A Controlled Experiment on Inheritance Depth
as a Cost Factor for Code Maintenance

Lutz Prechelt, Barbara Unger, Michael Philippsen, Walter Tichy
Fakul@ét fur Informatik, Universiat Karlsruhe
D-76128 Karlsruhe, Germany
Phone: +49/721/608-3934, Fax: +49/721/608-7343
tichy@ira.uka.de
http://wwwipd.ira.uka.de/EIR/

Abstract

In two controlled experiments we compare the performance on code maintenance tasks for
three equivalent programs with 0, 3, and 5 levels of inheritance. For the given tasks, which
focus on understanding effort more than change effort, programs with less inheritance were
faster to maintain. Daly et al. previously reported similar experiments on the same question
with quite different results. They found that the 5-level program tended to be harder to main-
tain than the O-level program, while the 3-level program was significaathyerto maintain

than the O-level program. We describe the design and setup of our experiment, the differences
to the previous ones, and the results obtained. Ours and the previous experiments are different
in several ways: We used a longer and more complex program, made an inheritance diagram
available to the subjects, and added a second kind of maintenance task.

When taken together, the previous results plus ours suggest that there is no such thing as
usefulness or harmfulness of a certain inheritance deptuch Code maintenance effort is
hardly correlated with inheritance depth, but rather depends on other factors (partly related to
inheritance depth). Using statistical modeling, we identify the number of relevant methods to
be a dominant factor and build an explanation model of average code maintenance effort that
is much more powerful than a model relying on inheritance depth.

Keywords: controlled experiment, inheritance depth, maintenance, cost model

1 Inheritance and complexity

Inheritance is one of the key elements of object-oriented programming [13]. Many design prob-
lems can be solved elegantly using inheritance and polymorphism. The resulting designs are often
simpler, clearer, and more flexible than with other techniques [11]. If used inappropriately, how-
ever, inheritance may introduce unwanted complexity. In this paper, we investigate how the use of
inheritance influences the effort required for program understanding and maintenance.

Reviewing the literature, one finds many positive properties attributed to the use of inheritance,
such as reduced redundancy through code reuse and improved flexibility through polymorphism.
However, as far as program understanding is concerned, the literature tends to be pessimistic about
the consequences of inheritance. Chidamber and Kemerer [3, p. 483] mention “more complex de-
sign” as a disadvantage of deep inheritance hierarchies. Basili, Briand, and Melo [1] found in

1

three-person student projects that classes deeper in the inheritance tree were more likely to exhibit
defects during testing. Sommerville's textbook [15, p. 200] states that “[...] class inheritance is
not essential and may sometimes confuse a design, because an object class cannot be understood
on its own without reference to any super-classes.” Wilde and Huitt [17, p.1040] note: “Un-
derstanding of a single line may require tracing a chain of method invocations through several
different object classes and up and down the object hierarchy to find where the work is really
getting done.” The notion adelocalized plan§l4] captures the essence of this problem. A delo-
calized plan is a set of design decisions whose consequences are spread out over different locations
within a program. Wilde et al. [18] argue that inheritance is one of the factors why object-oriented
programs tend to have many delocalized plans. Soloway et al. [14] observed in their experiments
that delocalized plans account for much of the effort and many of the mistakes during program
understanding. As a partial remedy for these problems, modern texts on object-oriented design
recommend object compaosition over inheritance and allow inheritance of interfaces but not im-
plementations; see for instance Gamma et al. [11, Chapter 1]. A study by Dvorak [8] found that
programmers confuse the concepts represented by classes more often as they go deeper into a hier-
archy. On level 3 of a class hierarchy there was less than 30 percent agreement among the subjects
what the immediate superclass should be; ill-designed class hierarchies resulted.

In summary, one may expect that maintenance tasks that are dominated by program understanding
effort become more difficult with increasing inheritance depth.

1.1 Previous experimentsPRIOREXP

Daly et al. conducted empirical research concerning the relationship between inheritance depth
and maintainability[6]. Using interviews and a questionnaire they found that 55% of object-
oriented practitioners among 273 respondents “agreed that inheritance depth is a factor when
attempting to understand object-oriented software”. 31% of the respondents “indicated that be-
tween four and six levels of inheritance depth is where the difficulties begin” (page 111). Based
on these findings, they devised controlled experiments for assessing the influence of inheritance
depth on program maintainability. The experiment tasks consisted of adding a new class to a pro-
gram that was designed either with inheritance (experiment group) or without inheritance, i.e.,
“flattened” by inserting inherited code textually (control group). No polymorphism was used in
the program.

The results suggested that inheritance tended to slow down code maintenance when the hierarchy
was five levels deep, but was actually beneficial when the hierarchy was only three levels deep. In
the following, we will refer to these experimentsR&IOREXP.

Cartwright [2] replicated the 3-level comparison with two 5-person undergraduate student groups

and found the flattened program to consume 40% less time for completing the maintenance task.
This result indicates that even three levels of inheritance are not necessarily beneficial. We will

use the data from this experiment along with thosPRIOREXPin our analysis in Section 5.

Harrison et al. [12] performed a related experiment, also with undergraduate students, based on
similar programs but different tasks: They asked the subjects (which worked only on paper) to

first determine some program outputs, then to draw an inheritance diagram, then to identify where
changes where required for a certain program enhancement. The time was fixed at 45 minutes
total and only the correctness of the solutions was compared. Both, the 3-level and the 5-level
programs, turned out to contain more mistakes than their corresponding O-level versions. Since

2

several aspects of the setup of this experiment are somewhat artificial, we will not refer to these
results in the remainder of the present article. Nevertheless they also suggest that the results of
Daly et al. will not always hold.

1.2 Article overview

This article presents a follow-up to the work of Daly et al.; it may be helpful to read their article
as well [6]. We changed several parameters in order to broaden the external validity. We designed
a new experiment, performed it twice, obtained results thatradictthose ofPRIOREXP, and
investigated an explanation.

In the following, we will first discuss how and why our experiment design was different from
PrRIOREXP and then report on our actual experiments (design, subjects, tasks, procedure) and
findings. We will refer to our own experiments &WEXP. Section 5 will then resolve the
apparent contradiction between the two sets of experiments by explaining that the hypotheses
investigated were misleading from the start. The section presents a model that explains the results
of both sets of experimentgithoutrelying on inheritance depth.

2 Comparison of PRIOREXPand NEWEXP

Overall we findPRIOREXP well designed and described. Initially we had but one point of criti-
cism: We believed the subjects should be given additional documentation of the inheritance tree,
preferably in graphical form. Later we also found out that the programs used were rather simple, in
both size and structure. The design of our own experiment exhibits the following main differences:

Combined 3-level and 5-level testPRIOREXP used two completely separate experiments. The
first experiment compared 3-level inheritance to a “flat” (0O-level) program. It was a two-part ex-
periment: PRIOREXP-1a used program “university” anldRIOREXP-1b used program “library”;
PRIOREXP-1b was later replicated 8RIOREXP-1r. The second experimer®§IOREXP-2) com-

pared 5-level inheritance to a flat (O-level) program, using an extended version of the program
“university”. In contrast, we used 0-, 3-, and 5-level versions of a single program “Boerse” within
one experiment; refer to Sections 3.3 and 3.4 for details. Rationale: This design allows for direct
comparison of the 3-level with the 5-level version in addition to comparing both to the flat version.

Class diagram: The subjects oPRIOREXP were equipped with the program source code énly.

In contrast, we also handed out a printed class diagram (in OMT notation, including all method
names) which allowed studying the inheritance relations at a glance. Rationale: In a modern
programming environment, such information is available easily.

Program complexity: Our programs were significantly (2.5 to 9 times) longer than those used

in PRIOREXP (see also Table 1 and refer to Sections 3.2 and 3.3); the classes had more kinds of
relationships and partly unobvious functionality. Rationale: PREOREXP programs are unreal-
istically simple. All PRIOREXP classes belong to a single inheritance tree, there are no relations
between the classes other than inheritance, and the function and implementation of each class can
be deduced from its name alone. In contrast, the class hierarchy NEtwe&xp program is much

more complex; see Figure 1.

*According to [5], the subjects dPRIOREXP-1a and -1b (but not -2!) were also given a sorted table of instance
variables in every class.

3

Table 1: Overview of our experimentBlEWEXP-G, NEWEXP-U) and the previous experiments
(PRIOREXP-1a, PRIOREXP-1b/-1r, PRIOREXP-2, Cartwright replication C).

—NEWEXP— | —PRIOREXP— C

G U|la 1b/1r 2
no. of subjects 57 58| 31 29 31 10
no. of groups 3 3 2 2 2 2
no. of datapoints 57 58| 50 27 30 10
O-level program or version;:
classes 20 20 3 4 8 4
method bodies 158 160| 26 35 9% 35
lines 2470 2465| 273 370 1007 370
program files 1 1 7 9 17 9
3-level program or version|:
classes 27 27 5 6 6
method bodies 100 96| 21 27 27
lines 1344 1317| 252 323 323
program files 1 1| 11 13 13
5-level program or version|:
classes 28 28 11
method bodies 80 79 56
lines 1200 1187 694
program files 1 1 23
programming language Java C++
task types 2x/1x add class 1x add class

change
available materials file, listing, files
inherit. diagram

submission decision subject decides supervisor checks
observed variables elapsed time, elapsed time

correctness

Task complexity: Each Task ilPRIOREXP consisted of adding a new class whose structure was
similar to that of an existing class. In contrast, our tasks required understanding of classes with
different internal structure and less straightforward extensions. The sizes of the tasks were also
larger; see Table 2 and Section 3.5 for details. Rationale: Improved realism.

Changes vs. extensiondn addition to a task involving the addition of a new class (aBRMOR-
EXP), our subjects also performed a task involving changes to multiple existing classes; refer to
Section 3.5. Rationale: This is a frequent type of maintenance in practice.

Submission procedure:When a subject finished®RIOREXP solutions were checked by a super-
visor and the subject was told to continue if the solution was not incorrect. In corNiRstE xp
subjects decided themselves whether their solutions were complete and correct. Rationale: In
practice, an omniscient supervisor is not available.

Definition of inheritance depth: Chidamber and Kemerer [3] suggested the metric PI{depth
of inheritance tree) to mean the number of edges on a longest downward path from root to leaf

4

Table 2: Characterization, by program version, of the typical solution effort for the tasks (the task
used iNPRIOREXP-1b and -1r and the Cartwright replication are similar to thaPRfOREXP-

la). Investigated methodstumber of methods that must be analyzed and understood for solving
the problem. Hierarchy changesnumber of times one must switch to a subclass or superclass
during the method understanding process if it is performed by dynamic tracing (i.e. following the
execution call sequence).Solution methodsnumber of methods that are copied from existing
classes (verbatim or with changes) or modified in order to create the solution. No methods needed

to be written from scratch.

—NEWEXP— —PRIOREXP—
(G&U) la 2
inheritance depth 0 3 5 0 3 0 5
Task 1: solution methods | 16 16 8
Task 2a: investigated methodsl3 16 17 3 5 4 7
hierarchy changes 0 17 21 0 2 0 5
solution methods 17 9 5 10 4/5 15 4
Task 2b: investigated methods 2 2 2
hierarchy changes | 0 O 0
solution methods 17 10 5

in the inheritance tree(s) of a programHowever, DITp) may change during program mainte-
nance. Therefore, we defirgheritance depttfl D) to be the DIT of the program version before

or after the maintenance task, whichever is larger, because program understanding in our experi-
ments involves the deepest classes, whether new or exiBiIgQREXPs definition of I.D counts
classes, not edges, on the path (i.e., it is DIT+1), but considers only the program version before
the maintenance. Since tlRRIOREXP tasks add a class at the bottom of the hierarchy, the two
definitions turn out to be equivalent. Multiple inheritance is not used.

Furthermore, our programs are written in Java (as opposeetacGme from a different domain,
and have a graphical user interface in addition to textual I/O.

3 Description of the experiments

While reading the following sections, please refer to Tables 1 and 2 and to Figure 1 for further
characterization of the experiment design, the program used, and the task complexity.

3.1 Hypotheses

The starting point of our work iBRIOREXP: Our work checks the results of this previous research.
Therefore, we started with hypotheses closely tied to those ugeRI@GREXP, but removed many
of the weaknesses in the experiment itself, as explained in Section 2.

For the range of inheritance depths from 0 to 5 and for tasks where most of the effort goes into
understanding (rather than changing), we investigate the following hypotheses:

Hypothesis 1:Programs with more levels of inheritance require more time for code maintenance.

5

Hypothesis 2: Programs with more levels of inheritance result in lower quality of code mainte-
nance.

It will turn out that these hypotheses, though supported, have marginal explanatory power (Sec-
tion 4.5). Fortunately, a better model is possible (Section 5).

3.2 Subjects and environment

We performed our experiment twice, with small changes. The first time we performed it with
57 graduate Computer Science students as the final exam of an optional 6-week intensive Java
programming course with initially 70 students. Participation required achieving 75 percent of the
available points in the course assignments, so that only course subjects with sufficient practical
capabilities participated in the experiment. We call this experin@e(for “graduate course”).

We replicated the experiment with 58 undergraduate Computer Science students at the end of their
second semester. This was a mandatory lecture and lab course with about 160 participants. Partic-
ipation in the experiment was optional and resulted in a small bonus on the final exam grade. The
course had used Java for all programming exercises. We call this expetihgéart“undergradu-

ate course”).

On average, the self-reported previous programming experience @& thejects(U subjects

was 8.1 yearg6.1 year$ using 4.0(3.9) different languages with a median largest program of
2750 LOC (2000 LOG. Before the course, 91%62% of the subjects had previous experi-
ence with object-oriented programming, 47%%6%) with programming graphical user interfaces
(GUIs). With respect to Java AWT GUI programming, the course concentrated on JDK1.0.2-style
(JDK1.1-style event handling. Th& course covered only a small amount of GUI programming.

3.3 Program used

Our experiment program, called “Boerse”, was an interactive application for displaying two dif-
ferent kinds of stock exchange data in various ways. The data is taken from two text files and
displays can be selected to have textual table form or graphical chart form and to cover different
time ranges into the past (day, week, month). When the user selects a display and enters a stock
code number (if required for that display), a window pops up with the desired presentation.

Three functionally equivalent versions of this program were used in the experiments: The 5-level
program represents the original program design. See Figure 1 for its inheritance tree. The 0-
level “flattened” version was created by inserting inherited attributes and methods directly into the
source text of each subclass and removing the inheritance relation — actual polymorphism is not
used in any of the versions. The 3-level version was built according to the design rule “inherit only
interfaces, not implementations.” Therefore, in our 3-level version, subclasses were derived only
from abstract classes, never from concrete classes. The rationale of this principle is maximizing
flexibility for implementation change, see [11] for details. Thus, our three versions are not arbi-
trary variants of one program, but represent three different, but sensible design styles (although
the O-level program might be formulated more compactly). The programs were accompanied by
two input files, whose format was relevant for solving the maintenance tasks.

For theU experiment these three versions were converted from their original JDK1.0.2 form (using
action() methods for event handling) into a form using inner classes and JDK1.1-style event
handling.

6

DayDates
IntervalDates Stocklinfo Constants
DayChartValue T T Stock

MonthChartValue }Jnfo\ InfoWithCosts Bhoice
ate
Time

Chart Table Price
DayChart MonthChart DayTable IntervalTable
ChartDjsplay LastDayrrices WeekTable MoTthTabIe
DayChaftém DayGains MonthDynamicTable
MonthChartDisplay

Figure 1: Classes and their inheritance relations for the 5-level version of the “Boerse” program.

3.4 Experiment design

The independent variable in both experiments is the inheritance depth ID of the program. The
variable has three levels, 0, 3, and 5, resulting in three experimental groups. The subjects did not
know what the experimental variable was.

We used a matched-between-subjects design [4], i.e., the subjects were ordered by expected per-
formance and then randomly assigned to the three groups in such a manner that one out of any
three subjects with similar expected performance would be assigned to each group. Gaxthe
periment we used the scores from the previous course assignments for sorting the subjects, for the
U experiment we used the self-reported size of the largest program they had ever written, because
no better information was available. We do not claim that these criteria provide perfect matches,
but a pretest found that they resulted in groups with reasonably balanced average subject ability;
see Section 3.7.

The dependent variables were the time required for each assignment (measured in minutes) and
the quality of the delivered solution (measured on a defined discrete grading scale as described in
Section 3.6).

3.5 Tasks and assignments

Overall there were three different tasks, which we call Task 1, 2a, and 2bGThejects per-
formed all three; theJ subjects performed only 2a and 2b. There were two assignments that
were measured separately. For experiment the first assignment consisted of Task 1, the sec-
ond of Tasks 2a+2h. For thg experiment the first assignment consisted of Task 2a, the second
of Task 2b. In both cases the subjects modified only the program source code (and tested their
changes at their own discretion). They were not asked to update the class diagram, perform re-
gression testing, perform configuration or release management, or any other task that would be
part of a complete software maintenance cycle.

Task 1 calls for converting the program from 2-digit to 4-digit years (“solving the Year-2000-

Problem”). No further information is given. Changes are required at all places where records from

either of the input files are split into their individual fields. At each point of change, the character

offset of the date field and all subsequent fields have to be corrected. The changes do not require

any deep understanding of, or changes to, the inheritance relations in the program. Most subjects
7

found out during program understanding that the points of change are exactly the occurrences of
the substring() method, which could then be found automatically. There are only half as
many change points in the 5-level program than in either the 3-level or flat program.

Task 2arequires writing a new class and extending the menu handling in the main class. The
task consists of adding a new type of display (interval price table), whose functionality involves
parts from chart-style and table-style display classes. Most of the table-style functionality can
be inherited in the 3-level and 5-level programs and copied in the flat program. The code for
selecting a time interval can be adapted from a chart class in all versions. The new code must also
overwrite behavior inherited from superclasses. This behavior is most heavily distributed in the
5-level program. This task requires a good understanding of, and an extension to, the inheritance
relation in the program.

Task 2b asks for adding yet another type of display, featuring time interval selection and table
format as in Task 2a, but displaying differently computed data. In the 5-level program, the solution
from 2a can be reused entirely if it was designed well. One only needs to change the superclass
from which to inherit the data computation. The flat and 3-level programs can also profit from 2a,
but less so. Like Task 2a, this task requires a good understanding of the inheritance relations in
the program.

3.6 Procedure and measurements

Each of the experiments was performed in a single session in June 1997. The subjects implemented
their solutions using JDK1.1 on IBM RS 6000 Unix workstations running AlX.

The experiment had four parts, for each of which the materials were handed out and collected
individually: first a background questionnaire combined with a short pretest for evaluating the
subjects’ knowledge of Java inheritance rules, then assignment 1, assignment 2, and finally a
postmortem guestionnaire.

For each assignment and each subject we measured the time between handing out and collecting
the experiment materials. As a backup and double-check, we automatically protocolled each com-
pilation and each program run. For each task, we graded the solutions on a point scale according
to the degree to which they fulfilled the requirements. The scale was based on a fixed classification
of error types. There were 5 such types for Task 1 and 9 for Tasks 2a and 2b, for instance “the data
from the last day of requested time range is missing” or “the price table does not appear, only the
request dialog is implemented”.

3.7 Threats to internal validity

There are two major threats. First, there may be program differences that are not directly related to
inheritance depth but still influence code maintenance effort. Such differences could have creptin
during the conversion of the original 5-level program into the flat and 3-level versions. However,
the conversion process was quite simple and we do not believe we have produced unintended
differences.

Second, the group abilities may be unbalanced by chance. In our pretest we checked for this
possibility using two Java comprehension assignments. We compared the proportions of correct
versus wrong answers. Neither the Fisher exact p noytHBest indicated significant differences

8

for any of the relevant group pairs; the smallest of they24lues obtained were 0.20, 0.24, and
0.33. Our pre-experiment questionnaire also asked for various information about the subjects’
programming experience, such as the number of years, number of lines of code written, number
of different programming languages used, etc. None of these properties differed significantly
between the groups.

3.8 Threats to external validity

There are two main differences between the experiment and real code maintenance situations that
may limit the generalizability (external validity) of the experiments: First, in real situations sub-
jects may have more experience, and second, programs and maintenance tasks may be of different
complexity, structure, and domain.

Experience: The most frequent concern with experiments using student subjects is that the results
cannot be generalized to professionals. Experience is certainly an issue {dreakperiment,

where the subjects were rather inexperienced. The subjects@fekperiment, on the other hand,
performed quite similar to professional software engineers, in particular since our Java course
attracted predominantly individuals from the top half of our studentship, with an average of more
than 8 years of programming experience. Furthermore, maintenance tasks are not normally given
to the most experienced developers in real software organizations. We do not believe that the
experiment effect was influenced by our subjects’ limited experience with Java, because the use
of inheritance in the experiment programs was rather straightforward. This argument applies to
PRIOREXPas well.

Structure and complexity of program and task: It is unclear how the effects observed in the
experiments relate to those that may occur with other programs and other code maintenance tasks.
In particular, program structure and quality of available documentation may make a difference;
for instance the number of relationships (besides inheritance) between classes, the availability
of different types of design documentation, and previous familiarity with the program and its
domain (which both may also be considered a kind of documentation). The availability of program
analysis tools may also be relevant. Furthermore, as our results below show, the type of code
maintenance task is an important factor. More research is needed before the relation between task
type, inheritance depth, and code maintenance effort can be understood.

4 Results and discussion

The average completion time in minutes and correctness as percentage of available points are
shown in Figure 2. We report the results of one-sided, pair-wise statistical tests for identical
means of these data which we performed using Bootstrap resampling percentfiesgeport

the p-values indicating the probability that the observed differences occurred by chance alone; we
call a difference significant ifp < 0.1.

2\We did not use the t-test because of severe non-normalities in our data. We did not use the Wilcoxon Rank Sum
Test (Mann-Whitney U Test) because we want to compare means rather than medians. Resampling allows a comparison
of means.

150

time[minutes], correctness[%]
50 100

111i

0 3 5 0 3 5 0 3 5 0 3 5
G, Taskl G, Task2a/2b U, Task2a U, Task 2b

0

Figure 2: Average work times in minutes (as bars) and resulting average solution correctness in
percent (as triangles and lines) for each task and each of the three program versions.

4.1 ExperimentG

Task 1 (Y2K-Problem): The subjects with the flat program version perform a larger number

of modifications than the group with the inheritance depth of 5, but completion times are nearly
identical; the small difference is not statistically significamt=€ 0.200). Also, the number of
modifications is the same for the flat program and the 3-level program, yet the 3-level group
was slower = 0.075) and was also slower than the 5-level gropp= 0.023). These results

are mostly, but not entirely, consistent with Hypothesis 1. The correctness of the solutions was
perfect in the flat group (which obtained 100% of all points), excellent in the 3-level group (90%),
and good in the 5-level group (80%), which supports Hypothesis 2; the differences are not quite
statistically significant, though. The errors are mostly simple omissions, which would suggest that
the 5-level program, which has the smallest number of required changes, should come out best.
It appears that some subjects failed to use textual search fauthstring() calls and then
missed more of them in the more complex hierarchy. These results indicate that, for this task,
the flat program is easiest to change. The relation between the 3-level and the 5-level version is
unclear, because speed and correctness show opposite trends. Thus, the results provide modest
support for both hypotheses.

Task 2a+2b (add two displays):In this task, the flat version was maintained significantly faster
than the other twog(= 0.038 against the 3-level version and = 0.005 against the 5-level
version); the other two took about the same time=(0.393). Correctness is about equal in all
three groups (79%, 75%, 80%, no significant differences). The relative frequency of different
types of errors is similar in all three groups. Again, the largest amount of new source code needed
to be produced for the flat version, but apparently it is easier to copy all of this code in one step
and then modify it locally instead of tracing functionality up and down the inheritance hierarchy,
independent of 3 or 5 levels.

Apparently , the flat program is again simplest to change. The relation between the 3-level and the
5-level version is again unclear. Thus, the results provide modest support for Hypothesis 1 and are
inconclusive with respect to Hypothesis 2. However, separating the time for the subtasks 2a and
2b yields further insights as we will see below.

10

4.2 ExperimentU

Task 2a (add price display): For this class addition task there is little time difference between the
flat and the 3-level versiomp(= 0.456). However, the 5-level version takes significantly longer

to change # = 0.038 against O-level op = 0.055 against 3-level). Apparently, the necessity

for functionality tracing along the hierarchy as mentioned above is not yet harmful in the 3-level
version, but becomes severe for the deeper 5-level hierarchy. The correctness of the solutions
tends to decrease with increasing inheritance depth, but none of the differences are significant
(0.185 < p < 0.374); this is also true for individual types of errors.

These results tend to support both hypotheses, but the differences are significant only for the time
measure in the 5-level program.

Task 2b (add gain/loss display):As mentioned above, the 5-level group can solve Task 2b by
just duplicating the class written for Task 2a, changing its name and superclass, and augmenting
the menu in the main program. The same was not possible for the other two versions. As a result,
code maintenance of the 5-level program is significantly quicker for this task compared to the
3-level program = 0.004) or the flat programy = 0.006); the latter two are about the same

(p = 0.263). The correctness of the solutions or the types of errors made are not significantly
different between any of the groups. There is a caveat for interpreting these results:Usome
subjects dropped out of the experiment during Task 2b. When comparing with Task 2a we find,
not surprisingly, that the dropouts tended to be from the less capable half of the participants. Since
mortality was most pronounced in the 5-level group, the group abilities became unbalanced and
thus the 5-level results obtained above are somewhat exaggerated.

4.3 Statistical robustness

All of the above conclusions about code maintenance time remain the same when possible outliers
are removed by right-trimming, i.e., ignoring the largest 10% or even 20% of the time values in
each sample. The same trends also still hold if we remove all solutions with substantial defects.
In both cases, the exaptvalues merely change up or down a bit because the sample size and
variance within the samples differ.

4.4 Postmortem Questionnaire

The postmortem questionnaire asked for subjective judgements and provided some interesting
insights.

Judging whether the use of inheritance in the programs was adequate, a large majority of the flat
version group (in particular the graduate student&pfound that inheritance was used too little

or much too little. The other two groups by and large found this aspect OK. Still, however, more
subjects in the flat program group than in the other groups believed they had a correct solution.

With respect to clarity of program structure, t@egroups preferred the 5-level program over the
other two, while thel groups preferred the other two over the 5-level program. Similarlylthe
groups found the task difficulty lower for the flat program than for the other 8/bad no clear
differences.

11

Table 3: Various prediction models for average code maintenance tingethe time in minutes
for the “add class” taskj is the number of hierarchy changes during understandinig,number

of methods to be understooeyp = H andexp = L are the groups with high or low levels
of experienced is the inheritance depth (ID}; is the number of coefficients (each model has
16 minusk degrees of freedom);? is the fraction of variance explained by the modg),..

is the p-value of the least-significant coefficient in the model. Except for all coefficiénsl
coefficients are significant in all modeld4[exp = L] denotes a separate constant offset of 14
for the low-experience groups only afdm.,,—;, denotes a coefficient for. that is 8.9 for the
low-experience groups and 0 otherwise (an interaction term).

2

prediction model k r DPmaz
1 (= /f(m)=69m+28 2 0.84 0.007
2 t=f(h)=45h+61 2 055 0.001
3 t=f(d)=7.8d+70 2 010 0.23
4 t=f(d,m)="74m —3.3d+ 30 3 085 0.33
5 t= f(m,exp) ="7.3m+ ld[exp = L] + 22 3 0.91 0.006
6 t=f(d,m,exp)="78m+ 13[exp = L] —2.9d + 25 4 092 0.21
7 t= f(m,exp) =8 IMeyp—1, + 5.9Megp—p + 24 3 0.94 0.001
8 t= f(d,m,exp) =9.3Megp—r + 6.3Megp— —3.3d+27 4 0.96 0.07

The answers to “How well could you concentrate during the task?” for the second task indicated
lower concentration for the groups with deeper inheritance in both experiments.

These survey results confirm that increased inheritance depth causes problems, but that training
and experience may mitigate these to a certain degree.

4.5 Discussion

Both hypotheses stated in Section 3.1 are supported by these results. We must keep in mind here
that Task 2b was unusual: For the 5-level program it required cloning of an existing class only,
but no actual code changes whatsoever. This leads to shorter time and fewer errors compared to
the 3-level program. With this exception, all group differences support the expectation that deeper
inheritance hierarchies make program understanding and code maintenance both slower and more
error-prone. Not all of the differences are statistically significant, but if we discount Task 2b, they

all point consistently into the same direction.

These results are in sharp contrast to the resultBRobREXP, which claimed that 3 levels of
inheritance was better than both 0 and 5 levels. Our results are in line, however, with those of
Cartwright [2], who compared only 0 and 3 levels and found 0 to be faster. One may ask: “Which
of these experiments are right?”, but we think this is not a useful question. The ideal inheritance
depth is likely to depend strongly on the purpose of the program and on the change task to be
performed. The hypotheses stated in Section 3.1 could thus be considered misleading. Therefore,
we will now search for better predictors of code maintenance effort than inheritance depth.

12

5 Building explanation models of code maintenance effort

As we saw above, if a practitioner asks “What is driving code maintenance effort? How can | un-
derstand, predict, and reduce it?”, then inheritance depth is not useful. The purpose of the present
section is to see whether the available data fldEwexpP (6 groups),PRIOREXP (8 groups),

and the Cartwright replication (2 groups) allows better answers. Although we have data from 16
groups of subjects, the total data set is still rather small. Therefore, the subsequent analysis is
exploratory and the answers only tentative.

We will now search for prediction models of the form
t= fer..ch (P, T, M)

that is, functions that compute a prediction of the code maintenance &fiiwe time for com-

pleting the task) based on input variables that are properties of the prdgauch as the inheri-

tance depth), properties of the maintenance fagkuch as the number of classes that need to be
changed), or properties of the maintaindds(such as their experience level). We will consider
only the “add class” tasks. Each such function depends on one or several fixed parameters (co-
efficients)c; throughey, which we will compute from the experiment data by least squared error
optimization. Due to the large amount of individual variation, it is hopeless to predict the time
for the individual subject, hence we will predict the group average time instead. Our models will
focus on program understanding, because the given tasks did not require much actual change or
testing effort. We considered mostly, but not exclusively, linear models. Note that we are predict-
ing the absolute effort, not only the relative effort for different versions of the same program, we
are attempting a quantitative prediction instead of a qualitative one, and we are using data from all
experiments, not just our own.

It turns out that the number. of methods investigated is the most powerful predictor of code
maintenance effort. A more detailed definition of this metric is thus in order. Given a task and
a reasonable default solutiom, includes all methods that need to be analyzed and understood
for producing the solution. In order to understand a given method, other methods that it calls
transitively are also counted. Each method is counted at most once; library functions such as
printin or methods that were analyzed in a prior task are not counted. Two different raters
produced the method count independently. The few differences among the raters were settled by
consulting a third person. The metric is inspired by the insight of Littman et al. [7], that correct
changes require a systematic study of all code affected by a change.

5.1 Input variables: Properties of programs, tasks, and subjects
For deriving the models, we use three different sets of inputs which one may expect to have some
influence on effort.

Program properties: The first set of possible inputs to our models are the quantitative program
properties as described for instance in Table 1: inheritance depth, number of classes, method
bodies, lines, and files.

Task properties: Obviously, even if the inheritance depth influences program understanding ef-
fort, it is not inheritance itself that creates the effort differences, but rather its consequences. For

13

200
1

O high experience group .

0O low experience group

time [minutes]
100 150

50

0 5 10 15 20
investigated methods

Figure 3: Visualization of Model 1 from Table 3. Each symbol represents one experiment group.
Symbol size indicates inheritance depth. The lines show the prediction and a 90 percent confidence
band of average work time as a function of the number of investigated methods.

instance, programs with deeper inheritance may have properties such as more heavily delocal-
ized plans and a larger number of classes and methods to be understood, they may require more
searches from one class into another during understanding, etc.

Such properties are currently rarely used to characterize programs, because they are hard to quan-
tify. They depend not only on the program but also on the task and on the behavior of the pro-
grammer attempting the program understanding. But if the task is known and if one is willing

to assume a certain reasonable “default strategy” is used to gain understanding, we can compute
values for these properties, as shown in Table 2. We consider as input variables the number of
investigated methods and number of required hierarchy changes.

The effort for the actual program change can be characterized by task properties such as the num-
ber of new or changed or cloned classes, methods, statements, declarations etc. Again, the as-
sumption of a reasonable default solution is necessary to compute such values. The number of
new methods in the default solutions are also shown in Table 2.

It is clear that these values do not always reflect reality, because some programmers will not
follow the default strategy or will not implement the default solution. Still, assumptions about
default strategy and solution might lead to useful predictiorsvefagecode maintenance effort.

Our investigations find that indeed they do.

Subject properties: Third, we use a coarse binary classification of the expected skill level of
each experiment group, because it makes little sense to ignore skill differences as large as those
between out) andG groups. Note that this variable does not refer to individual subjects but rather

to groups as a whole. The subjects@fare roughly comparable in experience to the subjects of
PrIOREXP-1r andPRIOREXP-2. This level of experience is referred to as “highitp = H). The
subjects ofU are roughly comparable in experience to the subjecBRobREXP-1a, -1b, and the
Cartwright replication. This level of experience is referred to as “law’p(= L).

14

200
1

O high experience group

0O low experience group

time [minutes]
100 150
L L
m“\\
J

50
)
(o)

0 50 100 150 200
predicted time [minutes]

Figure 4: Prediction quality of Model 7 from Table 3. Time predicted &9mcyp—1 +
5.9Mmezp—m + 24 versus actual time. The dashed lines delimit the 90 percent confidence band.

5.2 Models with two coefficients

The most reasonable models among all those we investigated are shown in Table 3. We will now
discuss them, starting with Model 1. This standard linear regression model based on the nhumber
m of investigated methods is found to explain 84% of the variance among the average group work
times. The model suggests a work time of 6.9 minutes per method that is investigated plus a
constant effort of 28 minutes (for understanding the task itself, writing out the solution and so
on). The quality of this model is rather surprising, given a rather heterogeneous data set that
comprises four different programs from three different domains, five different groups of subjects
with very education and capabilities, and two different experimental conditions. The model and
its underlying data are visualized in Figure 3.

In contrast, the model based on the number of hierarchy changes required during program under-
standing is less useful (Model 2 in Table 3). It explains only 55% of the variance and the constant
effort of 61 minutes is unrealistically high. We conclude that the number of methods to be un-
derstood is a far better predictor of effort than the number of hierarchy changes required. When
combining both (not shown in the table), the contribution of hierarchy changes becomes insignif-
icant (p = 0.98). Inheritance depth as the sole predictor is even worse, as is seen in Model 3. It
explains only 10% of the variance and is thus unusagble (.23).

5.3 Models with three or four coefficients

Adding inheritance depth as a second predictor variable to Model 1 does not significantly improve
the prediction (Model 4p = 0.33). Adding a constant for lower experience levels does improve
the prediction (Model 5, explaining 91% of the variance); adding inheritance depth leads to no
significant improvement (Model &, = 0.21).

Model 7 is the most useful model, explaining 94% of the variance with significaree).001.
The model has only three coefficients: a constant effort of 24 minutes plus 8.9 minutes per method
15

for the less experienced subjects or 5.9 minutes per method for the more experienced subjects.
The prediction quality of this model is shown in Figure 4.

Model 8 is model 7 extended with inheritance depth as additional variable. Its prediction is only
slightly better and its significance weak. £ 0.073).

5.4 Discussion

The number of relevant methods appears to be a suitable predictor for maintenance tasks that are
dominated by program understanding effort. Interestingly, Fjeldstad and Hamlen have identified
program understanding as the dominant component in maintenance as early as 1979 [10].

Based on the results available to date, we conjecture that models for maintenance effort should
consider (in addition to other factors) the functions or methods affected by a change task and other
program propertieselated toinheritance depth rather than inheritance depth itself.

Note that the number of methodsthat need to be understood for solving a task is not yet practical

for predicting the effort in realistic maintenance situations, becausannot usually be computed

in advance. The models should therefore be called explanation models rather than prediction
models, unless one can estimate Control flow analysis, coupled with a model of the familiarity

of a maintainer with a given program may provide sufficiently accurate estimatesAfalogies

with previous change tasks may also provide reasonable estimates. Rather than the number of
methods, one may also want to use the number of lines in the investigated methods instead.

6 Conclusion

In our experiment setting, smaller inheritance depth resulted in smaller code maintenance effort
when adding a class, contradicting the previous results of Daly et al., but corroborating those
of the replication performed by Cartwright. Perhaps inheritance can be a suitable predictor for
maintenance tasks where less inheritance means a higher degree of code duplication and hence
higher effort for changes and consistency checking.

For the tasks given in our and the previous experiments, we investigated several potential cost
drivers of the average code maintenance effort by exploratory statistical modeling. We found the
number of methods that need to be understood to be the most useful factor for predicting effort,
far more general and reliable than inheritance depth. This result suggests that the assumption
underlying, Daly et al.'s, Cartwright’s, and our own experiments, is invalid. Inheritance depth is
not in itselfan important factor for code maintenance effort. Rather, we should investigate related
program properties that are more directly connected to the actual maintenance procedure.

We speculate that the actual factors may interact with inheritance depth, but are more complex,
such as (1) the match between the program design and the particular maintenance task and (2) in-
teractions with previous maintenance tasks (via knowledge gained therein). Although neither our
nor the previous experiments were designed to identify or measure such factors, we could iden-
tify one of them, the number of methods to be understood. Other plausible components, such as
the degree of distribution of relevant items over the source code need to be investigated in future
experiments.

16

Further details

Detailed information about the experiment is available in a technical report [16] that includes the
complete experiment materials, such as the task descriptions and source program listings, and also
describes the grading scales, error types, and other details. The experiment materials and raw
result data are also available online at http://wwwipd.ira.uka.de/EIR/.

Acknowledgements

We thank Gerd Hillebrand for the Informatik Il subjects and Arno Wagner for helping with mas-
tering the technical infrastructure. We also thank all our experimental subjects for their patience.

References

[1] Victor R. Basili, Lionel Briand, and Walcelio L. Melo. A validation of object-oriented de-
sign metrics as quality indicatorsEEE Trans. on Software Engineering2(10):751-761,
October 1996.

[2] Michelle Cartwright. An empirical view of inheritanceformation & Software Technology
40(4):795-799, 1998.
http://dec.bournemouth.ac.uk/ESERG.

[3] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented diesfid.
Trans. on Software Engineering0(6):476—-493, June 1994.

[4] Larry B. ChristenserExperimental Methodologyllyn and Bacon, Needham Heights, MA,
6th edition, 1994.

[5] John Daly. Replication and a Multi-Method Approach to Empirical Software Engineering
ResearchPhD thesis, Dept. of Computer Science, University of Strathclyde, Glasgow, Scot-
land, 1996.

[6] John Daly, Andrew Brooks, James Miller, Marc Roper, and Murray Wood. Evaluating in-
heritance depth on the maintainability of object-oriented softwkrapirical Software En-
gineering 1(2):109-132, 1996.

[7] Stanley Letovsky David D. Littman, Jeannin Pinto and Elliot Soloway. Mental models and
software maintenancdournal of Systems and Software341-355, 1987.

[8] Joseph Dvorak. Conceptual entropy and its effect on class hierarclii&E Computer
27(6):59-63, June 1994.

[9] Bradley Efron and Robert TibshiraniAn introduction to the BootstrapMonographs on
statistics and applied probability 57. Chapman and Hall, New York, London, 1993.

[10] R. K. Fjeldstad and W. T. Hamlen. Application program maintenance study — report to our
respondents. In Girish Parikh, editdytorial on Software Maintenancpages 13-27. IEEE
Computer Society Press, 1983.

17

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisdizksign Patterns: Elements
of Reusable Object-Oriented Softwafeddison-Wesley, Reading, MA, 1995.

[12] Rachel Harrison, Steve Counsell, and Reuben Nithi. Experimental assessment of the effect of
inheritance on the maintainability of object-oriented system®rdie. 3rd Intl. Conf. on Em-
pirical Assessment and Evaluation in Software Engineetisgversity of Keele, England,
1999.

[13] Bertrand MeyerObject-Oriented Software Constructidrentice Hall, Upper Saddle River,
NJ, 2nd edition, 1997.

[14] Eliot Soloway, Jeannine Pinto, Stan Letovsky, David Littman, and Robin Lampert. De-
signing documentation to compensate for delocalized pl@wnmunications of the ACM
31(11):1259-1267, November 1988.

[15] lan Sommerville. Software EngineeringAddison-Wesley, Wokingham, England, 4th edi-
tion, 1992.

[16] Barbara Unger and Lutz Prechelt. The impact of inheritance depth on maintenance tasks: De-
tailed description and evaluation of two experiment replications. Technical Report 18/1998,
Fakul&ét fur Informatik, Universiat Karlsruhe, Germany, July 1998.

[17] Norman Wilde and Ross Huitt. Maintenance support for object-oriented progriffs
Trans. on Software Engineering8(12):1038-1044, December 1992.

[18] Norman Wilde, Paul Matthews, and Ross Huitt. Maintaining object-oriented softViEEE
Software 10(1):75-80, January 1993.

18

