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Our Task

reliably estimate
the number of defects in a software document

from the outcome of an inspection!
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Estimation Methods

capture—recapture methods (Eick ea. ICSE 1992)

curve—fitting methods (Wohlin ea. ICSE 1998)

studies show that estimates are far too unreliable
(Briand ea. TSE 2000, Biffl ea. ICSE 2001)

interval estimate method (Padberg ICSE 2002)

outperforms other methods on benchmark dataset
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Interval Estimate Method

e use empirical data from past inspections for

estimating

e stochastic model relates inspection outcome
(the w; and d) to the true number N of
defects

e use that relation to estimate N for a new

document from its inspection outcome
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Regression Approach

o learn relationship between observable features
of an inspection and true number of defects

contained in the document
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Regression Approach

o learn relationship between observable features
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o view defect content estimation as a regression
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Regression Approach

learn relationship between observable features
of an inspection and true number of defects

contained in the document

view defect content estimation as a regression

problem

again, need empirical database
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Candidate Features

derived from zero—one matrix

use the w; and d to get: TDD, AVE,
MIN, MAX, STD

example Al:

(9,7,6,13,9,6) and 23 yields

TDD AVE MIN MAX STD
23 8.3 6 13 2.4
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Input Data for Linear Regression

o correlation analysis yields ranking
TDD > AVE > MIN > MAX > STD

e some datapoints:

Inspection TDD AVE target
Al 23 8.3 30
Bl 20 6.0 28
Cl1 10 3.2 18
D1 6 1.3 15
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Regression Hyperplane

defects
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all 16 inspections
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Jackknife Validation

leave out an inspection from the database

compute the regression hyperplane using the

remaining 15 inspections

compute the regression estimate for the one

inspection which was left out

compare the estimate with the true value of

the number of defects
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Linear Regression Estimates
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jackknife error of 11 percent
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Linear Regression versus Capture—Recapture
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clearly outperforms capture—recapture

(11 percent versus 24 )

© Frank Padberg 2002



Linear Regression versus Interval Estimates
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similar performance on one half of the dataset

(7 percent each)
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Non-Linear Regression: Neural Networks

logist () = S;i =
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Neural Network Methodology

determine a set of candidate features
select an appropriate subset ( feature selection)
train different neural networks on the dataset

select the best neural network ( model selection)
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Input Data for Non-Linear Regression

e non-linear feature selection yields ranking

TDD > STD > MAX > MIN > AVE

e STD instead of AVE

e some training patterns:

inspection TDD STD target
Al 23 2.4 30
Bl 20 1.7 28
C1 10 1.5 18
D1 6 1.4 15
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Non-Linear Regression Surface

neural network with two hidden units in one layer

all 16 inspections
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Neural Network Estimates
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jackknife error of 6 percent
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Neural Networks versus Capture—Recapture
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clearly outperforms capture—recapture

(6 percent versus 24 )
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Neural Networks versus Interval Estimates
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similar performance on one half of the dataset

(5 percent versus 7)
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Neural Networks versus Linear Regression
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outperforms linear regression

(6 percent versus 11, smaller variance )
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Neural Network Advantages

much flexibility when fitting to data
detects non-linearity in the data
gives guidelines which features to use
works well even with small datasets

automatically adapts to different document

types and sizes
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Neural Network Topology

number of inputs
number of hidden layers
number of units in hidden layers

connections between layers
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Training a Neural Network

fit regression function to training data

non-linear optimization process (choose weights

to minimize error on training data)
might get caught in local minimum

train networks with different initial weights
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Model Selection

good generalization ( predictive power) is more

important than a small training error
can use cross-validation on additional dataset
we use model evidence (Bayesian technique)

model evidence works well if network is small
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Empty Space Phenomenon

features

patterns
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maximum number of features that can be used

depends on number of training patterns available
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Overfitting

6 F : ,
training patterns  +
network with 40 hiddens units
5 + underlying process --------- —

-1.5 -1 -0.5 0 0.5 1 15
input x

good fit to training patterns, but

underlying smooth process poorly approximated
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Technical Countermeasures

e Empty Space Phenomenon
—— follow Silverman’s rule of thumb
—— apply feature selection

—— we use mutual information
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Technical Countermeasures

e Empty Space Phenomenon
—— follow Silverman’s rule of thumb
—— apply feature selection

—— we use mutual information

o Overfitting
—— prefer small networks

—— prefer networks with small weights

— use regularization during training

© Frank Padberg 2002



Mutual Information

H(T) — H(T|X) =

//p(x,t) - log p(z, )

e Mmeasures stochastic dependence between
target 1" and feature X

o detects non-linear dependencies
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Regularization

o prefer networks with small weights w;;

e minimize regularized error

B Etain + a- Z wjz'2

e  and [ are additional parameters
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Iterative Training Procedure

o, Bo

error

training epochs

alternate between optimizing the weights w;

and updating the parameters o, (3
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Results

Method mean error max error
Capture—Recapture 24 % 67 %
Detection Profile 36 % 113%
Linear Regression 11 % 40 %
Interval Estimates (7%) (14%)
Neural Networks 6 % 17 %

all three novel approaches are promising

need more empirical data for validation
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Regression Approach Summary

uses empirical data from past inspections
linear regression
neural networks as non-linear regression

outperforms existing methods

see Ragg, Padberg, Schoknecht ICANN 2002
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Let's Try This, Too!



