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Abstract: JPlag is a web service that finds pairs of similar programs among a given set
of programs. It has successfully been used in practice for detecting plagiarisms among
student Java program submissions. Support for the languages C, C++ and Scheme is
also available. We describe JPlag’s architecture and its comparsion algorithm, which is
based on a known one called Greedy String Tiling. Then, the contribution of this paper
is threefold: First, an evaluation of JPlag’s performance on several rather different sets
of Java programs shows that JPlag is very hard to deceive. More than 90 percent of the
77 plagiarisms within our various benchmark program sets are reliably detected and a
majority of the others at least raise suspicion. The run time is just a few seconds for
submissions of 100 programs of several hundred lines each. Second, a parameter study
shows that the approach is fairly robust with respect to its configuration parameters.
Third, we study the kinds of attempts used for disguising plagiarisms, their frequency,
and their success.
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Category: GT algorithms, GT performance, F.2.2. pattern matching, H.3.3., H.5.2.,
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1 Detecting similar programs

Millions of programming exercises are being turned in by students each year. In
most cases, their instructors have the uneasy feeling that a few of these programs
are more or less copies of programs supplied by somebody else who is taking the
same course at the same time. We call such copies plagiarisms.

Very few instructors have the patience to thoroughly search for plagiarisms;
although finding plagiarisms is possible, it is much too time-consuming in prac-
tice. If any, instructors find duplicates only by accident, e.g., if a student has
forgotten to replace the name of the friend in the head of the program source
text or if two programs produce the same weird failure for a test input.

A powerful automated search that finds similar pairs among a set of programs
would be most helpful — if, and only if, that search can discriminate well enough
between incidental similarities and actual plagiarisms.

1.1 JPlag

We have built such a system, called JPlag. It is written in Java and currently ana-
lyzes program source text written in Java, Scheme, C, or C++. We will consider
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only the Java mode here. JPlag is publicly available at http://www.jplag.de.
As of fall 2001, JPlag processes several dozen submissions each month. We and
JPlag users from other institutions have used it very successfully in courses at
both undergraduate and graduate level, some submissions having as many as
500 participants.

JPlag takes as input a set of programs, compares these programs pairwise
(computing for each pair a total similarity value and a set of similarity regions),
and provides as output a set of HTML pages that allow for exploring and un-
derstanding the similarities found in detail. JPlag converts each program into
a string of canonical tokens. For the comparison of two programs, JPlag then
covers one such token string by substrings taken from the other (string tiling)
where possible.

1.2 Related work

Several systems finding plagiarisms have been build before. Early attempts at
plagiarism detection were usually based on the notion of a feature vector. These
systems compute for each program n different software metrics (anywhere from 4
to several dozen), so that each program is mapped to a point in an n-dimensional
cartesian space. The systems then consider sets of programs that lie close to
each other to be possible plagiarisms [Ottenstein, 1976; Donaldson et al., 1981;
Grier, 1981; Berghel and Sallach, 1984; Faidhi and Robinson, 1987].

Unfortunately, this approach is at best moderately successful [Verco and
Wise, 1996], because summing up a metric across the whole program throws
away too much structural information. Such systems are either very insensitive
(and hence easy to fool) or they are sensitive and come up with a large fraction of
false positives. This deficiency cannot be removed by adding further dimensions
to the comparison.

With much more powerful computers the direct comparison of program struc-
ture instead of just summary indicators became viable. Some of these systems are
hybrids between structure and metric comparison, e.g. [Donaldson et al., 1981;
Jankowitz, 1988], others (such as JPlag) rely on structure comparison alone. In
the latter case, the approach is usually to convert the program into a string
of tokens (thus ignoring easily changeable information such as indentation, line
breaks, comments etc.) and then comparing these token strings to find common
segments. The most advanced other systems in terms of their plagiarism detec-
tion performance are probably YAP3 [Wise, 1992] and MOSS [Aiken, 1998].

JPlag uses the same basic comparison algorithm as YAP3, but uses a different
set of optimizations for improving its run time efficiency. MOSS uses a slightly
different approach1 for even higher speed at the cost of some detection perfor-
mance and is able to ignore base code that is expected in almost all submissions.
JPlag introduces a unique user interface for presenting the set of similar regions
for two programs. This interface then inspired a similar one for MOSS.

[Cluwin et al., 2001] attempted a comparison of MOSS and JPlag, but unfor-
tunately chose a program set that contained a fraction of identical base code in
all submissions, which is handled very differently by MOSS compared to JPlag,
1 Personal communication with Alex Aiken. No written description of MOSS’s inter-

nals is available.
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yet the authors failed to provide a manual check of the quality of the two systems’
output.

The core part of the present study is its careful evaluation of JPlag’s per-
formance and also a direct comparison to MOSS. Although several performance
studies such as [Verco and Wise, 1996; Whale, 1990; Wise, 1992] exist for earlier
systems, these studies are fairly restricted both with respect to the quality and
amount of the input data used and in the level of detail of the evaluation itself.

1.3 Structure of the article

Section 2 describes the JPlag system: its appearance as a web service, the GUI
by which it presents its search results, and the basic comparison algorithm with
its optimizations. Section 3 presents an empirical evaluation of JPlag on four
real sets of student programs and on sets of plagiarisms specifically created
to deceive such a plagiarism search. The evaluation comprises measurements
of the discrimination performance as well as a study of the sensitivity of the
algorithm’s free parameters. Section 4 analyses the camouflaging strategies used
by plagiarists. We arrange them into similar groups, count their frequency, and
describe their effectiveness (or more often lack thereof).

Additional detail is given in [Prechelt et al., 2000].

2 The JPlag system

2.1 The JPlag WWW service

After logging into the web service with user name and password, a JPlag user
submits a directory of files to JPlag for analysis. Each subdirectory’s contents
supply one program, consisting of one or more source files. JPlag compares the
programs and produces a directory of HTML files as output. The submitter (but
no other JPlag user) can either view these files online or download them for local
use.

For the submitted programs, JPlag generates a set of HTML pages that
present the results. At the top level, an overview page presents a histogram
of the similarity values found for all program pairs and a list of the highest-
similarity pairs. Given the histogram, one usually can identify a range of sim-
ilarity values that doubtless represent plagiarisms and a range of values which
doubtless represent non-plagiarisms. The program pairs that have similarities in
between those ranges should be investigated further by hand. JPlag supports
such investigations by a unique user interface.

For each program pair selected by the user, a side-by-side comparison of the
source codes is then shown (see Figure 1 for a partial example). Ranges of lines
that have been found to be corresponding in both files are marked with the same
color. A hyperlink arrow at each region, when clicked, aligns the opposite half of
the display such that the corresponding region is shown. Likewise, one can jump
to each pair of corresponding regions from a table shown at the top which lists
for each region its color code, position in each of the files, and length in tokens.
This unique presentation makes it easy to judge whether or to which degree
the pair of programs should in fact be considered plagiarized. For instance it
will quickly become clear if the two programmers have shared some parts of the
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Figure 1: Part of a JPlag results display page for a pair of programs
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Java source code Generated tokens
1 public class Count { Begin Class
2 public static void main(String[] args) Var Def, Begin Method
3 throws java.io.IOException {
4 int count = 0; Var Def, Assign
5
6 while (System.in.read() != -1) Apply, Begin While
7 count++; Assign, End While
8 System.out.println(count+" chars."); Apply
9 } End Method

10 } End Class

Table 1: Example Java source text and corresponding tokens.

program but created the rest independently or if plagiarized program parts were
camouflaged by artificial changes.

2.2 JPlag’s comparison algorithm

This section describes how JPlag computes the similarity of a pair of programs.
JPlag operates in two phases:

1. All programs to be compared are parsed (or scanned, depending on the input
language) and converted into token strings.

2. These token strings are compared in pairs for determining the similarity
of each pair. The method used is basically “Greedy String Tiling” [Wise,
1993]: During each such comparison, JPlag attempts to cover one token
string with substrings (“tiles”) taken from the other as well as possible. The
percentage of the token strings that can be covered is the similarity value.
The corresponding tiles are visualized in the HTML pages.

2.2.1 Converting the programs into token strings

The front-end process of converting the programs into token strings is the only
language-dependent process in JPlag. Three front-end implementations currently
exist: The ones for Java and for Scheme both implement a full parser. The third
front-end for C++ (or C) consists of only a scanner.

As a rule, tokens should be chosen such that they characterize the essence of a
program’s structure (which is difficult to change by a plagiarist) rather than sur-
face aspects. JPlag ignores whitespace, comments, and the names of identifiers.
Moreover, JPlag puts semantic information into tokens where possible in order
to reduce spurious substring matches that can occur by pure chance. For in-
stance in Java, we use a Begin Method token instead of just an Open Brace
token. Parser-based front ends are superior in this respect. See Table 1 for a
Java example. See Section 4 for understanding the rationale for the tokenization
approach.

Our evaluation in Section 3.4 suggests that JPlag is fairly robust against
changes of the token set.
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0 Greedy-String-Tiling(String A, String B) {
1 tiles = {};
2 do {
3 maxmatch = M ;
4 matches = {};
5 Forall unmarked tokens Aa in A {
6 Forall unmarked tokens Bb in B {
7 j = 0;
8 while (Aa+j == Bb+j &&
9 unmarked(Aa+j) && unmarked(Bb+j))
10 j + +;
11 if (j == maxmatch)
12 matches = matches ⊕ match(a, b, j);
13 else if (j > maxmatch) {
14 matches = {match(a, b, j)};
15 maxmatch = j;
16 }
17 }
18 }
19 Forall match(a, b, maxmatch) ∈ matches {
20 For j = 0 . . . (maxmatch− 1) {
21 mark(Aa+j);
22 mark(Bb+j);
23 }
24 tiles = tiles ∪ match(a, b, maxmatch);
25 }
26 } while (maxmatch > M);
27 return tiles;
28 }

Table 2: The “Greedy String Tiling” algorithm [Wise, 1993]. The ⊕ operator in line 12
adds a match to a set of matches if and only if it does not overlap with one of the
matches already in the set. The triple match(a, b, l) denotes an association between
identical substrings of A and B, starting at positions Aa and Bb, respectively, with a
length of l.

2.2.2 Comparing two token strings

The algorithm used to compare two token strings is essentially “Greedy String
Tiling” [Wise, 1993]. When comparing two strings A and B, the aim is to find
a maximal set of contiguous substrings that have the following properties: each
substring occurs in both A and B, is as long as possible and does not cover a
token already covered by some other substring. To avoid spurious matches, a
minimum match length M is enforced.

“Greedy String Tiling” is a heuristic algorithm, because guaranteeing max-
imality for the set of substrings found makes the search too expensive. Here is
the rough sketch (see Table 2 for the pseudocode). The algorithm iterates the
following two steps:

Step 1 (lines 5–18): The two strings are searched for the biggest contiguous
matches. Conceptually, this is done by 3 nested loops: The first one iterates
over all the tokens in A, the second one compares the current token with
every token in B. If they are identical, the innermost loop searches for the
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end of the match. These nested loops collect the set of all longest common
substrings.

Step 2 (lines 19–25): Mark all non-overlapping matches of maximal length
found in Step 1. This means that all their tokens are marked and thus may
not be used for further matches in Step 1 of a subsequent iteration. In the
terminology of Wise, by marking all the tokens a match becomes a tile.

These two steps are repeated until no further matches are found. Since further
tokens are marked in each step, the algorithm always terminates. It returns a
list of tiles from which we need to compute a similarity measure. This measure
should reflect the fraction of tokens from the original programs that are covered
by matches. We define it as sim(A, B) = 2 · coverage(tiles)/(|A| + |B|) where
coverage(tiles) =

∑
match(a,b,length)∈tiles length.

The run time complexity of this heuristic algorithm is still fairly high. In
the worst case, all three nested loops are executed to their fullest. Despite the
decreasing match length in later iterations this can lead to a number of steps as
large as Θ((|A| + |B|)3) if only a single shortest conceivable match is marked in
each iteration, yet all tokens of both strings are covered in the end [Wise, 1993;
Prechelt et al., 2000]. In the best case, no single token from A occurs in B at all
and the search requires Θ((|A| + |B|)2) steps.

2.2.3 Wise’s and JPlag’s run time optimizations

Although the worst case complexity can not be reduced, the average complexity
for practical cases can be improved to almost Θ(|A| + |B|) by applying an idea
from the Karp-Rabin pattern matching algorithm [Karp and Rabin, 1987].

The Karp-Rabin algorithm finds all occurrences of a short string (the “pat-
tern” P ) in a longer string (the “text” T ) by using a hash function. To do that,
the hash values of all substrings with length |P | in T are calculated. This can be
done in linear time by using a hash function h that is able to compute the value
of h(TtTt+1..Tt+|P |−1) from the values of h(Tt−1Tt..Tt+|P |−2), Tt−1 and Tt+|P |−1.
All the hash values are then compared with the value of P . If two values are the
same, a character-wise comparison takes place to verify that an occurrence of
P in T has been found. The complexity of this algorithm in practice is almost
linear.

Our modification of Wise’s Greedy String Tiling applies the basic idea of
Karp-Rabin matching in the following manner:

1. The hash values are computed for all substrings of length s in time Θ(|A|+
|B|). JPlag uses s = M , Wise’s algorithm adapts s as described below.

2. Each hash value from A is then compared with each one from B. If two
values are the same, the match is verified by comparing the substrings token
by token. Then the algorithm tries to extend the match as far as possible
beyond the range that is covered by the hash function.

3. A hash table is used for locating the substrings from B that have the same
hash value as a given substring from A.

The worst case complexity of this algorithm is still Θ((|A| + |B|)3), since all
substrings may have to be compared token by token, but in practice a complexity
of much less than Θ((|A| + |B|)2) is usually observed.
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JPlag does all the hash computations (hash values of both strings plus hash
table for string B) upfront, i.e., only once before the tiling process. When a
match is found and a tile is marked, the corresponding entries in the static
hash table are no longer valid for subsequent iterations. Since JPlag leaves the
affected entries in the table, the verification substep (number 2 above) becomes
somewhat more complicated.

In contrast, Wise recalculates all the hash values and the hash table in each
iteration, so that any match found will be valid.2

Of these two approaches, we found the static pre-computation plus the slightly
more costly validity checks to be faster for JPlag’s default parameters and typical
token strings.

3 Evaluation of the JPlag system

In this section we will investigate JPlag’s discrimination performance and its
sensitivity to program structure, frequency of plagiarisms, and the free parame-
ters of the JPlag algorithm. We present an empirical study based on several sets
of real student programs plus a number of explicitly made plagiarisms.

3.1 Setup of our study

This section describes the sets of programs, the criteria used for quantifying the
results, and the sets of free parameters considered in the evaluation.

3.1.1 Original program sets used: Simple, Hard, Clean, Large

We used four different kinds of programs as the benchmarks in our study. Three
were programming exercises from a second-semester Informatics course, the
fourth was from a graduate advanced programming course that introduced Java
and the AWT to experienced students. For an overview, see Table 3 and ignore
the rightmost two columns for now.

“Simple”: maximize flow. An algorithm for computing the maximum flow
through a directed graph with capacity-weighted edges. The program is based
on a reusable GraphSearch class not included in the source investigated here.
This program set shows rather large variability in program length and structure.
The average length is 236 non-empty, non-comment lines of code (LOC). It
includes 2 programs that are plagiarisms of others (that is, 4 programs forming
2 plagiarism pairs). We determined the plagiarism pairs within this and the other
program sets by a careful manual comparison of all programs, i.e., we applied
the best possible check a human reviewer can do. Due to the fair amount of
structural variation in these programs, we consider this program set a relatively
easy task for JPlag and hence give this program set the name Simple.
2 To reduce the work required for validation, Wise’s algorithm is based on a logarithmic

approach to find the longest matching tiles. When JPlag finds a match of length M ,
JPlag conceptually tries to extend the matching tile token by token until a difference
is found. Since Wise uses a smaller M (3 instead of 9), this iterative process in general
would take too long. Hence, Wise starts by looking at larger candidates for a match
(substring length s = |A|/2 in substep 1 above) and then decreases s in each iteration
until s reaches M .
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plag
set n pairs plags pairs % P R
Simple 28 378 2 2 0.5 100 100

Hard 60 1770 6 6 0.3 36 67
Hard.P 42 861 31 102 11.8 100 73
Hard.all 85 3570 31 102 2.9 91 73

Clean 32 496 0 0 0.0 100 n.a.

Large 59 1711 4 4 0.2 100 100
Large.P 54 1431 44 192 13.4 100 92
Large.all 99 4851 44 192 4.0 100 92

Table 3: Characteristics of the program sets and results when using default parameters:
Name; number n of programs in set; corresponding number of program pairs; number of
plagiarisms (excluding the original base program of each plagiarism cluster); number of
pairs that are plagiarism pairs; plagiarism content; precision; recall. See Section 3.1.3
for definitions.

“Hard”: multiply permutations. Multiply two permutations represented
as permutation matrices which are implemented by an array of integers indicat-
ing the position of the 1 for each row.
This is a very short program (average length 43 LOC) with a rather fixed struc-
ture. We may expect that even programs written independently will look very
similar. Therefore, this program set is a very hard test for JPlag and will hence
be named Hard. In the program set are 12 programs forming 6 plagiarism pairs.

“Clean”: k-means. The one-dimensional k-means clustering procedure, us-
ing absolute distance as the distance function and initializing with equidistant
means over the range of the data.
The average program length is 118 LOC. This program set does not contain any
plagiarisms at all and will thus be named Clean.

“Large”: Jumpbox. A simple graphical game where the player has to move
the mouse into a square that jumps around on the screen. This set has the longest
programs on average and also the largest variation in program design; average
program length is 263 LOC. In the program set there are 4 plagiarism pairs. It
also contains two other pairs that have a lot of similarity, but that we do not
consider to be actual plagiarisms. For one of these, the two programmers have
apparently worked together in an early phase, but then finished their programs
independently. For the other, the two programs share a common fraction used
as a base and taken from an earlier AWT programming exercise.

3.1.2 Artificial program sets: Hard.P, Large.P and others

In order to investigate the behavior of JPlag more closely, the amount of actual
plagiarisms in our program sets is insufficient. Therefore, we collected further
plagiarisms by publicly posting a “Call for plagiarisms” on a web site and collect-
ing submissions via email. The students and other programmers who answered
our call downloaded a source program from our web page, modified it, and sent
it back. They were told to behave like a student who was plagiarizing and trying
to deceive a plagiarism detection program, in particular not to spend an inordi-
nate amount of time. The middle 80% of the plagiarists ended up using between
7 and 40 minutes self-reported time.
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For each of the 12 original programs posted (6 chosen randomly from pro-
gram set Hard and another 6 from Large), we thus collected up to 14 plagiarized
versions, resulting in up to 105 additional plagiarism pairs. Based on these ad-
ditional plagiarisms, we formed additional program sets for the evaluation of
JPlag (see again Table 3):

Hard.all is based on the union of Hard and the set of additional plagiarisms
collected for it.

Hard.P is based on Hard.all but contains only all those programs for which
a plagiarism exists as well (original or collected). In this program set, a large
fraction of all program pairs is a plagiarism pair.

Large.all and Large.P are created in the same manner based on Large and
the additional plagiarisms collected for it.

Note that for brevity Hard.all and Large.all will not be discussed separately
in Sections 3.2 and 3.3 but are included in the results shown in Sections 3.4 and
3.5, where we also used two smaller subsets with high plagiarism content from
Hard.all and two more from Large.all.

3.1.3 Evaluation criteria, Definitions

JPlag can be viewed as an information retrieval system with a fixed query: Given
a set of program pairs, retrieve all those pairs that are plagiarisms, but none of
the others. For such an operating mode we just need to turn the similarity value
produced for each pair into a yes/no decision by applying a cutoff threshold: all
pairs with similarity above the threshold will be considered plagiarism pairs.

For characterizing the correctness of JPlag’s output, we can then use the
common information retrieval quality measures “precision” (P ) and “recall” (R).
These measures are defined as follows. Assume that we have a set of n programs
with p = n · (n − 1)/2 pairs and g of these pairs are plagiarism pairs, i.e., one
program was plagiarized from the other or both were (directly or indirectly)
plagiarized from some common ancestor that is also part of the program set.

Now assume that JPlag returns f pairs of programs flagged as plagiarism
pairs. If t of these pairs are really true plagiarism pairs and the other f − t are
not, then we define precision and recall as P := 100 · t/f and R := 100 · t/g, that
is, precision is the percentage of flagged pairs that are actual plagiarism pairs
and recall is the percentage of all plagiarism pairs that are actually flagged.

Furthermore, we define 100 · g/p as the plagiarism content , i.e., the fraction
of all pairs that are plagiarism pairs (see the “%” column of Table 3).

3.1.4 Other parameters varied in the study

As described in Section 2.2, there are two free parameters in the JPlag algorithm:
the mimimum match length M and the token set used. Both of these were varied
in our study as well.

The default token set “normal” contains tokens describing major program
structure (variable declaration, begin/end of class/method etc.) and control flow
(return, break, continue, throw, begin/end of if, while, for etc.), plus 2 tokens
for assignments (assign) and method calls (apply). It ignores all structure within
expressions (operators, operands) and the identity of methods etc. Besides the
default token set, we also used a fairly minimal token set (called “struc”) con-
taining only tokens related to control flow and program block structure (but
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not variable declarations). Further, we used a maximal token set (called “full”)
containing all possible tokens.

We used minimum match lengths 3, 4, 5, 7, 9, 11, 14, 17, 20, 25, 30, and 40.
9 is the default.

3.2 Basic results

For summarizing JPlag’s performance in a nutshell, we will first report the val-
ues of precision and recall for each of our datasets when using the standard
parameters (minimum match length 9, normal token set) and a cutoff threshold
of 50%. The summary is shown in the rightmost two columns of Table 3.

As we see, JPlag’s performance is flawless for Simple, Clean, and Large; for
three out of our four real-world datasets we do not only obtain all of the pla-
giarism pairs without exception, but the output is also entirely free of non-
plagiarism pairs.

For the difficult dataset Hard we miss 2 of the 6 plagiarism pairs (R = 0.67)
and falsely retrieve 7 non-plagiarism pairs in addition to the 4 correct ones. The
imperfect recall can of course be improved by decreasing the cutoff threshold, but
this will also result in further incorrect outputs. This tradeoff will be analyzed
in Section 3.3.

The results for the artificial datasets with their high density of plagiarisms
are also very good: JPlag detects 92% of all plagiarism pairs in two of the cases
(Large.P and Large.all) and 73% in the other two (Hard.P and Hard.all) and except
for one case (Hard.all) the results are completely free of spurious outputs.

Given the broad range of camouflaging attempts tried by our program au-
thors described in Section 4, these are rather impressive results.

3.3 Distribution of similarity values; precision/recall tradeoff

Ideally, JPlag would report a similarity of 0% for any non-plagiarism pair and
of 100% for any plagiarism pair. Practically, however, the distinction is hardly
ever so clear. Hence, for judging the robustness of the results shown previously,
we will now review the distribution of similarity values that JPlag produced
for plagiarism pairs and compare it to the distribution from the non-plagiarism
pairs. If the two distributions overlap, one or more program pairs will be judged
incorrectly.

Simple: “maximize flow” program. Our first example is the program set
Simple. The results are shown in Figure 2. This program set leads to a total of
378 program pairs, only 2 of which are actual plagiarism pairs. The top part
of the figure shows the similarity value distribution of the 376 non-plagiarism
pairs, the bottom part of the 2 plagiarism pairs.

JPlag perfectly discriminates the plagiarisms from the other programs for a
fairly wide range of cutoff thresholds. The left part of Figure 3 shows how recall
changes when we gradually increase the cutoff threshold: only for rather high
cutoff thresholds will we miss any plagiarisms. The resulting tradeoff between
precision and recall is shown in the right part of the figure. We will always have
at least either perfect precision or perfect recall and for appropriately chosen
cutoff thresholds we even get both at the same time, i.e., the curve reaches the
top right corner of the plot (100/100, the ideal point).
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Summing up, JPlag’s behavior is perfect for this program set.
Hard: “multiply permutations” program. Remember that the simplic-

ity of the algorithm suggests a somewhat canonical program structure. We can
therefore expect that this program will be an extremely difficult test for JPlag.

Figure 4 indeed indicates that the behavior for the Hard program sets is
less ideal: There is quite a bit of overlap of the similarity value distributions.
Let us consider Hard first and note that in absolute numbers, the plagiarism pair
distribution is almost negligible because the plagiarism content is only 0.3%. De-
spite the difficulty, the distribution of similarity values for the non-plagiarisms is
almost the same as for Simple. On the other hand, with one exception the 6 pla-
giarism pairs in Hard show only moderate similarity, even for a human observer.
Looking at the source programs, we got the impression that the students worked
at most partially together, but in any case probably finished their programs in-
dependently. However, given the small size of the programs, it is impossible to
be sure. So one could just as well say these are not plagiarisms at all.

But to get a sort of worst case analysis, let us assume the 6 pairs are indeed all
real plagiarisms. Then the precision/recall tradeoff is far from ideal (see Figure 5
bottom), but medium cutoff thresholds still lead to a reasonable compromise
with a recall of for instance 67 as seen before.

For the plagiarisms-only program set Hard.P, the plagiarism pair similarity
distribution becomes even wider, as we see in Figure 4 (top), but its median
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Figure 2: Distribution of similarity values found among plagiarism pairs and among
non-plagiarism pairs of the Simple program set. (The box and whiskers indicate the
10%, 25%, 75%, and 90% quantiles. The fat dot is the median. The ‘M’ and dashed
lines indicate the mean plus/minus one standard error. The curved line is a kernel
estimation of the probability density function.) JPlag will achieve perfect separation
with any cutoff threshold between 47 and 85, i.e. both precision and recall are 100 in
this case.
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Figure 3: Left: recall/threshold tradeoff for Simple. (The ‘x’ marks the middle of the
diagram.) This dataset can stand very high cutoff thresholds before recall begins to
decline. Right: precision/recall tradeoff for Simple. The behavior is ideal.
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Figure 4: Distribution of similarity values found among plagiarism pairs and among
non-plagiarism pairs, for artificial program set Hard.P (top) and original program set
Hard (bottom). For the original programs, there is only little overlap of the similarity
ranges. The plagiarism pairs of the artificial programs have a rather wide distribution
and hence more overlap with the non-plagiarism’s similarities.
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Figure 5: Left graphs: recall/threshold tradeoff. Right graphs: precision/recall tradeoff.
Bottom graphs: Hard. Recall rapidly declines with large thresholds, but at threshold
50 we get a reasonable R = 67. With high recall values, only somewhat unsatisfying
precision can be achieved. Top graphs: Hard.P. Recall declines only slowly and steadily
for larger cutoff thresholds. A recall R > 80 can be realized with near-perfect precision;
a rather good behavior.
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is at a promising 76% similarity. And indeed, the recall curve and the preci-
sion/recall tradeoff show a rather benign and satisfying behavior (Figure 5 top):
if the threshold is chosen too low, precision drops sharply, but a recall of 70 to
80 can easily be realized with perfect precision.

Summing up, JPlag shows good performance (possibly even very good or
perfect performance, we don’t know) even for this extremely difficult benchmark.

M

Clean, nonplags

0 20 40 60 80 100

Similarities among "k-means" programs

Figure 6: Distribution of similarity values found among all pairs in Clean. This pro-
gram set does not contain any plagiarisms at all and all program pairs have rather low
similarity values. The maximum is 27.
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Figure 7: Distribution of similarity values found among plagiarism pairs and among
non-plagiarism pairs, both for Large (bottom half of figure) and Large.P (top half of
figure). For the original programs, JPlag achieves perfect separation of plagiarisms
and non-plagiarisms with any cutoff threshold between 44 and 56. For the plagiarized
programs, there is a single program that is very dissimilar to all others in its plagiarism
group, resulting in 14 similarity values in the range 8 to 16, but all others can be
separated perfectly by cutoff thresholds between 22 and 43.

Clean: “k-means” program. In this benchmark, there is nothing to find,
since the program set does not contain any plagiarisms. As we see, the simi-
larity values found by JPlag are indeed all so small that we will obtain perfect
performance with almost any cutoff criterion; see Figure 6.

Large: “Jumpbox” program. As can be seen in Figure 7, the separation is
very good for the large benchmark as well. For the original program set, perfect
performance can be achieved (Figure 8 bottom). For the collected plagiarisms,
only a single well-camouflaged program spoils the otherwise perfect result (Fig-
ure 8 top). The deterioration behavior of the recall curve is fairly good in either
case.
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3.4 Influence of token set and minimum match length

All of the data presented so far used JPlag’s default parameters: The “normal”
token set and the standard minimum match length of 9. However, we are also
interested how robust JPlag is against changes in these parameters, and how
such changes interact with the program set to be analyzed. Therefore, with the
performance measure introduced below we will investigate how JPlag’s perfor-
mance changes for different minimum match lengths, cutoff thresholds, token
sets, and program sets.

We measure the total plagiarism discrimination performance of JPlag by a
weighted sum of precision and recall. We choose a relative weight of 3 for recall
(versus precision) since it makes sense to penalize false negatives (non-detected
plagiarisms) far more than false positives, which merely introduce more work
for the final judgement by the human user. Hence, the performance measure
becomes P + 3R. The exact value 3 is not important, the results with a weight
of 2 or 4 would be similar.

We will leave out the voluminous details of the analysis here and only present
the results; more detail can be found in [Prechelt et al., 2000].

When analyzing the correlation between the minimum match length M and
the P +3R measure when using the “normal” token set and cutoff threshold 50,
we made the following observations:

1. The best value of M may depend on the cutoff threshold chosen. This is not
surprising, because a smaller M results in generally higher similarity values.

2. As a result, the general performance trend for increasing M may be upwards,
downwards, or hill-shaped.

3. Thus, any fixed M must be considered a compromise.
4. Low minimum match lengths tend to produce spurious matches and hence

reduce precision.
5. High minimum match lengths tend to miss more plagiarized regions and

hence reduce recall, in particular for the artificial program sets with their
higher plagiarism content.
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Figure 8: Left: recall/threshold tradeoff. Right: precision/recall tradeoff. Top: Large.P.
Bottom: Large.
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6. Overall, unless the value chosen is far away from the optimal one, the loss
of performance is only small.

We conclude that JPlag is robust against modestly non-optimal choice of M .
The same analysis using the small “struc” token set finds that due to the

shorter token strings, larger values of M are less advisable. Otherwise, the results
are remarkably similar to that for the default token set.

Finally, for the largest possible token set, called “full”, we find that due to
the longer token strings, a larger M can more often be tolerated, but modest
values still tend to be superior. Otherwise, the results are again similar to both
the default and the reduced token set.

We conclude that JPlag is highly robust against different choices of token
set. This is useful, because it suggests that JPlag may work similarly well for
many other programming languages, too, if they allow for a similarly structured
token set.

Furthermore, we conclude that the default token set and the default minimum
match length of 9 are reasonable and robust parameter choices for JPlag for a
wide variety of program sets.

3.5 Influence of cutoff criteria

Normally, one will look at the most similar pairs of programs found by JPlag
and decide for each pair individually whether it is a plagiarism pair or not. One
will progress in this manner towards lower similarity values until one is satisfied
that all plagiarisms were found.

In some cases, though, a fully automatic decision based on a similarity thresh-
old value is preferable: pairs with this or higher similarity will be considered
plagiarisms, while pairs with lower similarity will be considered independent.
We call such a criterion a cutoff criterion. A cutoff criterion receives as input a
vector s of similarity values and it computes a cutoff threshold T as described
above.

For evaluating JPlag in fully automatic mode, we have used a number of
different such cutoff criteria. Most of them are adaptive to the similarity dis-
tribution of the program set under investigation. From the above discussion we
already know that cutoff thresholds in the range 30 to 60 will usually yield the
best results. However, it is not clear whether any fixed threshold exists that will
almost always be optimal. An adaptive criterion that takes the current similarity
distribution into account might be more successful. These are the cutoff criteria
that we explored:

thresh. The threshT family of cutoff criteria uses the simplest possible
method: it does not look at the input vector s at all, but rather applies a fixed
cutoff threshold to make the decision. We have used various thresholds T from
30 to 95 percent, resulting in the criteria thresh30 through thresh95.

mplus. The mplusD family of cutoff criteria is somewhat adaptive towards
systematically higher or lower similarity values in s. It returns the median (50%
quantile, q50) of the similarity values in the vector plus D percent of the distance
from the median to 100: T = q50(s)+D/100∗ (100− q50(s)). In contrast to fixed
thresholds, these criteria can somewhat adapt to different “base similarities”;
they assume that the median similarity represents a typical non-plagiarism pair,
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because much less than half of all pairs will be plagiarism pairs. We have used
mplus25, mplus50, and mplus75.

qplus. The qplusD family is equivalent to the mplusD family, except that the
starting point of the offset is the third quartile: T = q75(s)+D/100∗(100−q75(s)).
The idea is that q75 may represent a larger case of accidental similarity, so that
even small values of D should not result in false positives. We have used qplus25,
qplus50, and qplus75.

kmeans. The kmeans cutoff criterion uses one-dimensional k-means cluster-
ing to partition the vector into two classes. The class with the higher similarity
values will be considered the plagiarism pairs.

avginf. The avginfP family of cutoff criteria considers the information con-
tent of pairs with about the same similarity value. The idea here is that pla-
giarisms should be rare and hence the range of similarity values that indicate
plagiarisms must have high information content (in the information-theoretical
sense of the word). Therefore, we select the threshold T as the minimum thresh-
old for which the average information content Cv≥T of pairs with this or higher
similarity is at least P percent above the overall average C. To do this, the avginf
criteria group similarity values into overlapping classes of width 5 percent: Given
the vector s of similarity values for all pairs, let Sv be the set of similarity values
from s that have values v . . . v + 5. Then the information content of each such
pair is Cv := − log2(|Sv|/|s|) and empty classes are defined to have no informa-
tion content, i.e., Cv := 0 if Sv = ∅. Based on these values Cv, the threshold can
be determined. We have used avginf050, avginf100, avginf200, and avginf400.

Figure 9 compares the performance distribution of the cutoff criteria, based
on the performance measure P + 3R. For the original program sets, the best
criteria are thresh50, thresh60, qplus50, and mplus50. They all have a median of
400 for P+3R (i.e. at least half of all results are perfect), a mean of about 330 and
a first quartile around 280. For the artificial program sets, no criterion manages
to be as good as that. The best ones are thresh40, qplus25, and mplus25.

This is good news: for practical purposes (where the amount of plagiarisms
is usually small), a rule as simple as thresh50 appears to yield about the best
possible results.

3.6 Comparison of JPlag and MOSS

We have also run our benchmark program sets through MOSS [Aiken, 1998],
postprocessed the results to use the same similarity measure as JPlag and then
computed precision and recall for various cutoff thresholds. The results are shown
in Table 4.

The left part of the table assumes an idealized cutoff criterion that picks
the optimal threshold in each case. Note that MOSS generally returns similarity
values that are quite a bit lower than those of JPlag. As we see, MOSS’s perfor-
mance is essentially the same as JPlag’s as far as Simple, Clean, and Large (or
its variants) are concerned. The only difference is that MOSS has to rely on the
variability of the cutoff threshold a little more strongly than JPlag.

For the variants of the Hard program set, however, JPlag is clearly superior:
For Hard.P and Hard.all, JPlag achieves the same recall with much better pre-
cision. Note that for Hard.all, JPlag achieves P = 46, R = 88 when t = 30, but
this has a lower P + 3R. Moreover, for the original program set Hard, MOSS is
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unable to find more than one third of the plagiarism pairs, even when the lowest
cutoff threshold 10 is being used.

A similar situation arises when we choose a fixed threshold for each of the
systems, as shown in the right part of the table: We cut off at 50 percent similarity
for JPlag and at 30 percent for MOSS. These thresholds are reasonable and tend
to balance precision and recall about evenly. The results show that there is no
single case where JPlag’s precision or recall are worse than that of MOSS, but
quite a few where MOSS’s are clearly worse than JPlag’s — in particular, again,
for the Hard program set. As mentioned before, no written description of MOSS’s
algorithm is available. Therefore, we cannot explain the results.

3.7 Runtime efficiency

The runtime of JPlag increases quadratically with the number of programs in
the program set, and slightly superlinearly with the size of the programs.

However, the resulting runtimes are usually small. The largest of our program
sets, Large.all, contains 99 programs averaging about 250 LOC. The total run
time of JPlag for reading and parsing these programs and performing all of
the pairwise comparisons, is about 6 seconds wall clock time on a Pentium III
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Figure 9: Performance of various cutoff criteria for the artificial program sets (left) or
the original program sets (right), using minimum match lengths of 7, 9, or 11, and any
of the token sets.
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Table 4: Comparison of performance of JPlag and MOSS. t: cutoff threshold (for JPlag
one of 30, 40, 50, 60, 70, 80, 90; for MOSS one of 10, 20, 30, 40, 50, 60, 70, 80, 90).
P: precision. R: recall. Optimal cutoff threshold: threshold is chosen ex post such as
to maximize P + 3R. Fixed cutoff threshold: threshold is chosen in advance and is the
same for all datasets (for JPlag, this is the situation shown in Table 3).

Optimal cutoff threshold Fixed cutoff threshold
JPlag MOSS JPlag MOSS

set t P R t P R t P R t P R
Simple 50 100 100 30 100 100 50 100 100 30 100 100

Hard 30 7 100 20 3 33 50 36 67 30 4 17
Hard.P 30 98 88 10 58 86 50 100 73 30 100 64
Hard.all 40 75 82 10 27 86 50 91 73 30 73 64

Clean any 100 n.a. any 100 n.a. 50 100 n.a. 30 100 n.a.

Large 50 100 100 30 100 100 50 100 100 30 100 100
Large.P 40 100 93 10 100 93 50 100 92 30 100 84
Large.all 40 99 93 10 97 93 50 100 92 30 100 84

machine with 700 MHz using JDK 1.3.1 Hotspot. Of this time, about 4 seconds
are spent for parsing the programs and only 2 seconds for the actual comparison.

4 Successful and non-successful plagiarizing attacks

This section analyzes the disguising techniques and the types of attacks we have
seen in the programs used for the evaluation. Any single instance of an attack will
at most result in what we call a local confusion of JPlag. Consider the shortest
segment of the original code that is necessary to apply a disguising technique. If
JPlag does not determine any similarity between the original code segment and
the result of the attack, we say that JPlag is locally confused. Local confusion
critically depends on both the token set used and the minimal match length.

For example, a local confusion can be caused if a single line of code (or a
single token) is inserted into a code segment of minimal match length. After
the insertion, JPlag will usually no longer find corresponding code segments
that have enough tokens to match. For another example, if a code segment of
minimal match length is split into two parts that are then swapped, JPlag is
deceived, too.

Unless a program is very short, a number of local confusions is required
before a plagiarism escapes its detection (depending on the cutoff criterion). A
perfect attack will need to achieve local confusion in every single segment of
the original code with minimal match length. JPlag will be successful unless a
plagiarist is both creative enough to find enough disguising techniques that can
be applied all over the given program (most techniques are only applicable in
certain situations) and then eager enough to apply them sufficiently often.

4.1 Futile attacks

The attacks discussed in this section do not work at all, because they do not
cause any modification in the list of tokens that are generated and considered
by JPlag. Almost every plagiarist has used at least one of these futile disguising
techniques.
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– Modification of code formatting by changing line breaks, spaces, and TABs
[48 times3]

– Insertion, modification, or deletion of comments [30 times]
– Modification of program output or of its formatting [33 times, 2 successful]

In 2 programs the modified output format resulted in extra method invoca-
tions.

– Change names of variables, methods, or classes [44 times]
– Split or merge of variable declaration lists [6 times]
– Alteration of modifiers such as private, final etc. [6 times]
– Modification of constant values [3 times]
– Some students did not attempt to disguise their cheating at all and submitted

identical copies. This “attack” may work if the number of submission is too
large for comparing them all manually and no automatic system is in place.
[4 times]

As we see from this list, JPlag’s complete ignorance of formatting, comments,
literals, and names is paramount to its success. The coarse granularity chosen
for the default token set (e.g. ignoring modifiers) is also useful.

4.2 Granularity-sensitive attacks

Roughly speaking, Java classes consist of declarations of methods and variables.
The ordering of declarations is irrelevant. Therefore, a promising line of attack is
to reorder the declarations in the implementation. However, if the reordered code
segments are longer than the minimal match length, JPlag signals block moves
instead of being locally confused. Thus, the success of such attacks critically
depends on the granularity of their application.

This type of reordering has been used quite frequently by the plagiarists [55
times]. However, only about 15% of them actually confused JPlag.

– Reordering within blocks of variable declarations [25 times, 6 successful]
– Global reordering of variable and method declarations [30 times, 3 successful]

4.3 Locally confusing attacks

The following types of attacks are usually locally successful, at least with the
default token set. Out of 134 times these attacks were applied, only 12 were
unsuccessful. However, only very few plagiarists achieved so much local confusion
all over a given program as to escape detection.

– Modification of control structures [35 times, all successful]
• Replacing a for-loop by a while-loop or vice versa [8 times]
• Eliminating auxiliary index variables by expressing them in terms of the

main iteration variable [3 times]
• Replacing a regular loop by an endless loop with break [1 time]
• Replacing a switch-statement by a sequence of if-statements [6 times]
• Adding redundant break-statements to every case of a switch-statement

[1 time]
3 Meaning that across all plagiarisms in our study we have seen this attack 48 times

overall.
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• Reordering the cases of a switch-statement [1 time]
• Move the default case out of a switch-statement [1 time]
• Reordering a cascading if-statement [2 times]
• Swapping the then and else-clauses of an if-statement [3 times]
• Replacing a ?-operator by an if-statement or vice versa [4 times]
• Adding a redundant if-statement with an identical then- and else-

clause [1 time]
• Moving code that follows an if ()... return into a newly added else-

clause [1 time]
– Temporary variables and subexpressions [28 times, all successful]

• Moving subexpressions into new auxiliary variables [16 times]
• Vice versa [7 times]
• Replacing an array initializer by a list of assignments [2 times]
• Moving an initialization away from the declaration [2 times]
• Explicitly initializing with the default value [1 time]

– Inlining and refactoring [20 times, 16 successful]
• Inlining small methods [5 times]
• Refactor parts of existing methods as new methods [11 times]

– Modification of scope [9 times, all successfull]
• Moving a plausibility test or begin/end of a try-block towards the begin

and/or end of the method [3 times]
• Moving temporary variables into surrounding blocks [3 times]
• Adding redundant declarations of temporary variables in inner blocks [1

time]
• Replacing class variables by instance variables if only one instance exists

[2 times]
– Reordering independent statements within a basic block [8 times, 6 success-

ful]
– Exploiting mathematical identities [5 times, 2 successful]
– Voluntary introduction of program defects [5 times, 3 successful]

3 plagiarists removed code or added additional statements. The two unsuc-
cessful attempts involved modified constants.

– Modification of data structures [6 times, 5 successful]
• Replacing a String by an array of char [1 time]
• Replacing an int[2] by two separate int [1 time]
• Replacing several separate variables of the same type by an array [3

times]
• Promote an int to a long [1 time, unsuccessful]

– Redundancy [15 times, 14 successful]
• Adding or removing unused code [7 times]
• Use fully qualified package names [2 times]
• Inserting invocations of dummy methods [1 time]
• Importing additional packages and classes [1 time]
• Inserting calls to Thread.yield() [1 time]
• Inserting return at the end of void methods [1 time]
• Duplicating assignment statements whose right hand side has no side

effect [1 time]
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• Adding or removing this when accessing instance variables [1 time, not
successful]
As a counter measure, JPlag’s default token set ignores this.

– Structural redesign of code [3 times, all successful]
• Move a state-changing method into a separate new class [2 times]
• Create and return a new object instead of changing the state of an ex-

isting one [1 time]

The last three types of attacks in this list are the really clever ones that are
hard to detect even for a human reader: Modify data structures, add or remove
redundancy, or redesign code structure.

5 Summary and conclusions

Our empirical evaluation of JPlag using 4 real sets of Java programs and several
further Java program sets containing additional plagiarisms can be summarized
as follows:

– For clearly plagiarized programs, i.e. programs taken completely and then
modified to hide the origin, JPlag’s results are almost perfect — often even
if the programs are less than 100 lines long.

– Even for only partially plagiarized programs, as in our Hard program set,
JPlag will pinpoint the similarities and can often discriminate them fairly
well from accidental similarities.

– The camouflage approaches (if any) chosen by the plagiarists from the real
program sets were utterly useless against JPlag.

– Even the attacks chosen by informed plagiarists were successful in less than
10 percent of all cases. These persons knew they had to fool a program and
had no other goal (except using only a modest amount of time to do it).

– Successful attacks against detection by JPlag require a lot of work or will
produce a program structure that looks ridiculous to any human inspector.

– JPlag is quite robust against non-optimal choice of its two free parameters,
token set and minimum match length.

– Given the similarity values computed by JPlag, a fixed cutoff threshold is
sufficient as a discrimination criterion that separates plagiarized program
pairs from non-plagiarized ones with near-optimal recall and nevertheless
good precision.

We do not know exactly to what degree these results transfer to other situations.
They might apply to a lesser degree for C and C++, because these languages
are currently not parsed but just scanned by JPlag. They might also be weaker
for differently structured (or much larger) programs if those make some of the
attacks more effective or for different plagiators if those use still different attacks.

However, on the whole we would be surprised if the effectiveness of JPlag
was ever much lower than demonstrated. It appears that the token-based string-
similarity approach is highly effective for finding plagiarisms, at least if the
token strings ignore enough detail. JPlag is an easy-to-use implementation of
this approach for programs written in Java, C, C++, and Scheme.

In principle, JPlag can be used for other purposes as well. If a software com-
pany suspects that a competitor has stolen parts of its source code, then after a
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court order or agreement of the parties JPlag can compare the two large program
systems in question and point out similar regions. JPlag has already been used
in such a situation (whose parties wish to remain anonymous) successfully.

By pointing out the regions that are different, rather than those that are
similar, JPlag can function as a program differencing engine (like Unix diff).
Compared to a character-based difference, a JPlag difference ignores much detail
and hence produces much smaller (though also less precise) differences, which
may be useful in some situations.
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