SCM systems must support their users in returning to ear-
lier points in time and determining which changes have been performed,
who performed those changes, and why the changes were performed. The
SCM system should serve as a searchable archive of everything that
happened.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 391

� Accounting. SCM systems must support their users in gathering statistics
about the software system being developed and the process being followed in
so doing.

� Controlling. SCM systems must support their users in understanding the
impact of a change, in allowing them to specify to which products a change
should apply, and providing them with defect tracking and change request
tools such that traceability exists from functional requirements to code
changes.

� Process. SCM systems must support their users in selecting tasks to be done
and performing such tasks within the context of the overall lifecycle process
of software development.

� Team. SCM systems must support their users in closely collaborating with
each other. This involves the need to be able to identify conflicts, resolve
conflicts, and generally support both individual and group workspaces.

Not surprisingly, it took considerable time and effort to implement all these
categories to their full extent; Dart published her paper in 1991, but it was
not until recently that high-end SCM systems emerged that provided good sup-
port in each category. Now, high-end systems are all slowly but surely con-
verging in terms of their coverage of the spectrum of functionality identified by
Dart. While the specific mechanisms with which they provide this functionality
may differ, the net effect is the same: users have at their disposal a powerful
arsenal of techniques with which to manage the evolution of their software
systems.

Of note is that virtually every SCM system is carefully designed to be inde-
pendent from any programming languages or application semantics. In taking
the best of simple representations and algorithms (like the version tree with
locking [Rochkind 1975] and simple heuristics (like line-based textual merg-
ing [Buffenbarger 1995]), SCM systems are general, yet efficient and powerful
tools that have been successful in avoiding the intrinsic complexity of syntactic
and semantic issues. SCM systems tend to serve as a framework upon which
the tools that need syntactic or semantic knowledge (like syntactic editors or
compilers) build. In fact, SCM workspaces often serve as the common ground
for those tools. We believe this is a strong contributor to the success of SCM
systems: they remain “universally” applicable, while still providing a useful
abstraction layer upon which other software engineering tools operate and in-
tegrate their results.

3.3 SCM Technical and Research Areas

The categories identified in Section 3.2 are closely related. In fact, the tech-
niques underlying SCM systems often address concerns in more than one cat-
egory. For instance, a number of SCM systems provide a process engine that,
in governing an overall process, also incorporates support for defect tracking,
controlling who has access to which artifacts, and when particular tasks are
performed. Therefore, we perform our analysis of research impact not based
on Dart’s categorization of functionality, but on a categorization of underlying

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

392 • J. Estublier et al.

techniques (see below). It is our belief that a much clearer picture of impact can
be obtained that way.

From a technical perspective, some basic functionality described in Section
3.2, such as auditing or accounting, is easy to implement and has consequently
received little research interest from vendors or researchers. This report there-
fore concentrates on topics that received significant attention from vendors
and/or researchers, and examines the technical approaches underneath those
topics.

We partition the technical approaches that address the remaining areas of
functionality into three major support areas: product, tool, and process. These
three areas represent roughly how the field as a whole evolved, first only sup-
porting file management, then integrating sophisticated tool support, and fi-
nally incorporating advanced process control. Each support area can be broken
down into a number of technical dimensions, which are the dimensions along
which the next sections examine the impact of SCM research. We briefly intro-
duce each dimension here.

3.3.1 Product Support. Product management forms the core functionality
of SCM. From the beginning, one of the primary responsibilities of SCM systems
was to manage the many files that constitute a software system as well as
the many versions of those files that result because of changes. The different
dimensions of product support are the following:

� Versioning. Versioning concerns the need to maintain a historical archive
of a set of artifacts as they undergo a series of changes, and forms the funda-
mental building block for the entire field of SCM.

� System models and selection. Managing a project file-by-file is not very
efficient nor very effective. It is necessary to support aggregate artifacts, with
relationships among artifacts and attributes that help to enforce consistency
in large projects. This is the task of system models, which provide the concept
of configurations (aggregates of configuration items that can themselves be
versioned). This, in turn, raised the need for supporting a user in selecting
exactly to which parts and to which versions of such aggregate artifacts they
want access at a given point in time.

3.3.2 Tool Support. Given their critical role in the software develop-
ment process, SCM systems must provide facilities through which other tools
(and users) can interact with and manipulate the given artifacts. We exam-
ine research impact in this category along two dimensions: workspace con-
trol, the primary mechanism used to gain access to artifacts, and building,
one of the external tools that generally is considered an integral part of
SCM:

� Workspace control. SCM systems implement workspaces to provide
users with an insulated place in which they can perform their day-to-
day tasks of editing and using external tools to manipulate a set of ar-
tifacts. Important considerations are whether workspaces must support

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 393

distributed (or even disconnected) users, and how activities in indepen-
dent (“parallel”) workspaces are eventually integrated back in the SCM
repository.

� Building. Deriving an executable program from a set of source files is the
task of build tools. Build tools were initially developed independently from
SCM systems. However, derived artifacts have to be as precisely controlled
as source artifacts. Efficient building also relies on information regarding
which artifacts were modified. Together, this lead to solutions in which SCM
systems integrally support building.

3.3.3 Process Support. Slowly but surely, the task of SCM systems evolved
from managing just files to managing people collaborating in the development
and maintenance of software. Initially, this entailed just providing support for
change control, but recent SCM systems have incorporated support for general
processes.

Early SCM systems already supported a process, namely the predefined way
according to which artifacts could be manipulated. Usually this process was
hard-wired within the tools, and could not be enhanced or altered without writ-
ing extensive scripts on top of the tool (in fact, this is how CVS started: as
a set of scripts on top of RCS to alter the process via which artifacts could
be manipulated from pessimistic and locking-based to optimistic and merging-
based). This deficiency, combined with a desire to also support and capture the
rationale about changes (e.g., defect corrections and feature requests), lead to
a natural evolution in which SCM system incorporated functionality for the
overall process of governing change.

Modern, high-end SCM systems push process support even further. They do
not just support change control, but allow organizations to design and enforce
general development processes throughout the enterprise. Exactly how this
support is provided and integrated with SCM functionality is the subject of our
last dimension along which we evaluate SCM research impact.

3.3.4 Summary. The technical dimensions along which we examine SCM
research impact in the next few sections of this article are closely related to the
functional areas discussed in Section 3.2. Moreover, they are not independent.
For instance, system models rely upon basic versioning facilities; building re-
lies upon the availability of workspaces; and workspaces, in turn, are populated
with a selection (query) over the system model. Many other such connections
exist. An elaboration of these relationships is not the focus of this article, and
can be found in Conradi et al. [1998]. Our strategy here is to discuss techni-
cal contributions in the primary category of applicability. For instance, Make
[Feldman 1979] and Odin [Clemm 1988], two systems for building an executable
program out of a set of source files, are both discussed in Section 7 (“Building”)
even though they had influence in other categories as well (“System Building”
being the primary one).

The following sections present—from a research, practice, and impact
perspective—the different areas identified above.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

394 • J. Estublier et al.

4. VERSIONING

4.1 Classic Versioning

A usual technique to avoid confusion when an artifact evolves, is to issue a new
identifier each time it changes. But issuing a new identifier for every change is
insufficient to capture any relations that may exist among the resulting set of
uniquely identified artifacts. For instance, we may want to record that a given
artifact corrects certain defects in a previous incarnation of the artifact. The
version control function of SCM records this kind of information by capturing
artifacts as configuration items and tracking the desired relations among those
configuration items in a structured way.2 This structured way is termed a ver-
sion model, which specifies the concepts and mechanisms used to structure the
version space of configuration items and their potential relations [Katz 1990;
Conradi et al. 1998]. Classic SCM systems, such as SCCS (developed at Bell
Labs [Rochkind 1975]) and RCS (developed at Purdue University [Tichy 1982]),
as well as virtually all major commercial CM systems, collect related configura-
tion items into a set called a version group (alternatively called a version graph,
a component, or an element) and manage the evolution of these sets. The items
in a version group are organized into a directed, acyclic graph (DAG) in which
arcs represent “successor” relations. Typically, three types of successor rela-
tions exist: (1) the relation revision-of records “sequential” or historical lines of
development; (2) the relation variant-of connects “parallel” configuration items
that interchange but differ in some aspect of function, design, or implementa-
tion, and (3) the merge relation indicates that changes made on several variants
have been combined. This is the classic revision/variant/merge version model.
For practical reasons, implementations of this model also address the issue of
identity: they automatically increment a version number for every new item
added to the version group.

Individual team members add new items to the version group by following the
checkout/checkin protocol. Before commencing work on a configuration item, a
developer performs a checkout. The checkout operation copies a selected version
from its version group into the developer’s workspace. There, a developer can
carry out their modifications undisturbed by the activities of other developers
(see Section 6). The checkout may also place a reservation (a lock) into the
version group, giving the developer exclusive rights to a later checkin of a new
version as a revision of what was checked out (extending the line of descent).
Other developers wishing to modify the same original version can only create a
variant of this version and must later merge their changes back into the original
line of development. Thus, the reservation protects concurrent developers from
inadvertently overwriting each other’s changes. By the same token, however,
it also restricts the amount of parallel work that may happen and typically
leads to project delays when multiple developers must access and modify the
same files. A trend in the research community, therefore, became to investigate

2A configuration item can pertain to any software lifecycle artifact—from requirements, source
code, project plans, test data, scripts, and Makefiles (all in textual formats), to derived items like
relocatable and executable programs (in binary formats).

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 395

mechanisms to relax the strict locking requirement. An early example of such
an approach is NSE [Sun 1989], a system in which reservations are optional and
represent “soft locks”. This advance was quickly adopted by a large majority of
modern SCM systems.

Given that a version group may contain hundreds or even thousands of re-
visions, and given that disk space was scarce and expensive, early SCM sys-
tems focused heavily on mechanisms to compress the space occupied by a ver-
sion group. Typically, this involved using delta storage algorithms [Hunt and
McIllroy 1996]. These algorithms only store the differences between versions
rather than complete copies of each new version. Modern delta algorithms are
able to reduce space consumption for source code objects to a small percent-
age of the full storage needs [Hunt 1996]. Whenever a version is needed in a
workspace, the SCM system first reconstructs the necessary item from the dif-
ferences. SCCS [Rochkind 1975] and RCS [Tichy 1982] are early version control
systems that implement delta mechanisms. Variants of the delta techniques of
these early systems are still used in modern commercial systems.

Changes in usage patterns drove a second wave of research in delta tech-
niques. Users wanted to not just store text files, but also binary objects such
as an executable or an image. The initial response was for SCM systems to
leverage standard data compression techniques, such as zip, to save space for
these kinds of objects. Usable binary delta techniques were eventually devel-
oped [Reichenberger 1991]. More recently, research has advanced the state of
the art again by developing combinations of delta algorithms and compression
techniques (e.g., bdiff [Hunt and McIllroy 1996] and vdelta [Korn and Vo 1995]).
These algorithms are now being incorporated in commercial SCM systems (e.g.,
in ClearCase [Leblang 1994].

Many other approaches to delta techniques have been developed. Context-
oriented [Knuth 1984], operation-oriented [Gentlement et al. 1989], semantics-
oriented [Reps et al. 1988], and syntax-oriented [Westfechtel 1991] compar-
isons have been proposed to make differencing and merging algorithms more
accurate [Buffenbarger 1995]. Syntactic and semantic comparisons seek to find
precise, fine-grained differences so to ensure a merge will produce a consis-
tent result, that is, a source file that compiles (syntactic merging) and ex-
hibits the intended behavior of each of the merged changes (semantic merg-
ing). It is easy to prove that syntactic and semantic merging can avoid many
of the problems introduced by the use of classic line-based merging [Horwitz
et al. 1989]. Despite this clear advantage, commercial SCM systems have not
adopted these kinds of algorithms; the need to remain neutral with respect
to which kinds of artifacts are versioned prevents the systematic applica-
tion of syntactic or semantic differencing and merging algorithms. Nonethe-
less, some of these systems now support the parameterization of which dif-
ferencing and merging algorithms to use, depending on which artifacts are
versioned. In addition, research results have made a transition into industry
in a domain different from SCM. For instance, version-sensitive editors (also
called “multi-version editors” [Kruskal 1984; Fraser and Myers 1987; Sarnak
et al. 1988; Ant 2001]) have used the techniques successfully for several years
now.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

396 • J. Estublier et al.

4.2 Advanced Versioning

Classic versioning limits the relations among configurations items to those in
the version graph, that is, revision-of, variant-of, and merge. While certainly
providing a solution that is adequate in many situations, another form of ver-
sioning exists that provides more flexibility to its users. This versioning model
is called change-set versioning.

The key idea is to make changes a first class entity, inverting the relation-
ship between configuration items and changes. Instead of ensuring that each
version of a configuration item is uniquely stored and accessible (with or with-
out the storage optimization of using deltas as organized in a version tree),
the change set approach stores each change as a delta independently from the
other changes. A version of the configuration item is constructed by applying
a desired set of changes to a baseline version. Consider the following analogy.
In classic versioning, configuration items are first-class objects manipulated
directly by the users, from which changes can be derived indirectly (i.e., a user
must request a diff). In change-set versioning, changes are first class objects
directly manipulated by the users, and configuration items must be derived in-
directly (i.e., a user must request a composition of a baseline and a set of change
sets to get a “version”).

Original implementations of the idea, as encoded in the industrial IBM and
CDC update systems of the 1970s, relied on the use of conditional compilation
techniques.3 In particular, at checkin time, all changes in a file are tagged
with the same label or combinations of such, which (upon checkout) allows the
building of different versions of the file by providing a list of labels.

A critical property of change sets is that they are ideally suited to address
the issue of multiple files. Whereas classical versioning must rely on the use of
system models (see Section 5) to track-related changes in multiple files, change
sets naturally lend themselves to contain multiple deltas covering multiple files.
Using this approach, it becomes possible to build configurations that never ex-
isted before, by combining changes that were created independently from each
other (note, through clever use of merging this is also supported indirectly by
SCCS, but only at the individual file level—it does not easily scale to multiple
files). To do so, however, requires one to also keep track of which change sets are
built upon which other change sets. Rather than assuming that all change sets
derive from the same baseline, therefore, the SCM tool Aide-de-Camp [1988]
popularized the use of change sets that can build upon each other, in effect
forming a graph of change sets. Although Aide-de-Camp is the first commer-
cial implementation, the principal designer of Aide-de-Camp revealed that the
implementation was highly influenced by the ideas of Hough [1981].

AT&T Bell Labs [1997] did an early implementation of change-set based
versioning, called Sablime, designed for telecom applications. The goal was to
allow for feature engineering [Turner et al. 1999] by mapping features onto

3The concept of conditional compilation is well-represented by cpp, the C preprocessor. cpp uses
two special constructs, “#if label” and “#endif,” that govern inclusion of text. If the condition in
the label evaluates to true, the text between #if and its corresponding #endif is kept in the file;
otherwise, it is removed.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 397

change-sets. The result was that developers were able to configure a system by
picking a subset of available functionalities. Internally, Sablime used a modified
version of SCCS that could construct a desired version of a file by picking specific
deltas out of its SCCS archive file.

Other early change-set systems include PIE [Goldstein and Bobrow 1980],
a multi-version editor at IBM [Sarnak et al. 1988], and EPOS, which used
the name change-oriented versioning [Lie et al. 1989]. EPOS differs from the
change-set approach in expressing not only backward predecessors, but also
forward visibilities of change-sets [Westfechtel et al. 2001]. The bi-directional
approach makes version selection more powerful, and allows the SCM system
to provide more assistance to users in composing particular versions, thereby
reducing this otherwise unstructured task. Recently, Zeller and Snelting [1997]
explored similar approaches in their ICE prototype, using feature logic to ex-
press the version rules.

Despite all the attention by the research community, SCM systems based
on change-sets do not work well in practice, for a number of reasons. First,
deltas sometimes overlap and conflict. Thus, although the SCM system can
physically construct any combination of deltas, some combinations may not
parse or compile (and it is difficult to predict in advance which versions do
and which versions do not). EPOS addressed this problem by allowing “higher-
level” change sets that consist of a series of other change sets and a “patch”
to make the two work together. This approach, however, has not been adopted
into practice yet.

A second problem is that, for certain binary objects (like Microsoft Word
documents), there is no way to sensibly combine any deltas, except with the
version on which they were based. This means that the change-set approach
reduces to the classic versioning approach for these kinds of artifacts.

Finally, in a software project with tens of thousands of artifacts and hun-
dreds of thousands of changes, the full flexibility of the change-set approach
becomes unwieldy. That is, it is difficult to reliably identify each version of the
system. Furthermore, only a tiny percentage of change-set combinations are
actually useful. Commercial change-set systems such as TrueChange [McCabe
2000] and Bellcore’s in-house Asgard system Micallef and Clemm [1996] over-
come this problem by making heavy and frequent use of baselines to define
periodic starting points for new changes. These baselines are usually tested
and stable. As a result, a developer needs to only specify a baseline and a few
additional changes at any point in time. Although this reduces the number of
possible system permutations, it presents a blending of the classic and change-
set approach to versioning, vastly simplifying version selection and thereby
increasing confidence in the result.

After much debate about the advantages and drawbacks of change-sets, it
was eventually understood that their functionality could be approximated in
classic SCM systems by leveraging their diff and merge techniques. Called
change-packages [Wiborg-Weber 1997], this approach has the critical advantage
that it uses standard versioning technology, which is mature and efficient, but
also allows the flexibility of the change-set approach in cases where it is needed.
This is why this approach is rapidly gaining acceptance in current SCM tools.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

398 • J. Estublier et al.

4.3 Impact

The first significant and influential systems were SCCS and RCS, which came
from Bell Labs and Purdue University, respectively. Delta and merge algorithms
soon followed, as researched and fully developed in industrial laboratories. De-
spite the fact that these classic techniques are now more than 20 years old
and have not changed much since their initial inception, almost all commercial
systems still rely on them. Moreover, these techniques are now so pervasive
that basic versioning techniques can be found in many non-SCM oriented tools
today. This represents a remarkable achievement, and the impact of the early
research is obvious.

The impact of later research on advanced versioning techniques is not so easy
to discern. In fact, the most highly advanced versioning techniques (e.g., for-
ward visibilities, feature-based change sets, formalizations in logic), that were
a favorite topic in the research community, are not used in today’s commer-
cial systems. This is partially caused by the fact that the standard facilities
are adequate for industrial users. In many situations, simple SCM tools (like
SourceSafe (Microsoft [2000] or CVS [2000])) are sufficient. It is also caused
by the fact that these techniques are complex and offer more flexibility than
needed. For instance, software development organizations are often concerned
with reducing, not increasing, the number of product variants (to save costs and
improve quality). In addition, they often are more concerned with instituting
proper change management and process control procedures than with deciding
which versioning model to use.

Nevertheless, many commercial SCM systems have now added the ability to
track changes at the logical level using change packages, albeit under different
names (for marketing purposes). A brief survey reveals a plethora of terms:
TrueChange uses “change-set”, CCC/Harvest uses “package”, CM/Synergy uses
“task”, ClearGuide uses “activity”, PCMS uses “work package”, StarTeam uses
“subproject”, and so on. Even lower-end SCM tools such as Intersolv’s PVCS
and Borland’s StarTeam now have the ability to mark a source code change
with the corresponding defect report or change request (a primitive way of
approximating change packages). Within the next few years, we expect that this
kind of traceability will be standard state of the practice for most commercial
SCM systems [Wiborg-Weber 1997].

The driving force behind the acceptance of change-sets may be the desire of
organizations to manage evolution in a natural, process-oriented way, rather
than as a version selection issue. This process-oriented view entails leverag-
ing baselines and capturing defect corrections and feature enhancements as
change-sets, while frequently making new baselines. The change package ap-
proach matches this process naturally and is, as stated previously, a more prac-
tical form of change-sets.

Altogether, versioning in industrial SCM systems on the one hand shows a re-
markable technical stability (the ubiquitous version tree) and on the other hand
shows a willingness to gradually incorporate some of the advanced services with
which the research community experimented. This transition typically only oc-
curs if it does not compromise any of the efficient underlying technology, and

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 399

as a result usually rids itself of the complexity still present in the research ap-
proaches. Currently, most high-end systems have now adopted features similar
to change-sets, but almost three decades were needed for that to happen.

5. SYSTEM MODELS AND SELECTION

5.1 Background

An SCM system does not operate just on individual artifacts, but has to support
the evolution of entire configurations consisting of multiple artifacts. Therefore,
it must support two critical functionalities: (1) aggregating multiple artifacts
into higher-level artifacts, and (2) obtaining access to aggregate artifacts in a
workspace such that they can be manipulated. The first problem is addressed
in SCM systems by data models and system models, the second by advanced
selection mechanisms.

5.2 Data Models

In the database community, typical data models include hierarchical, relational,
entity-relationship, and object-oriented models. A file system is also a (simple)
data model. In the early 1970s, version control tools such as SCCS and RCS
simply relied on the file system to store artifacts as files, but since the mid-
to-late 1980s, commercial SCM tools have largely been implemented on top of
commercial database systems [Leblang 1984; SoftTool 1987; CaseWare 1989].
Despite this trend, research has certainly attempted to define specific data
models dedicated to SCM by incorporating advanced modeling facilities for
versioning, selection, and so on [Lamb et al. 1991]. For instance, both Adele
[Estublier et al. 1984; Estublier and Belkhatir 1986] and CMA (Configuration
Management Assistant) [Ploedereder and Fergany 1989]) added constructs to
model these kinds of data. CMA, developed by Tartan Laboratories (a spin-
off from Carnegie Mellon University), provided a data model with classes of
attributes and relations with which it is possible to represent dependencies,
consistency, compatibility, and so on.

Adele [Estublier 1985], originally a research system developed at the Uni-
versity of Grenoble, has developed a series of different data models over time. It
uses an active, object-oriented and versioned data model to represent the arti-
facts of the software system. Objects can represent any kind of entity; attributes
can be primitive, compound, or predefined like files, activities, and functions.
Relations are independent entities that model associations such as derivation,
dependency, and composition. Furthermore, triggers can be attached to objects
and/or relations [Belkhatir and Estublier 1987; Belkhatir et al. 1991; Estublier
and Casallas 1994].

Several commercial SCM systems also developed more advanced data
models, the focus being on object-oriented approaches. Aide-De-Camp (ADC,
later ADC Pro and now TrueChange) incorporated a data model with ex-
tended attributes and relations, as well as an innovative technique of storing
changes independent of the file in which they were made [Aide-de-Camp 1989].

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

400 • J. Estublier et al.

CaseWare/CM (later CCM, then Continuus/CM, and now CM/Synergy) devel-
oped an object-oriented data model in 1989 that uses objects, attributes, and
relations to model complex systems [Wright and Cagan 1992; Cagan 1993,
1994]. An object’s type defines the behavior of its instances using platform-
independent, run-time interpreted methods. Types are organized in a type hier-
archy with single inheritance. Relation and attribute types can also be defined,
and attached to objects dynamically.

5.3 System Models

System modeling initiated in the early 1970s, even before the first SCM systems
were developed. Addressing the needs of programming in the large, system
modeling was best characterized by DeRemer and Kron in 1976:

We argue that structuring a large collection of modules to form a “system”
is an essentially different intellectual activity from that of constructing the
individual modules . . . We refer to a language for describing system structure
as a “module interconnection language . . . ” (MIL).

In response, a number of MILs were developed in academic settings, includ-
ing MIL75 [DeRemer and Kron 1976], INTERCOL [Prieto-Diaz and Neighbor
1986], Mesa [Geschke et al. 1977], and Cedar [Swinehart et al. 1986]. Over
time, the functionality of these MILs evolved to include facilities for modeling
the interfaces of modules as sets of required and provided functionalities, the
hierarchical construction of modules out of other modules, the specification of
behaviors of interfaces in terms of pre- and post-conditions, and other such re-
lations among modules. MILs eventually evolved into architecture description
languages (ADLs) [Shaw and Garlan 1996], which provide object-oriented no-
tations specifically to model the high-level design of a system. Aspects of MILs
also appeared in more general design notations, such as UML [Booch et al.
1999] and SDL [Bræk and Haugen 1993].

The advantage to integrating system modeling into the SCM system was
quickly recognized by SCM researchers. In particular, they had the ambition to
abstract away from the underlying data model (often the file and directory struc-
ture) to provide users with an SCM system in which they could describe and
manage the “real” organization of the software product. This requires the ability
to model entities of all kinds of granularity (e.g., product, subproduct, configura-
tion, component, file, file fragment) with all kinds of different dependencies and
relations that together support computing completeness, consistency, and other
relevant properties [Jordan and van de Vanter 1995]. Using this information,
the benefit is that it becomes possible to model “semantic” information and use
it to provide advanced functionality. For example, using the required and pro-
vided interfaces of each module, one can analyze the consistency of a particular
configuration (as supported by Inscape [Perry 1987]. Interfaces are also used
to deal with variability, for instance by allowing alternative implementations
of a module that each support the same interfaces in different ways as allowed
in Gandalf in the 1980s [Habermann and Notkin 1986] and in Adele from 1982
until 1992 [Estublier et al. 1984; Estublier and Casallas 1994]). This is particu-
larly important in support of the building process, because this process requires

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 401

consistent configurations as its input. Some approaches, therefore, evolved to
make the system model the central entity along which they supported the build
process (i.e., Vesta [Heydon et al. 2001] and SHAPE [Mahler and Lampen 1988].

Over time, it was recognized that evolution was a major problem in using
system models. As an implementation evolves, the system model must be kept
in sync, and vice versa. Additionally, old versions of the system model must
be kept to allow referencing of old versions of the implementation. Therefore,
SCM systems using system models evolved to also apply versioning techniques
to the system model itself (e.g., PCL [Mahler and Lampen 1988], POEM [Lin
and Reiss 1995], and Adele [Estublier and Casallas 1994]).

5.4 Selection

The selection problem complements the use of data and system models: How
to obtain a desired set of artifacts in the workspace without having to resort to
requesting each artifact individually? Most simple systems, such as Microsoft
SourceSafe [2000], SCCS, and RCS, simply default to placing the latest version
of the principal variant in the workspace and leave it up to the user to fetch
any artifacts that are exceptions to this rule. This is rather limited, as any
time one wants to go back to a previous version of the system most artifacts
become “exceptions”: a version other than the latest must be retrieved manually.
RCS allows the association of tags to a particular version and the checkout of
versions based on these tags, but this is still limited as there are no mechanisms
for specifying any complex conditions or relations.

Much research was performed to allow users to easily populate a workspace
with the desired versions of the desired artifacts. Some representative resulting
approaches are the following:
� Hierarchical workspaces. First, introduced commercially by NSE (for-

merly Teamware) [Sun 1989], this selection mechanism relies on the hier-
archical structuring of a series of workspaces. Each workspace can specify
local versions of certain artifacts, but inherits versions of other artifacts from
its parent and grandparent workspaces. This structure typically is used to
mimic the structure of the tasks to be performed, with each workspace re-
sponsible for a subtask.

� General queries. Adele [Estublier et al. 1984] supports the association of
arbitrary and multiple attributes to different versions of an artifact, and then
allows general queries over the set of attribute values to specify a particular
configuration with which to populate a workspace. For example, the query
“(status = approved AND owner = Jacky) OR (date > 6.20.83)” populates a
workspace with the latest artifact version that is approved and authored by
Jacky, or else that is created later than June 20th, 1983. Queries are inter-
preted as an ordered set of imperative, preference or default rules.Aggregate
selection, leveraging the data captured in the data and system model, is also
supported by Adele (and other systems, such as Inscape [Perry 1987], EPOS
[Lie et al. 1989], and ICE [Zeller and Snelting 1997]), as is the use of re-
lations in queries. In general, this approach is flexible and compact in its
expressiveness.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

402 • J. Estublier et al.

� Leverage change-sets. When change-sets are used to store changes, the
act of populating a workspaces is simple (in fact, that is the intended use of
change-sets in the first place). Systems such as McCabe TrueChange [McCabe
2000] and Asgard [Michaleff and Clemm 1996] therefore use change-set
compositions in support of workspace population (e.g., “baseline 2.5 +
bug-fix-283 + bug-fix-2 + feature-12”). We note, however, that the result is
not always as simple—as we discussed previously in Section 4.2.

� Rule-based. Rule-based systems such as SHAPE [Mahler and Lampen 1988]
and ClearCase [Leblang 1994] use an ordered set of rules to specify versions.
For example, it is possible to use a layered request that is structured as
follows:

◦ First, my checked-out versions
◦ Otherwise, the latest versions on my branch
◦ Otherwise, the latest versions on the main branch

Rules may be qualified by patterns and use wildcards, and are sufficiently ex-
pressive to in essence form general queries such as those supported EPOS, or
ICE. The main difference with general queries is that rules impose an ordered
structure that simplifies specification of desired behavior as compared to one
general query full of and’s and or’s.

Many more approaches were designed, but all more or less fall in these cate-
gories. In all cases, the objective is to make selection as automated as possible
and relieve as much of the burden from the user as possible. In most cases, this
was achieved (fully automatic selection could take place), but users ended up
using only a small portion of the features. A common weakness is that the re-
sult of automatic selection is often not easy to predict and, in a workspace with
thousands of files, difficult to determine a-posterior. As a result, users tend to
be very cautious and avoid any complex specifications.

5.5 Impact

Logically, researchers hypothesized that a more powerful data and system
model would allow the SCM system to provide better support for precisely cap-
turing the evolution of the artifacts it manages. This simple idea fostered a
vast number of contributions of dedicated data and system models for SCM,
models in which everything is versioned, including files, attributes, general re-
lations, configurations, and workspaces [Estublier et al. 1985; Dittrich et al.
1987; Boudier et al. 1988; Thomas 1989; Gulla et al. 1991; Estublier and
Casallas 1994]. While this research certainly had some impact, it did not have
a great amount of impact on industrial practice and tools to date. The design
of both CCM’s and ClearCase’s data modeling facilities, for instance, were in-
fluenced by PCTE [Thomas 1989] and other object-oriented approaches, but
neither has adopted the full spectrum of available research technology. An ex-
planation can be found in the following:

� SCM systems, to date, mostly care about file management and system build-
ing and not about system specification or detailed behaviors.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 403

� For workspace management reasons, there is a need to define the translation
back and forth between the system model and a file system structure. This is
far from trivial, if not impossible, when the system model is too rich, at least
compared with its underlying file system model.

� A substantial amount of additional effort is required to define and maintain
the system model description. Unless the system model can be automatically
updated, the additional effort easily outweighs the expected benefits, espe-
cially since compilers catch most interface mismatches. This is why MILs
disappeared, and why the use of architecture description languages has not
caught on much in industry.

Additional impact did happen when market demand for the ability to man-
age relations among configuration items grew due to the old U.S. Department
of Defense DoD-2167A requirements tracing specification (and later, due to the
ISO 9000 standard and the SEI Capability Maturity Model [Paulk et al. 1993]).
Virtually all high-end commercial SCM systems provide hyperlinks and at-
tributes to model such relations. They do not, however, provide facilities for
versioning those hyperlinks and attributes. Industrial trials showed this would
complicate the versioning task too much. Even though the research systems
demonstrated the technical feasibility, thus, practical feasibility turned out to
not be possible at this point in time.

Not surprisingly, given the complementary role to data and system models,
research in advanced selection mechanisms have had the same limited amount
of impact. While some of the mechanisms have certainly made their way into
industrial systems (witness the rule-based selection mechanism in ClearCase
or the adaptation of a change-set based selection process in CM/Synergy), as
a practical matter it is difficult for a user to comprehend a configuration that
varies too greatly from a known baseline. Users therefore tend to populate
their workspaces with configurations that vary little from a known baseline and
frequently build, test, and create new baselines. For this reason, the approach
of general queries is not too popular. Analogously, users of change-set SCM
systems tend to specify a baseline plus only a handful of changes, and users
with a rule-based SCM system typically have only a small number of rules. This
creates a manageable level of version selection, and reflects how development
teams typically perform cooperative updating and integration.

In general, thus, we can observe that research has produced a number of
highly advanced approaches to composition and selection, but that industry
and its customers have only adopted slowly and very partially those research
results. Even in cases where the SCM system supports advanced versioning
selection (e.g., ClearCase), this feature rarely tends to be used to its full extent.
However, newer SCM systems are starting to use version selection hidden under
other aspects of SCM, such as process control, change management, and system
modeling, which seems to be a very promising approach to hiding the complexity
and letting the SCM system take care of all the details while the user can simply
concentrate on following the appropriate process.

Additionally, the use of UML models is maturing rapidly in industry;
and modeling in general has recently received much more attention. A new

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

404 • J. Estublier et al.

community, both from academia and industry, is developing around the OMG
Model Driven Architecture initiative (MDA) [Soley et al. 2000; Bézivin 2001;
D’Souza 2001], which increases significantly the likelihood to see operational
models used in industry in the future. This is a new opportunity for SCM system
to get and leverage, for “free,” system models from automatic transformations
of standard designs.

6. WORKSPACE CONTROL

6.1 Background

Versions stored in the repository of an SCM system are immutable, that is,
they cannot be changed. When source files are to be modified, they are usually
checked-out into a workspace. A workspace may be as simple as the user’s
home directory or it may be a complex structure managed by a specialized tool
and a database. In any case, the workspace typically performs three essential
functions:

� Sandbox—the workspace provides a place to put checked-out files so that
they can be freely edited. Locking (hard or soft) of the original file objects in
the repository may or may not be required.

� Building—the workspace is usually the place where software is compiled and
derived objects (binaries) are placed. Since an SCM system generally stores
source files in a compressed form (such as deltas), the workspace usually
must expand compressed files to full-fledged source files.

� Isolation—a typical project usually has at least one workspace per developer.
This allows each user to make changes, compile, test, and debug without
interfering with other developers (such as by overwriting source changes or
derived objects).

These features are often also available in advanced programming or software
development environments, but SCM systems tend to be the central place for
managing these facilities, since the services can then be available for all tools
in a transparent way.

Classic source code control systems such as SCCS [Rochkind 1975] and RCS
[Tichy 1985] do not provide workspace management features. It was soon rec-
ognized that this was a rather large void: it was difficult for developers to share
the editing of files in the same location. Initially, this problem was overcome by
implementing some turn-key scripts on a situation by situation basis. Soon, it
was realized that the need to develop these scripts could be replaced by standard
features. Workspace management as an integral part of SCM functionality was
born. CVS [2000], for instance, was originally implemented as a set of scripts
on top of RCS, but later these scripts became an integral part of the source code.
CVS provides simple workspace management by creating an isolated directory
with source files and Makefiles needed to build a subcomponent. A user commits
completed changes back to the SCM system. CVS detects and helps to merge
changes that conflict with those made by other users. SourceSafe [Microsoft

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 405

2000] is similar, but additionally places copies of newly checked-in files in a
common area.

In order to build large software systems, a compiler typically must access
many thousands of source objects. These must be efficiently extracted and
decompressed from the SCM system and stored in a workspace. On a large
project, with hundreds of individual workspaces, this can result in hundreds of
thousands of source file copies. Initially, developers addressed this problem by
having the workspace tool populate only the directories in which they will be
making changes, relying on compiler search paths to find other sources residing
in a shared workspace containing a full copy of all sources (these search paths
must be kept as part of the workspace configuration!).

Clearly, this is a manual process that does not easily scale. SCM research rec-
ognized this problem and has provided several solutions. The first such solution
leverages hierarchies of workspaces to improve sharing when multiple config-
urations are under development, as in Sun/Forte Teamware [Sun 1989, 2000].
A large project is organized as (nested) sub-projects and each sub-project has a
variety of individual tasks. An individual user may have a personal workspace
for local changes; the sub-project a workspace where individual changes are
combined and integrated; and the overall project a workspace with a baseline
version of the sources to which all changes from all subworkspaces are ulti-
mately committed. Reconciling changes “up” the hierarchy may be as simple as
checking-in a source file, but will often involve merging changes made to the
same source files in different workspaces [Estublier et al. 2003].

Recognizing that even in hierarchical workspaces a large amount of copy-
ing remains, a second solution to the workspace scaling problem comes in the
form of virtual workspaces. As opposed to a physical workspace, which contains
copies of all needed files, a virtual workspace copies only those files that the user
is actually editing. Called a “view” in ClearCase [Leblang and Chase 1984] and
implemented inside the host computer’s operating system, a virtual workspace
provides access to all other necessary source files directly from the SCM system.
In particular, when a compiler or other tool attempts to open a source file, the
computer’s operating system dynamically decompresses and constructs the re-
quested version of the source file. From the user’s point of view, the source files
appear as an ordinary directory structure of plain files—writeable if checked-
out; otherwise, read-only. Virtual workspaces are fast and inexpensive to create
so users tend to create quite a few of them when it suits their purposes.

Eventually, it was realized that even this process could be further opti-
mized: using information from previous builds (as captured in bill of materials,
BOMs, see the next section), systems such as ClearCase routinely wink in ob-
ject files from other builds to avoid having to recompile source files that have
not changed.

Virtual workspaces are highly reliant on a fully connected network, but most
implementations provide an “undock” facility that can be used to create a phys-
ical workspace (which can then be disconnected and, for example, taken home
on a laptop). Complementing the undock facility is a “redock” facility that syn-
chronizes and re-virtualizes a workspace.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

406 • J. Estublier et al.

6.2 Impact

First, we note the enduring popularity of workspaces that are constructed sim-
ply by copying files and directories into the file system (CVS and Subversion
being the prime examples). The simplicity of these approaches and the com-
patibility with existing tools that rely on the files and directories being in the
files system are the primary reasons for the continuing use of this approach.
However, for medium- and high-end systems, the concept of a workspace has
deeply evolved over the years.

Workspace management involves a large number of topics. At first sight,
there seems to be little new as they borrow many concepts and techniques from
databases (views, classic transactions, long transactions, etc.). A closer look,
however, reveals that research has made a significant impact on workspaces in
SCM technology. Two particular research contributions stand out. First, virtual
workspaces are now a mainstay in high-end SCM systems. They were brought
to development and use within Bell Labs under the name 3DFS [Korn and
Krell 1990] and later nDFS [Roome 1992; Fowler et al. 1994]. Earlier research,
however, experimented with replacing the IO library (Inversion [Olson 1993]),
providing a Translucent File System [Hen 1990], using NFS, or other, semivir-
tual workspaces (e.g., PCTE [Thomas 1989], CAPITL [Adams and Solomon
1995]). Surprisingly, most vendors claim they were unaware of this early work,
and that they (re)developed solutions. Nonetheless, this involved a significant
amount of research to make the solutions broadly applicable. It is, however,
true that virtual workspaces became popular (and appreciated) only after be-
ing available in major commercial products.

Perhaps the most significant contribution of research into SCM workspaces
lies in the recognition that it is a unifying technology that brings together
file management, versioning, selection, building, change control, and software
process. Early research experimented with combining various subsets of these
technologies, but the end-result is clear: the workspace is the central technol-
ogy in SCM systems and its role is crucial in providing users with an effective
software development process. Indeed, a modern workspace is created “behind-
the-scenes” to perform a particular user-selected task, and all interaction with
the workspace contents happens through the advanced interface of the SCM
system—hiding the details of selection, versioning, and building. Although the
resulting solution may seem “simple”, it represents an important success in
applying and making usable (and popular!) advanced technologies. This illus-
trates how the research had major impact in shaping today’s software engineer-
ing practices.

7. BUILDING

7.1 Background

Most SCM systems support the building of software. A change in a common
interface description (often captured in an “include file”) can require thousands
of other source files to need recompilation. The classic tool for building is Make

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 407

[Feldman 1979]. Originally developed at Bell Labs for the Unix platform, Make
(and Make-like) tools are still the most widely used tool for system building.
Make relies on a textual Makefile, which contains a simple, user-specified sys-
tem model consisting of file names, composition rules, and derivation relations.
A certain derived file is rebuilt (compiled) in correct topological order when
Make is called, if a file on which it depends is newer than the current derived
file already built in the workspace. Because most changes are limited to a few
derived files, Make is impressively fast in rebuilding a previously compiled
application.

Over time, various improvements and additions have been made to Make.
These include new grammars for pre-processor macros, auxiliary tools for read-
ing source files and generating Makefile dependencies, and parallel distributed
building. In fact, there is an entire alphabet of “Makes” (e.g., dmake, gmake,
gnumake, imake, pmake, smake) as well as other Make-like tools (e.g., Jam
[Wingerd and Seiwald 1997], Odin [Clemm 1988, 1995], and the approach in
Water [1989]), which are particularly interesting as they avoid some of the de-
ficiencies of Make. In particular, they do not rebuild based on date, but only
rebuild based on the content of a dependency file (see below). They also provide
automatic computation of include dependencies, freeing the user from hav-
ing to specify those by hand. Despite these improvements, Make’s core syn-
tax and semantics have remained basically the same for decades, and are a
de-facto standard for building. More recently, in the Java world, the Ant sys-
tem [2000] is slowly changing this fact by providing a build tool that relies
on the Java language, introspection, and source code extractors. This creates
a higher-level build tool that may replace Make and its siblings in the long
run.

7.2 “Same as” versus “Newer than”

Make does not always rebuild when it should. For example, if a user were to
checkout a file, change it, build it, and then revert to its original version via
an un-checkout, Make would not rebuild the target because it would be newer
than the source file now in the workspace (after the un-checkout, the file has as
its date the date of its last check-in). This problem is more severe when variant
branches or change-sets are used.

One major improvement to Make, employed by virtually all commercial tools,
involves a change that modifies the semantics of Make but keeps compatible
syntax. In particular, objects are rebuilt only if any of the source versions now
seen in the workspace is not exactly the same as those used in the last build
(rather than just “newer” than). In order to do this, SCM systems maintain
a “bill of materials” (BOM) for each target object built. The BOM lists the
exact versions of all source files that went into the target object. ClearCase and
Endevor for instance, capture this information though operating system hooks
that intercept the build process and record its exact steps. Endevor inserts the
data into the derived object file, while ClearCase stores the BOM in its database.
As another example, PVCS does not use operating system hooks but scans each

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

408 • J. Estublier et al.

source file for dependencies and writes the BOM into the corresponding object
file. Some systems go even further than that, and include the versions of the
tools used in the derivation process, as well as the version of the operating
system and the hardware configuration.

An analogous problem involves compiler options. If a user were to switch a
global conditional compilation flag from, for example, “LANGUAGE=French”
to “LANGUAGE=English”, Make would see no reason to rebuild. Storing the
build script that is used to make a target in a BOM and matching it against
the build script currently requested solves this problem.

Note, that the use of BOMs has a secondary effect by providing a reliable
audit trail. Using this audit trail, users can repeat the version selection process
and building steps at a future time in exactly the same fashion as it occurred in
the past. This is required to be able to return to previous releases and perform
defect correction.

7.3 Language-Based Building

Programming languages like Ada support semantics for rebuilding that is more
fine-grained than an entire file. Depending on the support environment, Ada
source code can be rebuilt on a procedure-by-procedure basis. Various attempts
have been made to provide similar incremental compilation facilities for other
languages, such as Pascal and C++. While such fine-grained, incremental re-
compilation initially was deemed beneficial, the high-speed of coarse-grained
recompilation has made it no longer worth the effort and complexity. An ex-
ception can be found in rapid-prototyping environments, where the editor and
compiler are integrated and the code is semi-interpreted. Microsoft has made,
for instance, the Visual Basic development environment incremental in its sup-
port. However, its development environment for Visual C++ still relies on com-
pilation and requires Makefiles.

Smart recompilation [Tichy 1986] is a variant of fine-grained rebuilding that
relies on semantically analyzing the changes made in a file to determine if it,
and any of its dependent files, must be recompiled [Schwanke and Kaiser 1988;
Adams et al. 1994; Bret 1993]. This technique ensures that a minimum number
of files are recompiled. But, it requires deep knowledge of the actual program-
ming language and, for performance reasons, any program analysis must be per-
formed incrementally. In practice, simplified implementations of this technique
are found only in some of the aforementioned programming environments. The
CHIPSY environment for Chill was one of the first systems supporting smart
recompilation. Initially, it operated coarse grained, and stopped further recom-
pilations only if a module’s interface did not change. This was later extended
to be fine-grained, by analyzing the local use of each program entity (symbol)
from an imported module interface.

Another form of smart recompilation is a technique called “winking in”, which
was pioneered in ClearCase. The technique has the advantage of being language
independent, reusing binaries in the virtual file system across workspaces to
optimize the build process. Builds by someone else, therefore, can help speed
up a local build.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 409

7.4 Impact

Commercial SCM systems continue to rely on variants of Make for system
building. For example, both ClearCase [2004] and CCM (presently CM/Synergy)
[Wright 1990] explored advanced build systems that deviated from the stan-
dard Make approach. However, neither uses these facilities now. CCM, in fact,
abandoned a “smarter,” more powerful facility in favor of Make. Similarly,
ClearCase’s ancestor, DSEE [Leblang and Chase 1984], initially leveraged a
full-fledged system model to support a parallel build process. ClearCase, how-
ever, abandoned that approach in order to use the industry standard of Make.
However, both these systems have modified their respective version of make to
include hooks for the automated support of BOMs. Many of the advanced SCM
systems on the market today have followed that example, and BOMs are now
a ubiquitous and often used feature in SCM systems.

With the exception of BOMs, however, market demand for Make-compatible
build systems has severely limited the possible impact of research into advanced
build systems. Nonetheless, systems such as Odin and a few “super” Makes had
some impact in the field of system modeling. The file dependencies found in a
Makefile are nothing more than a formal expression of relations among entities,
limited to compile time relationships.

Although explored quite a bit in research SCM systems, semantics-based ap-
proaches have not made much foray into industrial SCM systems. We believe
this is because SCM systems tend to need general, multilanguage support, and
thus far cannot afford to be specific to just a single language. The fate of the
syntax-based editors of the 1980s is also telling. Again, language-independent
solutions are preferred and have generally more impact. The winking in mech-
anism originated by ClearCase, for instance, is now also provided by the open
source tool ccache, which implements equivalent functionality and is used quite
frequently.

8. PROCESS SUPPORT

8.1 Background

The software process has been defined as the sequence of activities performed
during the creation and evolution of a software system [Dowson et al. 1991].
Since SCM controls software evolution, it is fundamentally related to the soft-
ware process.

Process support takes its roots in the belief that software quality and soft-
ware projects’ cost and delays can be controlled only if the process by which
the software is built is controlled [Paulk et al. 1993]. Process support consists
of formally describing the intended process (the process model) and executing
that process to provide automated help and guidance for developers to adhere
to the process in their day-to-day activities.

In SCM, process support primarily targets the control of software changes.
Nonetheless, the broader goals of process support in SCM systems also aim
at reducing development cost and delay, improving quality, promoting integra-
tion with other company processes, increasing repeatability of development

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

410 • J. Estublier et al.

Fig. 3. A change request lifecycle.

successes, and even avoiding blunt development failures (as prescribed by the
SEI Capability Maturity Model [Paulk et al. 1993]).

8.2 Change Control

From the early days of SCM, it was clear that change control is a central is-
sue in any SCM process. In the beginning (1960s and 70s), change requests
(a description of a modified requirement for the product) and trouble reports
(a description of a malfunction in the product) were handled in paper form.
Today, change requests and trouble reports are stored in the SCM repository
and have relations to the actual changes; change control is now automated.4

The first automated change control systems imposed specific change con-
trol processes. Later on, change requests and trouble reports could be mod-
eled as a process using a formalism based on state transition diagrams
[Continuus 1993; Whitgift 1991]. The following diagram is an example of a
typical set of states through which a change request or trouble report may
move.

In general, state transition diagrams describe, for various types of objects,
the legal succession of states, the operations valid in a particular state, and
which actions produce a transition from one state to another. The underly-
ing technology implementing state transition diagrams in SCM systems re-
lies either on straightforward use of triggers with an associated scripting
language (Adele [Belkhatir and Estublier 1987] and CM/Synergy [Wright
1990]) or on a more powerful interpreter (a generic process engine; see be-
low). Most high-end SCM change control tools use definable state transition
diagrams, even if the experience shows that customers are rarely defining
their own change control models. In any case, the process is typically ac-
companied by human decision making, such as done by a Change Control
Board.

8.3 Generic Process Support

General process support is a research topic that started in the early 1980s in
a series of academic workshops, the ISPW series (1984–1999), followed by the
EWSPT workshop series (1990–2003) and the ICSP conferences series (1992–
1998). These forums were essentially discussions about the real nature of pro-
cesses (“software processes are software too” [Osterweil 1987]) and their po-
sition in software development. It is worth mentioning that the major SCM
vendors were present at some of these events.

4Numerous commercial change request tools exist.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 411

Many formalisms for process modeling were proposed, and process support
became a hot research topic in the 1990s [Derniame et al. 1999; Finkelstein
et al. 1994; Di Nitto and Fuggetta 1998]. Although over-enthusiastic promises
were common at that time [Katayama 1991], this line of work did identify
fundamental concepts and experimented with various techniques. Many pa-
pers on process support explicitly focused on SCM as the target application
[Estublier et al. 1997]) and generic process engines eventually migrated into
SCM systems (e.g., ClearGuide [Leblang 1997]). However, users deemed the full
flexibility too daunting and difficult to customize for their own purposes. Early
experience with customers showed that process modeling was too much for most
people—they would rather buy an established process than build their own.
Generic process engines, therefore, eventually were “hidden” by the vendors
in favor of predefined, “best practices” standardized processes. For instance,
Rational leveraged the full functionality of ClearGuide to provide users with a
standardized change process called UCM [Flemming et al. 2003]. This process
manages, in concert, the ClearQuest change request database [Magee 2003]
and ClearCase workspaces to provide users with a seamless (albeit only lim-
ited) process experience.

While the primary domain of process modeling in SCM remained change
control and trouble reporting, experiments also took place that used process
models to manage workspaces. In particular, the experiments addressed the
needs of managing concurrent engineering activities [Estublier et al. 2003].

8.4 Impact

Change control was present and mature in many SCM tools by the early 1990s
[Dart 1991], and is now found in all but the simplest SCM tools [Estublier 2000].
Some support only weak associations among changes and change requests,
others provide a tighter integration by storing change requests in the same
repository as the SCM data and relating the change requests to the objects that
changed [Cagan and Weber 1996]. Little research is expected in the future with
regards to change control. Based on its wide acceptance and implementation,
it is considered a mature technology. The area of growth concerns a better
integration with other tools, such as Project Management, Call Tracking (Help
Desk), and Customer Relationship Management (CRM).

Since the beginning, generic software process research has mostly focused
on activity-based modeling. Here, activities play the central role and process
models express data and control flows among the activities. This contrasts
with the product-based system modeling traditionally used in SCM, and the
current state of the practice does not integrate the two models. The impact
of generic process modeling is, thus, relatively low. However, the success of
change control as a process-based technique within the field of SCM has lead
to the widely accepted observation that SCM is one of the software engineering
domains in which process support has proven to be most successful [Conradi
and Westfechtel 1998].

An interesting addition to this discussion concerns something that happened
at SCM9 [Whatihead 1999]. Attendees were asked to list what they considered

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

412 • J. Estublier et al.

Table II. Landmark Contributions with Great Impact

Academic Research Industrial Research Industrial Product
1972 SCCS (Bell Labs)
1976 Diff (Bell Labs)
1977 Make (Bell Labs)
1980 Variants, RCS (Purdue University)
1980 Change-sets (Xerox Parc)
1982 Merging, and/or graph

(Purdue University)
1983 Change-sets (Aide-de-Camp)
1984 Selection (Grenoble University)
1985 System model (DSEE)
1988 First International SCM workshop
1988 Process support (Grenoble University)
1988 NSE Workspaces (Carnegie Mellon University; Sun)
1990 3DFS, nDFS virtual file

system (Bell Labs)
1994 Virtual file system (ClearCase)
1994 MultiSite (ClearCase)
1996 Activity-oriented SCM

(Asgard, Bell Core)
2000 WebDAV/DeltaV (University of California,

Irvine, Microsoft, ClearCase, . . .)

the most appreciated and the most deficient features in SCM. Surprisingly,
process support was number one in both categories! This indicates the progress
and the frustration that process support has introduced in SCM.

9. SCM EVOLUTION AND IMPACT

We now summarize the preceding discussion with an overall view of the evolu-
tion and impact of SCM research. We first discuss the set of contributions that
we believe has had unequivocal impact, and present some observations regard-
ing the context of those contributions. We then examine in more detail why we
believe some research had impact and other research did not, by examining
some of the success stories in the field and some examples of research that has
not made the transition into industry. We conclude this section with some of
our expectations for future SCM research and practice.

9.1 Landmark Contributions

Table II presents a list of what we believe are the landmark contributions in
the field of SCM, that is, contributions that have had clear and direct impact
on SCM tools and practice. It is these contributions that have the greatest
name recognition in the field, significantly influenced large numbers of future
contributions, and increased the bar of what is considered to be standard SCM
practice.

Several observations are in place about the list we identified. First, it is a
conservative list. While we recognize that many significant contributions exist,
we only included those for which we can unambiguously point to direct and
strong influence on the current state of the practice, especially in the form

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 413

of the tools that are currently available. After all, this is the mission of this
article.

Second, we recognize that these contributions were not made in isolation.
The context in which the research was performed shaped the contributions.
We can, for instance, point to research tools and prototypes such as Inscape
[Perry 1987], COV [Lie et al. 1989], Odin [Clemm 1988], and PCL [Mahler
and Lampen 1988], which have been widely recognized as very influential in
the academic community, but for which there is little-to-no evidence of direct
industrial impact. Nonetheless, the context, discussions, and mutual influences
among the research typically lead to these kinds of contributions having had
indirect influence and impact.

Similarly, a number of papers such as DeRemer and Kron [1976], Feiler
[1991], and Dart [1991] have set “theoretical ideals”: they demonstrate the
level of support (and the spectrum of functionality) that is ultimately possible
and therefore they challenge the community to achieve their vision. However,
the theoretical ideals are generally not practically achievable in the form in
which they are proposed. Much industrial research is needed to make the ideas
work in practice; sometimes this happens, sometimes it does not (see Sections
9.2 and 9.3).

The context is further formed by previous research. Academic and indus-
trial research contributions all cite previous publications. It can therefore be
presumed that the research presented in those previous publications had influ-
ence on the idea in some kind of form. Similarly, industrial releases of systems
are based on existing contributions—either existing SCM systems or academic
contributions. It is interesting in this regard to examine a patent issued to the
makers of DSEE (the leading SCM system in the 1980s, eventually becoming
ClearCase, a current market leader) and an early scientific paper authored
by the makers of what is now CM/Synergy (also a current market leader).
The citations in the patent and paper are presented in Appendices A and B,
respectively. We can clearly observe that the work was influenced by signifi-
cant academic contributions (consider the listing of Gandalf and CEDAR in the
patent for DSEE, and the listing of Inscape and NSE in the paper describing
for CM/Synergy), further illustrating that there certainly is a healthy exchange
between (academic and industrial) research and the industrial products that
result.

Third, we observe that even though we made an attempt to separate aca-
demic research, industrial research, and industrial impact, this is not always
possible. Only some industrial research is performed in a truly research-
oriented setting (i.e., SCCS, Make, nDFS), but most industrial research is per-
formed in the context of actual needs from an accompanying industrial product
(e.g., the system model underlying DSEE, ClearCase MultiSite). Similarly, the
distinction between academic research and industry (whether research or prod-
uct development) is not as clear either. For example, NSE was developed as a
collaboration between CMU and Sun Microsystems. As another example, re-
search on Adele was performed in an academic setting, but the Adele team
behaved much like a company in also selling the product. The bottom line is
that it is not possible to always strictly separate where research is performed.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

414 • J. Estublier et al.

We consider this a strength in our field and one of the primary reasons why sig-
nificant impact has occurred: because this kind of cross-pollination exists in the
field, problems addressed by researchers tend to have a high level of industrial
relevance.

Finally, we note that each of the contributions listed in Table II did not
necessarily have immediate impact on industry. Often it took time for an idea
to develop, for the market to be ready, and in general for the conditions to be in
place for the transition to occur from research into industrial practice.

9.2 Some Successful Transitions

As summarized at the end of each of the preceding sections, SCM research
has had significant impact in shaping the current SCM tools and their usage. A
question that remains, though, is why certain research contributions have such
strong impact and others do not. In this section, we take a look at example areas
in which research was successful in having impact; the next section discusses
several examples of research that did not. While we certainly cannot claim we
have come to a complete answer, we believe the examples illustrate several
critical factors that are in play when it comes to the successful transition from
research into industrial use.

9.2.1 Change Sets. As opposed to some research that had immediate and
long-lasting impact (SCCS, Make, RCS), change sets represent an example of
a research contribution that took quite some time to have impact. As discussed
in Section 4.2, changes sets were first introduced to the SCM market by Aide-
de-Camp [1988], and then were heavily studied, extended and formalized by
academic research [Lie et al. 1989; Zeller and Snelling 1997; Westfechtel et al.
2001]. For long a curiosity and looked upon as an interesting but completely
nonpractical solution, change sets slowly have become a standard feature in
high-end SCM systems. However, this has occurred in a much simplified form
under the name change package, which refers to the practice of associating
a change set with the concept of a task. Indeed, focusing on the concept of a
task has two major consequences. First, the grain for a version is the com-
plete workspace, thus “naturally” a change-set. Second, a selection is based on
a known release, and a version is a change with respect to that release. This
represents a much more natural way of working and explains why the sim-
plified change-set approach, in its change-package implementation, is gaining
acceptance and why the more general change-set approach remains esoteric
and unused.

Here, thus, it was the transformation of an initially good idea to match an
already accepted practice of undertaking work on a task-by-task basis. Once this
mapping had been established, and once the underlying technological support
had been sorted out, the idea could transfer.

As the current trend towards hiding low-level mechanisms (revisions, vari-
ants, branches, and so on) and relying on higher-level concepts (workspace,
task) continues, we believe more-and-more of the advanced, well-researched
features of change sets and other advanced versioning and selection mech-
anisms will make their way into commercial SCM systems. Customer

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 415

readiness and a need to incrementally adopt new features make this a slow
process.

9.2.2 Process Support. Process support in SCM systems is a noteworthy
success, and has become one of the major selling arguments of vendors as well as
one of the major expectations of clients [Conradi and Westfechtel 1998]. SCM is
one of the very few fields in which process support proved extremely successful
and even critical.

This success, however, did not come “easy”. The incorporation of powerful
process engines in SCM systems did not succeed initially, because users found
it too cumbersome and difficult to define their own processes properly. An exam-
ple of this is ClearGuide [Leblang 1997], which is a powerful, generic process
engine integrated with ClearCase. Despite its flexibility and advanced support
for modeling and enforcing virtually any kind of process (allowing users to tai-
lor the SCM system to their own needs), most users of ClearCase prefer its
standard, out-of-the-box UCM process, which is marketed as embodying best
practices. It took a number of years for this realization, and the advent of UCM,
to happen. Initially, ClearGuide was heavily marketed yet customers did not
purchase it.

This is another excellent example of technology “ahead of its time”. As with
change sets, the abilities afforded with generic process engines simply were
greater than what customers were prepared to handle at the time (and even
now). Progress, both in customer maturity and in simpler process support con-
cepts and interfaces, will be required before generic process support will be
widely used.

9.2.3 Differencing and Merging. Initial SCM systems relied on traditional
differencing and merging technology that involves the comparison of lines of
ASCII text [Hunt and McIllroy 1976; Meyers 1986]. While these algorithms
were not invented within the SCM domain, Section 4 discusses a variety of
SCM research that has since been undertaken to improve on these simple line
comparison algorithms. This research can be categorized into two classes: in-
corporating more semantics to provide more accurate differencing and merging
technology, and extending the differencing and merging algorithms to handle
binary artifacts.

Research in both classes can be described as attempting to provide better
functionality rooted in strong theoretical foundations. Semantic-based merging
requires dealing with conflicts at the language-level, differencing and merging
of binary artifacts requires algorithms that can simultaneously detect block
moves and compress any kind of file. Despite this similarity, despite a serious
amount of research devoted to both topics, and despite the fact that both re-
search directions provide serious advantages to customers, an interesting jux-
taposition exists: whereas semantic-based differencing and merging has had
virtually no impact, new binary differencing and merging algorithms are now
an integral part of virtually all leading SCM systems.

The reason for the success of binary delta algorithms is twofold. There is a
direct and customer-driven benefit, in terms of space and the ability to version

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

416 • J. Estublier et al.

binary configuration items efficiently. Second, the delta algorithms practically
operate “under the hood”, as there is no visual difference to the customers in
terms of the way in which they interact with the SCM system. For semantic-
based differencing and merging, these two factors are not present: customers
are currently not asking for this level of support, and their use of the SCM
system would change should the support be available. It is clear that only when
the research advances do not stray too far from the general and established
objectives will impact occur.

9.2.4 Distributed and Remote Development. Distributed and remote devel-
opment represents an area in which industrial research clearly took the lead
in solving the problem. Initial academic approaches focused on adding a sim-
ple web interface to an SCM system to provide remote access to a repository
with artifacts. A first breakthrough shortly thereafter was the addition to CVS
of a client-server protocol. This rather simple extension enabled the seamless
creation and use of wide-area, distributed workspaces, a concept that is now in
widespread use and constitutes a major supporting technology for open source
software development.

ClearCase then researched and developed MultiSite [Allen et al. 1995], a
solution that relies on peer-to-peer repositories that are periodically synchro-
nized with each other. Similar solutions are now in use in almost every high-end
SCM system and research on the topic has quieted down as the solution is sat-
isfactory, resulting from well thought-out industrial research, as well as from
reusing timestamp, synchronization, and backup techniques from the fields of
databases and distributed systems.

It is interesting to note that SCM techniques have found their way in other
distributed settings and solutions as well—providing yet another kind of suc-
cess story. As a first example, website management closely resembles software
development. It involves rapidly changing resources that are authored and
managed by a multitude of people (possibly in different geographic locations).
Moreover, the periodic releases of the resources must be closely controlled. Al-
though it is curious that none of the SCM vendors is among the current market
leaders of content management tools (such as BroadVision, Vignette, ATG, Al-
laire, InterWorld, Interwoven, BSCW, and DreamWeaver), it is not surprising
that these tools incorporate SCM techniques to manage the evolution of web
sites. They use a different data model, but the basic principles and techniques
are still the same as originally devised for SCM.

WebDAV and DeltaV [Whitehead and Golan 1999; WebDAV 1999, 2002] pro-
vide a second example of a success story in the realm of the web. WebDAV is
a protocol that extends HTTP with distributed authoring facilities. DeltaV is
a second extension that adds advanced versioning capabilities. SCM research
has had a definite impact in this arena: early incarnations of the interface
functions in the protocol of WebDAV were partially inspired by NUCM [van
der Hoek et al. 1996], and DeltaV is actively being developed under the partial
leadership of SCM vendors. Clearly, the field is having its impact and the two
standards incorporate many of the good practices that have been researched
and developed over time.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 417

As to why impact occurred, distributed SCM support seems to have been
the result of both a push and a pull situation. Customers quickly moved from
centralized development to distributed development, and needed as strong SCM
support in the distributed setting as they did in the centralized. At the same
time, vendors (and standards groups) managed to develop new technology that
supported these kinds of situations better than before—allowing them to push
their solutions onto the customers through aggressive marketing techniques
and promotion of the standards.

9.2.5 Summary. In looking at these and other examples of successful im-
pact, we conclude that successful impact seems to be possible when three factors
align: (1) a desire of customers to have a certain issue addressed, (2) the ability
of SCM tool producers to provide the needed feature, and (3) a readiness of the
customer to accept the potentially additional burden that comes with using the
new feature. This last factor is often overlooked, but is of critical nature. For
instance, some customers may not be able to absorb the extra cost of hiring a
full-time database administrator that is needed when they want to use an ad-
vanced SCM system. As another example, despite significant potential benefits,
most customers will not use a system model if the dependencies among artifacts
must be manually specified and maintained. The apparent burden simply is too
high. New SCM features, thus, must be brought into an organization slowly,
incrementally, and in a carefully managed manner with appropriate automated
support. Only when all of these factors are met, will there be strong potential
for eventual success, and thus impact, of newly researched and developed SCM
features.

9.3 Some Failed Transitions

SCM research also has produced a number of ideas that have not been able to
succeed in making the transition to industrial practice. Here, we examine three
such ideas and discuss why we believe that, even though the ideas are concep-
tually sound and useful, they did not successfully transition to commercial or
even free SCM systems—despite serious attempts at doing so.

9.3.1 Semantic-Based Recompilation. Semantic-based recompilation, as
discussed in Section 7.3, is clearly an appealing idea: it reduces the amount
of work needed to recompile a system to an absolute minimum. Much research
was performed on the subject, a survey of which is presented in Adams et al.
[1994]. Industrial trials of the subject were performed, but in the end, none of
the more successful commercial or freely available SCM systems have features
that resemble smart recompilation. The reasons are twofold:

(1) Semantic-based recompilation techniques require implementations of SCM
systems that are language dependent. Many new languages are forthcom-
ing, and the “popular” language of choice changes frequently. Supporting
all the languages would require a significant effort on behalf of the ven-
dors, an effort that was too costly compared to other, more pressing needs
in advancing the functionality of their products.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

418 • J. Estublier et al.

(2) In hindsight (certainly not at the time!), semantic-based recompilation algo-
rithms are not needed with today’s fast hardware. In the general case, brute-
force, entire recompilation “as is” is fast enough. So even if some marginal
products were supporting semantic-based recompilation, that need has dis-
appeared and the impact was merely temporary.

Certain exceptions exist in the form of extremely large-scale systems for
which an entire recompilation can take days. Semantic-based recompilation
may be a good solution there, but a much more straightforward solution is
typically employed: specialized build systems that utilize multiple machines in
parallel tend to achieve satisfactory performance results and reduce the total
recompilation time from days to hours. Similarly, the winking in approach of
ClearCase provides pragmatic, language-independent benefits in this regard.
From an SCM point of view, thus, semantic-based recompilation has not had
very much impact.

Nonetheless, semantic-based recompilation cannot be labeled a failure. The
idea is appealing and has started to be incorporated in language-dependent
programming environments. In these environments, syntactic information is
available “for free”. The Ada and Chill programming environments, for example,
were among the first to adopt semantic-based recompilation techniques [Bret
1993]. Now, most modern programming environments, including the popular
Microsoft Studio for Visual Basic, rely on these techniques. Semantic-based
recompilation is therefore an area of research that has found its way to industry
in another domain than SCM.

9.3.2 Advanced System Models. Extending and generalizing versioning
capabilities has been a core topic of SCM research since its early beginnings.
Much work has been dedicated to creating advanced system models and as-
sociated selection techniques, including a number of formalizations of these
approaches [Bielikova and Navrat 1995; Navrat and Bielikova 1996; Zeller and
Snelting 1997]. Yet, the system models used by today’s commercial SCM sys-
tems only capture the files and directories that represent a software product,
the compile time dependencies, and a small set of attributes. This leads to an in-
teresting disparity. From a researchers’ point of view, research has continuously
improved the state of the art by offering new or alternative modeling capabil-
ities. From a practitioners’ point of view, however, a sizeable portion of these
approaches are overkill. They provide more power than is actually needed, at
the cost of extra complexity and reduced efficiency.

Two simple but important reasons explain this discrepancy. First, no com-
mercial database exists that can support these kinds of advanced models. And
building such a database, either from scratch or on top of a commercial re-
lational or object-oriented database, is a daunting undertaking [Westfechtel
et al. 2001]. Second, the models are simply too complicated. We have offhand
and informal information that some vendors did provide, to select customers,
prototyped new versions of their SCM systems with extended relation version-
ing capabilities. Development of these prototype efforts into full-fledged system
functionality was abandoned, since these early experiences showed that the

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 419

task of managing the relations was too cumbersome and that users eventually
simply did not use the feature. Unless automated techniques are developed that
support users in updating and maintaining advanced data and system models,
they will probably never be put into practice.

9.3.3 Generic Platform. SCM is meant to provide a generic, language-
independent platform that can handle any kind of software artifact. The focus
of SCM research, however, has largely been on managing source code only, lead-
ing to platforms that tend to be more specific than desired. Limitations in the
data and system model, even though necessary from the functional perspective
described above, make it difficult to manage complex structures. Too much addi-
tional manual work is needed to capture the extra information in, for example,
supporting product data management (PDM) [Estublier et al. 1998]. Similarly,
existing SCM tools cannot effectively support web site management or docu-
ment management. Even integration with existing tools in those domains that
already include some of the basic SCM services (e.g., data and version manage-
ment, process management, rebuilding) has proven to be difficult.

The reason for research in these areas to not have had much impact seems
to be a combined technical and organizational reason. Demand certainly exists
[Crnkovic et al. 2003], but technically it is a daunting challenge to build SCM
support that handles all these different kinds of artifacts and their relations, yet
maintains ease-of-use. This requires advanced system models with automated
support procedures for maintaining consistency and up-to-date relations among
elements in the model—something discussed in the previous section as too
technically challenging for the moment. Organizationally, companies are not
ready yet to fully delve into all aspects of managing these kinds of situations.

There is hope, however. The driving force is that software is increasingly
an integral part of virtually any complex manufactured object. The need to
consistently and conjointly manage software and hardware in such situations,
combined with the fact that current makeshift solutions are ineffective and
tend to be disjoint, may force SCM researchers to reconsider the situation and
initiate a renewed research program into providing generically-applicable facil-
ities. Some research has started to look into this direction, but much additional
research will be required to reach a satisfactory result.

9.3.4 Summary. The reasons why some SCM research has had little-to-
no impact varies, and can lie in the level of complexity required to master
an idea or in the level of effort required by the customer to use a feature.
Furthermore, a typical customer may not see a need for a feature (at that
particular point in time) and sometimes vendors think a feature is technically
too difficult to implement or outside the scope of SCM. Not surprisingly, in all
these cases, industry will ignore the idea. In some cases, changes in technology
or in customer practices make it reasonable to later (re)introduce functionalities
making use of the idea. Even then, industry must find a way to transform
the (typically complex) idea into an easy-to-use feature that hides most of the
actual complexity. None of these conditions are granted nor can they be easily
forecasted, leading to a typically cautious approach in adopting new ideas.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

420 • J. Estublier et al.

9.4 What Is Next?

SCM research has addressed many different topics and it is fair to say that,
by now, the basic principles, concepts, and techniques are set. Consensus also
seems to be emerging regarding more advanced functionality, evidenced by the
fact that most high-end SCM systems are closing in on satisfying the spectrum
of functionality laid out by Dart [1991]. Nonetheless, many research issues
remain to be addressed [Conradi and Westfechtel 1999]. In particular, the field
as a whole is now sorting out how to better fit in the overall picture of software
development, rather than always assuming being able to provide a standalone
application that somehow seamlessly fits with existing tools, approaches, and
practices.

This research is breaking two fundamental assumptions that underlie cur-
rent SCM systems: (a) the focus on managing the implementation of software
and (b) the basic philosophy of SCM being programming language and applica-
tion independent. Breaking the first assumption requires careful management
of artifacts produced earlier in the lifecycle (e.g., requirements and design) and
later in the lifecycle (e.g., deployment, dynamic evolution and reconfiguration).
Breaking the second assumption involves the integration of SCM functionality
into particular environments (e.g., integrated development environments) and
representations (e.g., product line architectures).

At the forefront seem to be the issues of unifying SCM and PDM, man-
aging component-based software development, and understanding the rela-
tion between SCM system models, software architecture, and component-based
software engineering [van der Hoek et al. 1998a, 1998b; Crnkovic et al. 2003;
Westfechtel and Conradi 2003]. Nowadays, an increasing amount of software
is no longer developed from scratch or in isolation, but rather assembled for
combined hardware-software systems from multiple components authored by
multiple different organizations. To survive, SCM systems must evolve to ad-
dress the new concerns raised by these situations and stay abreast of new
developments, trends, and technologies.

A side effect of the popularity and long-term use of SCM systems has been
the recent discovery that they serve as an excellent source of data on all sorts of
aspects regarding the software development process and products that result
from it. A new field, mining software repositories [Zimmermann et al. 2004], has
sprung up that is concerned with such issues as reverse engineering, software
understanding, finding historical trends, discovering actual processes versus
prescribed processes, and leveraging past activities in providing guidance for
present activities. Without SCM systems, this entire field would not be in exis-
tence today.

Of course, we can in no way predict the future of SCM. It may be that sorting
out some of these issues turns out to be trivial, not relevant, or far too diffi-
cult for practical application. It may also be that other research trends and
other communities, such as content management, CSCW, operating systems,
advanced automated cooperation policies for distributed and mobile systems,
and others, turn out to be more successful in making an impact. This, how-
ever, is the way of research. Providing an answer to the above questions is

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 421

what is important, even if those answers sometimes close, rather than open,
doors.

10. DISCUSSION

A report like this can easily generate a lot of dissention. Both industry and
academia often claim ownership of ideas, and the factual tracking of origins
and traces of impact over such a long period of time with so many different
players is virtually impossible. This report is only an attempt at documenting
the impact of research in the field of SCM; an attempt that we hope comes
as close as possible to historic reality. Based on our discussions with many
individuals who have contributed to the field, on careful tracing of ideas in
papers, and on general observations of trends in SCM, we hope we have done
justice to the history of the field.

Agreement between industry and academics as to where ideas originated is
generally easy to find in areas of direct impact. For example, published tech-
niques that are used “as is” in industrial products can easily be traced. RCS,
Make, and delta techniques are examples of that category. SCM is probably one
of the few software engineering domains in which contributions in this category
form the core of most, if not all, of today’s tools—even those residing at the high
end of the market.

Agreement is more difficult to find in those cases where published techniques
are re-implemented, augmented, and polished for use in real-world settings
with demanding customers. Over time, vendors tend to feel the original idea was
trivial because of the significant amount of work needed to really make the idea
work. Merging techniques fall into this category: SCM vendors have invested
very significant amounts of time in creating merge tools that are effective at
the level of scale and user friendliness required.

Often, in fact, a company performs its own research to facilitate the tran-
sition from research to practice. In adopting a basic idea, but implementing
its “flavor” in a manner adjusted to what is considered useful or accepted by
actual practice, the original idea is significantly transformed to address such
issues as reliability, scalability, usability, and efficiency. Data models, selection
mechanisms, and process support all fall into this category. Change-sets are
another excellent example. Although the idea has been around for over two
decades, only now major SCM vendors are switching their products to be based
on change packages, a more realistic and practical incarnation of change-sets.

In some cases, it is industrial research that is ahead of academia, as shown
in Table II. Although regularly overlooked, industrial research is as important
as academic research and therefore receives significant credit in this report.

For ourselves, a caricaturist but frank starting point in our discussions
was that the researchers in the team claimed ownership of virtually all ideas
(dismissing industrial tool realization as “engineering”) and that the vendors
in the team argued they had to (re)invent everything they needed from the
ground up (dismissing research concepts, ideas, and architectures as “aca-
demic”). From the intensive discussion that followed, a much more balanced
perspective emerged. We eventually came to the conclusion that both research

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

422 • J. Estublier et al.

and development require engineering and creativity, and that tracking down
where ideas came from and directly establishing what was influential on what
is virtually impossible. However, broad trends could be identified, and the in-
fluence of research on those trends could certainly be established. Based on
this, we also rapidly agreed that research has been fundamental in the success
of SCM and that industrial research from corporate research laboratories and
vendors had a definitive influence. Accordingly, we have attempted to document
the flow of ideas, based on evidence from publications and tool realizations; an
attempt that we hope comes as close as possible to reality.

Finally, although conferences, workshops, and personal interactions un-
doubtedly play a tremendous role in research transition, it is impossible to
quantify their impact. Nonetheless, continual attendance of the SCM work-
shop series by chief architects of some of the most influential SCM systems,
the transition of academic researchers to industry and vice-versa, and anec-
dotal evidence brought forth in our personal interviews indicate that these
kinds of interactions are absolutely necessary for any kind of research impact
to occur. Conferences and workshops create a community of researchers and
practitioners, raise new issues to be addressed, set high-level expectations for
new directions, and, in the case of SCM-1, have set the standard terminology
still in use today [Winkler 1988].

11. CONCLUSION

SCM is arguably one of the most successful software engineering disciplines. It
is difficult to imagine this kind of success would have prevailed without research
fueling continuous innovations. This report demonstrates that the impact of
this research, whether industrial or academic in nature, is undeniable—most
fundamental techniques underlying current SCM systems were first published
in one form or another.

Like any other field, SCM research has had its successes and failures. Cer-
tain ideas are universally adopted, others have had limited impact, and yet
others never saw fruition. Timing has been critical: whereas some contribu-
tions could immediately be related to practical, day-to-day problems, others
were too early for their time and not practically relevant for the problems then
at hand. Nonetheless, the actual evolution of the field demonstrates that most
of those ideas eventually were useful. As shown by the remarkably long delay in
the adoption of change-sets, it is often market readiness, along with substantial
rework to make the idea practical, that determines success. In the long term,
however, a significant fraction of ideas have trickled through.

The academic research community has contributed many ideas to the field
of SCM. But, more importantly, it has provided a forum for the publication and
discussion of ideas of both academic and industrial research. An international
workshop series dedicated to the topic, as well as many general conferences
such as ICSE and FSE, enabled people from academia and industry to inter-
act and exchange ideas. While over time the set of important ideas may be
changing, the need for an active research community remains constant and
essential.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 423

The SCM basic concepts and technologies may have been settled, but sub-
stantial work remains to be done. In particular, the field as a whole is now
sorting out its relation to other domains, such as, among others, product data
management, component-based software engineering, CSCW, distributed and
mobile computing, and software architecture. We look forward to the advances
that will come from this research, and are proud to be a part of a field with such
a rich legacy as SCM.

APPENDIX A

DSEE PATENT NUMBER 4,809,170

(JUNE 4, 1987)
REFERENCES

Here are the references provided in the DSEE patent of 1987. It provides an illustration of the
major sources of inspiration, as seen by the major vendor at that time.
FELDMAN, S. I. 1979. Make—A program for maintaining computer programs. Softw. Pract. Exper.

(Apr.).
HABERMANN, N., ET AL. 1982. The Second Compendium of GANDALF Documentation. CMU Com-

puter Science Dept. (May).
HECKEL, P. 1978. A technique for isolating differences between files. Comput. ACM (Apr).
IVIE, E. L. 1977. The programmer’s workbench. Commun. ACM (Oct.) .
LAMPSON, B. AND SCHMIDT, E. 1983. Organizing software in a distributed environment. In Proceed-

ings of the SIGPLAN: ACM Special Interest Group on Programming Languages (San Francisco,
CA), ACM, New York, SBN:0-89791-108-3.

LAMPSON, B. AND SCHMIDT, E. 1983. Practical use of a polymorphic applicative language. In Pro-
ceedings of the 10th POPL Conference (Jan.).

LEACH, P., LEVINE, P., DOROUS, B., HAMILTON, J., NELSON, D., AND STUMPF, B. 1983. The architecture
of an integrated local network. IEEE J. Sel. Areas Commun. (Nov.).

LEBLANG, D. B. 1982. Abstract syntax based programming environments. In Proceedings of the
ACM/AdaTEC Conference on Ada (Washington DC, Oct.). ACM, New York.

LEBLANG, D. B., ET AL. 1984. Computer-aided software engineering in a distributed workstation
environment. In Proceedings of the ACM/SIGPLAN/SIGSOFT Conference on Practical Software
Development Environments (Apr.). ACM, New York.

OSTERWEIL, L. J. AND COWELL, W. R. 1983. The TOOLPACK/IST programming environment.
IEEE/SOFTFAIR (July). IEEE Computer Society Press, Los Alamitos, CA.

SANDEWALL, E. 1978. Programming in an interactive environment: The “LISP” experience. Com-
put. Surv. 10, 1 (Mar.).

SOFTWARE ENG. SYMPOSIUM ON HIGH-LEVEL DEBUGGING. 1983. ACM/SIGSOFT/SIGPLAN. New York.
SOURCE CODE CONTROL SYSTEM USER’S GUIDE. 1981. UNIX System III Programmer’s Manual (Oct.).

CMS/MMS: Code/Module Management System Manual. Digital Equipment Corporation.
TEITELBAUM, T. 1981. The why and wherefore of the cornell program synthesizer. In SIGPLAN.

ACM, New York.
TEITELMAN, W. 1983. Cedar: An interactive programming environment for a compiler-oriented

language. In Proceedings of the LANL/LLNL Conference on Work Stations in Support of Large
Scale Computing (Mar.).

TEITELMAN, W. AND MASINTER, L. 1981. The Interlisp programming environment. Computer (Apr.).
THALL, R. 1983. Large-scale software development with the Ada language system. In Proceedings

of the ACM Computer Science Conference (Feb.). ACM, New York.
TICHY, W. F. 1982. Design, implementation and evaluation of a revision control system. In Pro-

ceedings of the 6th International Conference on Software Engineering (Sept.).
TUTORIAL: SOFTWARE DEVELOPMENT ENVIRONMENTS. 1981. IEEE/COMPSAC-81 (Nov.). STONE-

MAN: Requirements for AdA programming support environment. 1980. U.S. Department of De-
fense (Feb.).

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

424 • J. Estublier et al.

APPENDIX B

CONTINUUS WHITE PAPER

(JANUARY 5, 1988)
REFERENCES

Here are the references provided in an early paper when Continuus was designed.
APOLLO COMPUTER, INC. 1985. Domain Software Engineering Environment (DSEE) Reference

Manual., Order No. 003016, Rev.03 (July).
ARNOLD, K. 1986. C advisor. UNIX Review 5:6 (December).
DEREMER, F. AND KRON, H. H. 1976. Programming-in-the-large versus programming-in-the-small.

IEEE Trans. Softw. Eng. SE-2 (June), 80–86.
FELDMAN, S. I. 1978. Make: A program for maintaining computer programs. Bell Laboratories

(Aug.).
FRASER, C. W. AND MYERS, E. W. 1987. An editor for revisioncontrol. ACM Trans. Prog. Lang. Syst.

9, 2 (Apr.), 277–295.
KAISER, G. E. AND HABERMANN, A. N. 1983. An environment for system version control. In Digest of

Papers Spring Comp-Con ’83. IEEE Computer Society Press, Los Alamitos, CA (Feb.), 415–420.
PERRY, D. E. 1987. Version control in the inscape environment. In Proceedings of the 9th Inter-

national Conference on Software Engineering (Monterey, CA, Mar. 30–Apr. 2). IEEE Computer
Society Press, Los Alamitos, CA. 142–149.

ROCHKIND, M. J. 1985. The source code control system. IEEE Trans. Softw. Eng. SE-1, 364–370.
TICHY, W. F. 1985. RCS—A system for version control. Softw. Practice Exper. 15, 7 (July), 637–654.
WINKLER, J. F. H. 1987. Version control in families of large programs. In Proceedings of the

9th International Conference on Software Engineering (Monterey, CA, Mar. 30–Apr. 2). IEEE
Computer Society Press, Los Alamitos, CA, 150–161.

ACKNOWLEDGMENTS

We would like to thank everyone in the field of SCM, whether a researcher, an
industrial vendor, or a customer. Knowingly or unknowingly, most if not all of
you have advanced our field to where it is now—a standard and accepted part
of any serious software development project.

REFERENCES

ADAMS, R., TICHY, W. F., AND WEINER, A. 1994. The cost of selective recompilation and environment
processing. ACM Trans. Softw. Eng. Meth. 3, 1 (Jan), 3–28.

ADAMS, P. AND SOLOMON, M. 1995. An overview of the CAPITL software development environment.
Software configuration management. ICSE SCM-4&5. Lecture Notes in Computer Science, vol.
1005. Springer-Verlag, Berlin, Germany, 1–34.

AIDE-DE-CAMP: A SOFTWARE MANAGEMENT AND MAINTENANCE SYSTEM. 1988. National Software Qual-
ity Assurance Conference. Software Productivity Institute, Washington DC (April).

AIDE-DE-CAMP. SOFTWARE MAINTENANCE AND DEVELOPMENT SYSTEMS, INC. 1989. Aide-de-Camp Soft-
ware Management System: Product Overview.

ALLEN, L., FERNANDEZ, G., KANE, K., LEBLANG, D., MINARD, D., AND POSNER, J. 1995. ClearCase
MultiSite: supporting geographically-distributed software development. ICSE SCM-4 and SCM-
5, Seattle USA (May).

ALAN, W. 1997. An holistic model for change control. In Systems for Sustainability. Plenum,
New York, http://www.dis.port.ac.uk/∼allangw/chng-man.htm.

ANT. The ANT rebuild system. Apache. http://jakarta.apache.org/ant/index.html.
ATKIN, D. 1998. Version sensitive editing: Change history as a programming tool. In SCM 8

(Brussels, Belgium). Lecture Notes in Computer Science, vol. 1439. Springer-Verlag, New York.
BELKHATIR, N. AND ESTUBLIER, J. 1987. Software management constraints and action triggering

in Adele program database. In Proceedings of the 1st European Software Engineering Conference
(Strasbourg, France, Sept.). 47–57.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 425

BELKHATIR, N., ESTUBLIER, J., AND MELO, W. L. 1991. Software process modeling in adele: The ISPW-
7 example. In Proceedings of the 7th International Software Process Workshop, (San Francisco,
CA, Oct.), I. Thomas, Ed. IEEE Computer Society Press, Los Alamitos, CA.

BELL LABS. 1997. Sablime v5.0 User’s Reference Manual. Lucent Technologies, Murray Hill, NJ.
BEZIVIN, J. 2001. From object composition to model transformation with the MDA. TOOLS

USA, Santa Barbara, CA (Aug.). (Available at http://www.sciences.univ-nantes.fr/info/lrsg/
Recherche/mda.)

BIELIKOVA, N. AND NAVRAT, P. 1995. Modelling software systems in configuration management.
Appl. Math. Computer Sci. 5, 4, 751–764.

BOLCER, G. A. AND TAYLOR, R. N. 1996. Endeavors: A process system integration infrastructure.
In Proceedings of the 4th International Conference on the Software Process. (ICSP ’96) (Dec.), 76.

BOOCH, G., RUMBAUGH, J., AND JACOBSON, I. 1999. The unified modeling language user guide.
Addison-Wesley Object Technology Series. Addison-Wesley, Reading, MA.

BOUDIER, G., GALLO, F., MINOT, R., AND THOMAS, I. 1988. An overview of PCTE and PCTE+. In
Proceedings of the ACM/SIGSOFT Software Engineering Symposium on Practical Software De-
velopment Environments (Boston, MA, Nov.). ACM, New York, 248–257.

BRAEK, R. AND HAUGEN, Ø. 1993. Engineering of Real Time Systems. Prentice-Hall. Murray Hill,
NJ.

BRET, B. 1993. Smart recompilation: What is it? Its benefits for the user, and its implementation
in the DEC ADA compilation system. In Conference Proceedings on TRI-Ada ’93 (Seattle, WA,
Sept.).

BUFFENEARGER, J. 1995. Syntactic software mergers. In Proceedings of the SCM 5 (Seattle, WA,
May). Lecture Notes in Computer Science, vol. 1005. Springer-Verlag, New York.

CAGAN, M. 1993. Untangling configuration management. In Proceedings of the Software Config-
uration Management, ICSE SCM4 and SCM5 Workshops (Baltimore, MD, May) Selected Papers.
Lecture Notes in Computer Science, vol. 1005. Springer-Verlag, New York, 35–52.

CAGAN, M. 1994. Change management for software development. CaseWare, Inc. (later Continuus
Software Corp. now Telelogic AB). http://www.continuus.com/developers/developersACED.html.

CAGAN, M. AND WEBER, D. 1996. Task-based configuration management. http://www.continuus.
com/developers/developersACEA.html.

CASEWARE, INC. (now Continuus Software Corporation). 1989. Introduction to amplify control
(later known as CaseWare/CM, then Continuus/CM).

CCACHE. http://ccache.samba.org.
CHRISTENSEN, F. T., ABBOTT, J., AND PFLAUM G. Rational clearcase UCM migration: A case study.

Rational report. (Available at http://www-10.lotus.com/ldd/today.nsf/lookup/Rational migration.)
CLEAR CASE current reference. (http://www.ibm.com/software/awdtools/clearcase/.)
CLEMM, G. 1988. The Odin specification language. In Proceedings of the International Workshop

on Software and Configuration Control, J. Winkler, Ed. B.G.Teubner, Stuttgart, Germany.
CLEMM, G. 1995. The Odin system. In Proceedings of SCM5 (Seattle, WA; June). Lecture Notes

in Computer Science, vol. 1005. Springer-Verlag, New York, 241–263.
CLEMM, G., AMSDEN, J., ELLISON, T., KALER, C., AND WHITEHEAD, J. 2002. RFC 3253. Versioning

extensions to WebDAV (Web Distributed Authoring and Versioning) (March).
CONRADI, R., FUGGETTA, A., AND JACCHERI, M. L. 1998. Six theses on software process research.

In Software Process Technology, 6th European Workshop (EWSPT’98) (Weybridge, UK, Sept.).
V. Gruhn, Ed. Lecture Notes in Computer Science, vol. 1487. Springer-Verlag, New York, 100–
104.

CONRADI, R. AND WESTFECHTEL, B. 1998. Version models for software configuration management.
ACM Comput. Surv. 30, 2 (July), 232–282.

CONRADI, R. AND WESTFECHTEL, B. 1999. SCM: Status and future challenges. In Proceedings of the
International Workshop on Software Configuration Management (SCM 99) (Toulouse, France,
Sept.). J. Estublier, Ed. Lecture Notes in Computer Science, vol. 1675. Springer-Verlag, New
York, 228–231.

CONTINUUS SOFTWARE CORPORATION (now Telelogic AB). 1993. Introduction to continuus/PT.
CRNKOVIC, I., ASKLUND, U., AND PERSSON, A. 2003. Implementing and integrating product data

management and software configuration management. Artech House. Norwood, MA. ISBN 1-
58053-498-8.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

426 • J. Estublier et al.

CVS PRODUCT DESCRIPTION. 2000. http://www.cvshome.org.
DART, S. 1991. Spectrum of functionality in configuration management systems. CMU/SEI-90-

TR-11 ESD-90-TR-212. (http://www.sei.cmu.edu/legacy/scm/tech rep/TR11 90.)
DEREMER, F. AND KRON, H. H. 1976. Programming-in-the-large vs. Programming-in-the-small.

IEEE Trans. Softw. Eng. SE-2, 2, 80–86.
DERNIAME, J.-C., KABA, B. A., AND WASTEL, D. EDS. 1999. Software Process: Principles, Methodology,

and Technology (second book from PROMOTER project). Lecture Notes in Computer Science, vol.
1500. Springer-Verlag, New York, 307.

DINITTO, E. AND FUGGETTA, A., ED. 1998. Process Technology. Kluwer Academic Publishers Boston,
MA.

DITTRICH, K. R., GOTTHARD, W., AND DAMOKLES, P. C. L. 1987. The database system for the unibase
software engineering environment. Data. Eng. 10, 1 (Mar.).

DOWSON, M., NEJMEH, B., AND RIDDLE, W. 1991. Fundamental software process concepts. In Pro-
ceedings of the 1st European Workshop on Software Process Modeling (Milan, Italy). AICA Press.

D’SOUZA, D. 2001. Model-driven architecture and integration: Opportunities and challenges
(Feb.).

ECLIPSE. http://www.eclipse.org/.
EIDNES, H., HALLSTEINSEN, D. O., AND WANVIK, D. H. 1989. Separate compilation in CHIPSY.

In Proceedings of the 2nd International Workshop on Software Configuration Management
(SCM) (Princeton, NJ). Lecture Notes in Computer Science. Springer-Verlag, New York, 42–45.
ISSN:0163-5948.

ESTUBLIER, J., GHOUL, S., AND KRAKOWIAK, S. 1984. Preliminary experience with a configuration
control system for modular programs. In Proceedings of the 1st ACM SIGSOFT SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments (Pittsburgh, PA,
Apr.), P. B. Henderson, Ed. ACM SIGPLAN Notices 19, 5 (May), 149–156.

ESTUBLIER, J. 1985. A configuration manager: The Adele data base of programs. In Proceed-
ings of the Workshop on Software Engineering Environments for Programming-in-the-Large
(Harwichport, June).

ESTUBLIER, J. AND BELKHATIR, N. 1986. Experience with a data base of programs. In Proceedings
of the ACM SIGSOFT/SIGPLAN Conference on Practical Software Development Environments
(Palo Alto, CA, Dec.). ACM, New York, 84–91.

ESTUBLIER, J. AND CASALLAS, R. 1994. The Adele software configuration manager. In Config-
uration Management. W. F. Tichy, Ed. Wiley, New York, 99–133. http://www-adele.imag.fr/
Les.Publications/bookChapters/ADELE1994Est.pdf.

ESTUBLIER, J., DAMI, S., AND AMIOUR, M. 1997. High level process modeling for scm systems. In
Proceedings of the International Workshop on Software Configuration Management (SCM 7)
(Boston, MA, May). Lecture Notes in Computer Science, vol. 1235. Springer-Verlag, New York, 81–
98.

ESTUBLIER, J., FAVRE, J. M., AND MORAT, P. 1998. Toward PDM/SCM: Integration?. In Proceed-
ings of the International Workshop on Software Configuration Management (SCM 8) (Brussels,
Belgium, July). Lecture Notes in Computer Science, vol. 1439. Springer-Verlag, New York, 75–
95.

ESTUBLIER, J. 2000. Software configuration management: A road map. In The Future of Soft-
ware Engineering (supplement to Proceedings of the 22nd International Conference on Software
Engineering) (Limerick, Ireland). ACM, New York, 279–289.

ESTUBLIER, J., GARCIA, S., AND VEGA, G. 2003. Defining and supporting concurrent engineer-
ing policies in SCM. In Proceedings of the International Workshop on Software Configuration
Management (SCM-11) (Portland, OR). Lecture Notes in Computer Science, vol. 2649. Springer-
Verlag, New York, 1–15.

FEILER, P. H. 1991. Configuration Management Models in Commercial Environments. Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

FELDMAN, S. I. 1979. Make—A program for maintaining computer programs. Softw.—Pract. Exp.
9, 3 (Mar.), 255–265.

FINKELSTEIN, A., KRAMER, J., AND NUSEBEIGH, B. 1994. Software Process Modeling and Technology.
Wiley, New York (Advanced Software Development Series. ISBN 0 471 95206 0. (First book from
PROMOTER project)).

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 427

FLEMMING, T., CHRISTENSEN, ABBOTT, J., AND PFLAUM, G. 2003. Rational ClearCase UCM
Migration: A case study. Rational report. Available at http://www-10.lotus.com/ldd/today.
nsf/lokkup/Rational migration.

FOWLER, G. S., HUANG, Y., KOM, D. G., AND RAO, H. 1994. A user-level replicated file system. In
Proceedings of Summer USENIX (June), 279–290.

FRASER, C. AND MYERS, E. 1987. An editor for revision control. ACM Trans. Prog. Lang. Syst. 9, 2
(Apr.), 277–295.

GALLI, M., LANZA, M., NIERSTRASZ, O., AND WUYTS, R. 2004. Ordering broken unit tests for focused
debugging. In ICSM 2004 Proceedings (20th IEEE International Conference on Software Main-
tenance). IEEE Computer Society Press, Los Alamitos, CA, 114–123.

GENTLEMENT, W., MACKEY, S., STEWARD, D., AND WEIN, M. 1989. Commercial real-time software
needs different configuration management. In SCM 2. ACM, New York.

GESCHKE, C. M., MORRIS, J. H., AND SATTHERTWAITE, E. H. 1977. Early experience with mesa. Com-
mun. ACM 20, 8 (Aug.), 540–551.

GOLDSTEIN, I. P. AND BOBROW, D. G. 1980. A layered approach to software design. Tech. Rep. CSL-
80-5. XEROX PARC, Palo Alto, CA.

GULLA, B., KARLSON, E.-A., AND YEH, D. 1991. Change-oriented version descriptions in EPOS.
Softw. Eng. J. 6, 6 (Nov.), 378-386.

HABERMANN, A. N. AND NOTKIN, D. 1986. Gandalf: Software development environments. IEEE
Trans. Softw. Eng. SE-12, 12 (Dec.), 1117–1127 (Special issue on GANDALF).

HEIMAN, R. 2003. IDC Bulletin #29613 (June).
HEN. 1990. A filesystem for software development. In Proceedings of USENIX Summer 1990

Conference (Anaheim, CA, June). pp. 333–340.
HENDRICKS, D. 1990. A filesystem for software development. In Proceedings of the USENIX Sum-

mer 1990 Conference (Anaheim, CA, June). 333–340.
HEYDON, A., LEVIN, R., MANN, T., AND YU, Y. 2001. The VESTA approach to software configuration

management. Compaq Systems Research Center Research Report 168 (Mar.).
HORWITZ, S., PRINS, J., AND REPS, T. 1989. Integrating non-interfering versions of programs. ACM

Trans. Prog. Lang. Syst. 11, 3 (July).
HOUGH, H. 1981. Some thoughts on source update as a software maintenance tool. In Proceedings

of the IEEE Conference on Trends and Applications (May). IEEE Computer Society Press, Los
Alamitos, CA, CH1631-1/81/0000/0163.

HUNT, J. AND MCILLROY, M. 1976. An efficient algorithm for differential file comparison. Tech. Rep.
41. Bell Labs (June).

HUNT, J., VO, K., AND TICHY, W. 1986. An empirical study of delta mechanisms. In Proceedings of
the International Workshop on Software Configuration Management (SCM 6), (Berlin, Germany,
Mar.). Lecture Notes in Computer Science, vol. 1167. Springer-Verlag, New York.

ISO STANDARDS COMPENDIUM: ISO 9000—Quality management. 2003, 10th ed., 380 p., ISBN 92-67-
10381-4.

JORDAN, M. AND VAN DE VANTER, M. 1995. Software configuration management in an object oriented
database. In Proceedings of the USENIX Conference on Object-Oriented Technologies. (Available
online at http://www.sun.com/research/forest/COM.Sun.Labs.Forest.doc.coots 95.abs. html.)

KATZ, R. H. 1990. Toward a unified framework for version modeling in engineering databases.
ACM Comput. Surv. 22, 4 (Dec.), 375–408.

KATAYAMA T., ED. 1991. Support for the software process. In Proceedings of the 6th International
Software Process Workshop. IEEE Computer Society Press, Los Alamitos, CA.

KLIEWER, C. 1998. Software configuration management. http://sern.ucalgary.ca/∼kliewerc/SENG/
621/SCM Pres.htm.

KNUTH, D. 1984. Literate programming. Comput. J., 97–111.
KORN, D. AND KRELL, E. 1990. A new dimension for the UNIX file system. Softw. Pract. Exper. 20,

S1 (July), S1/19–S1/34.
KORN, D. AND VO, K. 1995. VDELTA: Efficient data differencing and compression.
KRUSKAL, V. 1984. Managing multi-version programs with an editor. IBM J. Res. Devel. 28, 1

(Jan.).
LAMB, C., LANDIS, G., ORENSTEIN, J., AND WEINREB, D. 1991. The objectstore database system. Com-

mun. ACM 34, 10 (Oct.), 50–63.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

428 • J. Estublier et al.

LEBLANG, D. B. 1994. The CM challenge: Configuration management that works. In Configuration
Management, W. Tichy, Ed. Wiley, New York, Chap. 1, 1–37.

LEBLANG, D. B. 1997. Managing the software development process with ClearGuide. In Pro-
ceedings of the ICSE’97 SCM-7 Workshop (Boston, MA, May). Springer-Verlag, New York, 66–
80.

LEBLANG, D. B. AND CHASE, R. P. 1984. Computer-aided software engineering in a distributed
workstation environment. In Proceedings of the Symposium on Practical Software Develop-
ment Environments (Special issue of SIGPLAN Notices, 19, 5 (May)). ACM, New York, 104–
112.

LETHBRIDGE, T. C. 2000. What knowledge is important to a software professional? IEEE Comput.
33, 5 (May), 44–50.

LIE, A., DIDRIKSEN, T. M., CONRADI, R., KARLSSON, E.-A., HALLSTEINSSEN, S. O., AND HOLAGER, P. 1989.
Change oriented versioning. In Proceedings of the 2nd European Software Engineering Confer-
ence (Coventry, UK, Sept.). C. Ghezzi and J. McDermid, Eds. Lecture Notes in Computer Science,
vol. 387. Springer-Verlag, New York, 191–202.

LIN, Y.-J. AND REISS, S. P. 1995. Configuration management in terms of modules. In Proceedings
of the Software Configuration Management, ICSE SCM-4 and SCM-5 Workshops. Lecture Notes
in Computer Science, vol. 1005. Springer-Verlag, New York.

LIN, Y.-J. AND REISS, S. P. 1996. Configuration management with logical structures. In Proceedings
of the 18th International Conference on Software Engineering. IEEE Computer Society Press, Los
Alamitos, CA. 298–307.

MAGEE, M. 2003. Good electronic records management (GERM) using IBM rational ClearCase
and IBM rational ClearQuest. IBM report, available at: http://www3.software.ibm.com/ibmdl/
pub/software/rational/web/whitepapers/2003/germ.pdf.

MAHLER, A. AND LAMPEN, A. 1988. SHAPE—A software configuration management tool. In Pro-
ceedings of the International Workshop on Software Version and Configuration Control (Jan.).
B. G. Teubner, Grassau, West Germany, 228–243.

MCCABE/TRUE SOFTWARE. 2000. Documentation 2000. http://www.mccabe.com/products.htm.
MEYERS, E. 1986. An OND difference algorithm and its variations. Algorithmica 1, 2, 51–266.
MICALEFF, J. AND CLEMM, G. M. 1996. The Asgard system: Activity-based configuration manage-

ment. In Proceedings of the Software Configuration Management, ICSE’96 SCM-6 Workshop
(Berlin, Germany, Mar.), I. Sommerville, Ed. Lecture Notes in Computer Science, vol. 1167,
Springer-Verlag, New York, 175–186.

MICROSOFT. 2000. Sourcesafe Product Documentation, Microsoft, Inc., Seattle, WA.
NAVRAT, P. AND BIELIKOVA, N. 1996. Knowledge controlled version selection in software configura-

tion management. Softw. Concepts Tools. 17, 40–48.
OLSON, M. A. 1993. The design and implementation of the inversion file system. In Proceedings

of the 1993 Winter USENIX (San Diego, CA, Jan.). 205–218.
OSTERWELL, L. J. 1987. Software processes are software too. ICSE, 2–13.
PAULK, M. C., CURTIS, B., CHRISSIS, M. B., AND WEBER, C. V. 1993. Capability maturity model,

Version 1.1, IEEE Softw. 10, 4 (July), 18–27.
PAULK, M. C., CURTIS, B., CHRISSIS, M. B., AND WEBER, C. V. 1995. The Capability Maturity Model for

Software: Guidelines for Improving the Software Process. (SEI Series in Software Engineering).
Addison-Wesley, Reading, MA, 640.

PERRY, D. E. 1987. Version control in the inscape environment. In Proceedings of the 9th Inter-
national Conference on Software Engineering (Monterey, CA, Mar.). Springer-Verlag, New York,
142–149.

PLOEDEREDER, E. AND FERGANY, A. 1989. The data model for a configuration management assis-
tant. In Proceedings of the 2nd International Workshop on Software Comfiguration Management
(SCM-2) (Princeton, NJ, Oct.). (As a special issue of ACM SIGSOFT Engineering Newsletter
(SEN)), ACM, New York, 5–14.

PRIETO-DIAZ, R. AND NEIGHBOR, J. M. 1986. Module interconnection languages. J. Syst. Softw. 6,
307–334.

REICHENBERGER, C. 1991. Delta storage for arbitrary non-text files. In Proceedings of the 3rd
International Workshop on Software Configuration Management (Trondheim, Norway, June).
ACM, New York, 144–152.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Impact of Software Engineering Research on SCM • 429

REPS, T., HORWITZ, S., AND PRINS, J. 1988. Support for integrating program variants in an environ-
ment for programming in the large. In Proceedings of the International Workshop on Software
Version and Configuration Control (Grassau, Germany).

ROCHKIND, M. J. 1975. The source code control system. IEEE Trans. Softw. Eng. SE-1, 4, 364–370.
ROOME, W. D. 1992. 3DFS. A time-oriented file server. In Proceedings of the USENIX Winter 1992

(San Francisco, CA, Jan.).
SARNAK, N., BERNSTEIN, B., AND KRUSKAL, V. 1988. Creation and maintenance of multiple versions.

Syst. Config. Manage. 264–275.
SCHNAZE, J. L., LEGGET, J., HICKS D. L., AND SZABO, R. 1993. Semantic data modeling of hypermedia

associations. ACM Trans. Inf. Syst. 11, 1 (Jan.), 27–50. ISSN:1046-8188.
SCHWANKE, R. W. AND KAISER, G. E. 1988. Smarter recompilation. ACM Trans. Prog. Lang. Syst.

627–632, ISSN:0164-0925.
SHAW, M. AND GARLAN, D. 1996. Software architecture—Perspectives of an emerging discipline.

Prentice Hall, Englewood Cliffs, NJ, 242.
SOLEY, R. AND THE OMG STAFF. 2000. Model-driven architecture. White paper, Draft 3.2. Available

at www.omg.org.
SOFTTOOL. 1987. CCC: Change and configuration control environment: A functional overview.
SUN MICROSYSTEM, INC. 1989. The network software environment (NSE), Sun Tech. Rep. Sun

Microsystems, Inc., Mountain View, CA, 104.
SUN/FORTE. 2000. Teamware product documentation. Sun MicroSystems Inc, Mointain View, CA.
SWINEHART, D. C., ZELLWEGER, P. T., BEACH, R. J., AND HAGMANN, R. B. 1986. A structural view

of the cedar programming environment. ACM Trans. Prog. Lang. Syst. 8, 4 (Oct.), 419–
490.

THOMAS, I. 1989. PCTE interfaces: Supporting tools in software-engineering environments. IEEE
Softw. 6, 6 (Nov.), 15–23.

TICHY, W. F. 1982. Design implementation and evaluation of a revision control system. In Pro-
ceedings of the 6th International Conference on Software Engineering.

TICHY, W. F. 1985. RCS—A system for version control. Softw. Practice Exp. 15, 7, 637–654.
TICHY, W. F. 1986. Smart recompilation. ACM Trans. Prog. Lang. Syst. 8, 3, 273–291.
TICHY, W. F., ED. 1994. Configuration Management (Trends in Software). Wiley, New York, ISBN

0-471-94245-6.
TRYGGESETH, E., GULLA, B., AND CONRADI, R. 1995. Modelling systems with variability using the

PROTEUS configuration language. In Proceedings of the Software Configuration Management—
ICSE SCM4 and SCM5 Workshops. Selected Papers (Seattle, WA, Apr.). Lecture Notes in Com-
puter Science, vol. 1005. Springer-Verlag, New York, 115–126.

TURNER, C. R., FUGGETTA, A., LAVAZZA L., AND WOLF, A. L. 1999. A conceptual basis for feature
engineering. J. Syst. Softw. 49, 1 (Dec.), 3–15.

VAN DER HOEK, A., HEIMBIGNER, D., AND WOLF, A. L. 1996. A generic, peer-to-peer repository for
distributed configuration management. In Proceedings of the 18th International Conference on
Software Engineering (Berlin, Germany, Mar.).

VAN DER HOEK, A., HEIMBIGNER, D., AND WOLF, A. L. 1998a. Software architecture, configuration
management, and configurable distributed systems: A ménage a trois. Tech Report CU-CS-849-
98. U. Colorado.

VAN DER HOEK, A., HEIMBIGNER, D., AND WOLF, A. L. 1998b. System modeling resurrected. In
Proceedings of the International Workshop on Software Configuration Management (SCM 8),
(Brussels, Belgium, July). Lecture Notes in Computer Science, vol. 1439, Springer-Verlag, New
York.

WATER, R. C. 1989. Automated software management based on structural models. Softw. Pract.
Exper.

WEBDAV. 1999. HTTP extentions for distributed authoring. RFC 2518. http://andrew2.andrew.
cmu.edu/rfc/rfc2518.htm. February.

WEBDAV WEB SITE COMMUNITY. http://www.webdav.org/.
WEBER, D. W. 1997. Change sets versus change packages: Comparing implementations of change-

based SCM. In Proceedings of the 7th International Workshop on Software Configuration Manage-
ment (SCM’7) (Boston, MA, May). Lecture Notes in Computer Science, vol. 1235. Springer-Verlag,
New York.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

430 • J. Estublier et al.

WESTFECHTEL, B. 1991. Structure oriented merging of revisions of software documents. In Pro-
ceedings of the International Workshop on Software Configuration Management (SCM 3). ACM,
New York.

WESTFECHTEL, B., MUNCH, B. P., AND CONRADI, R. 2001. A layered architecture for software config-
uration management. IEEE Trans. Softw. Eng. 27, 12 (Dec.), 1111–1133.

WESTFECHTEL, B. AND CONRADI, R. 2003. Software architectures and software configuration man-
agement. In Proceedings of the Software Configuration Management—ICSE Workshops SCM
2001 and SCM 2003 Selected Papers. A. van der Hoek and B. Westfechtel, Eds. Lecture Notes in
Computer Science, vol. 2649 Springer-Verlag, New York, 24–39.

WHATIHEAD, J. 1999. Goals for a configuration management network protocol. In Proceedings of
the International Workshop on Software Configuration Management (SCM 9) (Toulouse, France,
Sept.). Lecture Notes in Computer Science, vol. 1675. Springer-Verlag, New York, 186–204.

WHEELER, D. 2004. Comments on OSS/FS software configuration management systems.
http://www.dwheeler.com/essays/scm.html.

WHITGIFT, D. 1991. Methods and Tools for Software Configuration Management. Wiley, London,
England, ISBN 0-471-92940-9.

WINGERD, L. AND SEIWALD, S. 1997. Constructing a large product with JAM. In Proceedings of
the International Workshop on Software Configuration Management (SCM7) (Boston, MA, May).
Lecture Notes in Computer Science, vol. 1235. Springer-Verlag, New York, 36–49.

WINKLER, J. F. H., ED. 1988. In Proceedings of the ACM Workshop on Software Version and Con-
figuration Control (Grassau, FRG). Berichte des German Chapter of the ACM, Band 30, 466 p.,
B. G. Teubner-Verlag, Stuttgart, Germany.

WRIGHT, A. 1990. Requirements for a modern CM system. CaseWare, Inc. (later Continuus Soft-
ware Corporation, now Telelogic AB).

ZELLER, A. AND SNELTING, G. 1997. Unified versioning through feature logic. ACM Trans. Softw.
Eng. Meth. 6, 4 (Oct.), 397–440.

ZIMMERMANN, T., WEISSGERBER, P., DIEHL, S., AND ZELLER, A. 2004. Mining version histories to guide
software changes. In Proceedings of the ICSE (Edinburgh, Scotland, June).

Received April 2004; revised November 2004; accepted December 2004

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

