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Our Task

reliably estimate

the number of defects in a software document

from the outcome of an inspection!
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Estimation Methods

• capture–recapture methods (Eick ea. ICSE 1992)

• curve–fitting methods (Wohlin ea. ICSE 1998)

• studies show that estimates are far too unreliable

(Briand ea. TSE 2000, Biffl ea. ICSE 2001)

• interval estimate method (Padberg ICSE 2002)

• outperforms other methods on benchmark dataset
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Interval Estimate Method

• use empirical data from past inspections for

estimating

• stochastic model relates inspection outcome

(the wk and d ) to the true number N of

defects

• use that relation to estimate N for a new

document from its inspection outcome
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Regression Approach

• learn relationship between observable features

of an inspection and true number of defects

contained in the document
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Regression Approach

• learn relationship between observable features

of an inspection and true number of defects

contained in the document

• view defect content estimation as a regression

problem

• again, need empirical database
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Candidate Features

• derived from zero–one matrix

• use the wk and d to get: TDD, AVE,

MIN, MAX, STD

• example A1:

( 9, 7, 6, 13, 9, 6 ) and 23 yields

TDD AVE MIN MAX STD

23 8.3 6 13 2.4
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Input Data for Linear Regression

• correlation analysis yields ranking

TDD > AVE > MIN > MAX > STD

• some datapoints :

inspection TDD AVE target

A1 23 8.3 30

B1 20 6.0 28

C1 10 3.2 18

D1 6 1.3 15
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Regression Hyperplane
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Jackknife Validation

• leave out an inspection from the database

• compute the regression hyperplane using the

remaining 15 inspections

• compute the regression estimate for the one

inspection which was left out

• compare the estimate with the true value of

the number of defects
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Linear Regression Estimates
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Linear Regression versus Capture–Recapture
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clearly outperforms capture–recapture

( 11 percent versus 24 )
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Linear Regression versus Interval Estimates
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similar performance on one half of the dataset

( 7 percent each )
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Non-Linear Regression: Neural Networks
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Neural Network Methodology

• determine a set of candidate features

• select an appropriate subset ( feature selection)

• train different neural networks on the dataset

• select the best neural network (model selection)
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Input Data for Non-Linear Regression

• non-linear feature selection yields ranking

TDD > STD > MAX > MIN > AVE

• STD instead of AVE

• some training patterns:

inspection TDD STD target

A1 23 2.4 30

B1 20 1.7 28

C1 10 1.5 18

D1 6 1.4 15
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Non-Linear Regression Surface
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Neural Network Estimates
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Neural Networks versus Capture–Recapture
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clearly outperforms capture–recapture

( 6 percent versus 24 )
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Neural Networks versus Interval Estimates
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similar performance on one half of the dataset

( 5 percent versus 7 )
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Neural Networks versus Linear Regression
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outperforms linear regression

( 6 percent versus 11, smaller variance )
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Neural Network Advantages

• much flexibility when fitting to data

• detects non-linearity in the data

• gives guidelines which features to use

• works well even with small datasets

• automatically adapts to different document

types and sizes
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Neural Network Topology

• number of inputs

• number of hidden layers

• number of units in hidden layers

• connections between layers
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Training a Neural Network

• fit regression function to training data

• non-linear optimization process (choose weights

to minimize error on training data)

• might get caught in local minimum

• train networks with different initial weights
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Model Selection

• good generalization ( predictive power) is more

important than a small training error

• can use cross-validation on additional dataset

• we use model evidence (Bayesian technique)

• model evidence works well if network is small
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Empty Space Phenomenon

features patterns

1 4

2 19

3 67

4 223

5 768

6 2790

maximum number of features that can be used

depends on number of training patterns available
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Overfitting
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Technical Countermeasures

• Empty Space Phenomenon

−→ follow Silverman’s rule of thumb

−→ apply feature selection

−→ we use mutual information
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Technical Countermeasures

• Empty Space Phenomenon

−→ follow Silverman’s rule of thumb

−→ apply feature selection

−→ we use mutual information

• Overfitting

−→ prefer small networks

−→ prefer networks with small weights

−→ use regularization during training
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Mutual Information

H ( T ) − H ( T | X ) =

∫∫
p ( x, t ) · log

p ( x, t )

p ( x ) p ( t )

• measures stochastic dependence between

target T and feature X

• detects non-linear dependencies

c© Frank Padberg 2002



Regularization

• prefer networks with small weights wji

• minimize regularized error

β · E train + α · ∑
wji

2

• α and β are additional parameters
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Iterative Training Procedure
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alternate between optimizing the weights wji

and updating the parameters α, β
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Results

Method mean error max error

Capture–Recapture 24 % 67 %

Detection Profile 36 % 113 %

Linear Regression 11 % 40 %

Interval Estimates (7 %) (14 %)

Neural Networks 6 % 17 %

all three novel approaches are promising

need more empirical data for validation
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Regression Approach Summary

• uses empirical data from past inspections

• linear regression

• neural networks as non-linear regression

• outperforms existing methods

• see Ragg, Padberg, Schoknecht ICANN 2002
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Let’s Try This, Too !


