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Abstract—Software design patterns package proven solutions to recurring design problems in a form that simplifies reuse. We are
seeking empirical evidence whether using design patterns is beneficial. In particular, one may prefer using a design pattern even if the
actual design problem is simpler than that solved by the pattern, i.e., if not all of the functionality offered by the pattern is actually
required. Our experiment investigates software maintenance scenarios that employ various design patterns and compares designs with
patterns to simpler alternatives. The subjects were professional software engineers. In most of our nine maintenance tasks, we found
positive effects from using a design pattern: Either its inherent additional flexibility was achieved without requiring more maintenance
time or maintenance time was reduced compared to the simpler alternative. In a few cases, we found negative effects: The alternative
solution was less error-prone or required less maintenance time. Although most of these effects were expected, a few were surprising:
A negative effect occurs although a certain application of the Observer pattern appears to be well justified and a positive effect occurs
despite superfluous flexibility (and, hence, complexity) introduced by a certain application of the Decorator pattern. Overall, we
conclude that, unless there is a clear reason to prefer the simpler solution, it is probably wise to choose the flexibility provided by the
design pattern because unexpected new requirements often appear. We identify several questions for future empirical research.

Index Terms—Controlled experiment, design pattern, design alternatives, maintenance, change effort.

1 INTRODUCTION

OB]ECT—ORIENTED design patterns as presented by Gamma
et al. [7] are becoming increasingly popular. Their
purpose is capturing design knowledge in such a form that
it can be reused easily, even by less experienced designers.

Most design patterns collected in the popular book by

Gamma et al. [7] aim at reducing coupling and increasing
flexibility within systems. For instance, many of the
patterns delay decisions until runtime that would otherwise
be made at compile time or they factor functionality into
separate classes. As a consequence, they often allow adding

new functionality without changing old code.
Besides offering proven solutions using patterns pur-

portedly provides additional advantages: Design patterns
define terminology that improves communication among
designers [1] or from designers to maintainers [7]. They also
make it easier to think clearly about a design and encourage

the use of “best practices.”
Our work aims at testing and evaluating these claims.
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1.1 lIsn’t This Just Obvious?

Many readers may question the need for an empirical study
of a technique whose mechanism and benefits are so
obvious: “Clearly patterns do have the advantages claimed
for them!” However, as software engineers have discovered
before, sometimes spectacularly (e.g., in the case of multi-
version programming [8]), our intuition may seriously
mislead us and words such as “clearly” and “obviously” do
not constitute confirmation.

Hence, as scientists, we should seek solid and scrutinable
empirical evidence instead of relying on anecdotes from
irreproducible situations. In mature scientific disciplines,
this is a standard procedure before any theory will be
considered valid. The present work provides such empirical
evidence, indicating that the use of certain design patterns
can indeed, as expected, improve the maintainability of
programs.

However, our work also produced two results that
appear nonobvious (at least upon first look) and, hence,
produce useful insights. First, it provides a specific example
where reasonable use of a design pattern made a program
harder to maintain. This case can serve as a starting point
for empirically grounded development of guidelines for the
use of patterns. Second, we observed that, compared to a
straightforward solution to a problem, a design that
provides unnecessary flexibility may still be easier to
maintain. We consider both results to be not “just obvious.”

1.2 The Complexity Trade-Off

The following thought leads to our experiment approach.
Given the popularity of the Gamma et al. design patterns,
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one can expect that they will often be used in situations
where their flexibility is not needed: The pattern solves the
problem but is more powerful than required.

In such situations, there are two competing forces: On
the one hand, applying the pattern might be a good idea
because of the advantages of common terminology, proven
solutions, and best practices. On the other hand, it may be a
bad idea because the solution applied may be more
complicated than necessary and may thus make under-
standing and change more difficult, in particular for
programmers who have not learned about design patterns
before. The experiment described here investigates this
trade-off.

1.3 Experiment Overview

Our controlled experiment assesses designs using patterns
versus alternative designs in the context of program
maintenance. We consider four different programs with
different design patterns. Among the flexibility and
functionality properties of the design pattern solution of
each program, at least one is not actually needed for the
given maintenance tasks. For each program, the experiment
compares the performance of two groups of subjects on
these maintenance tasks. Two different baseline program
versions are used: Version PAT applies design patterns,
whereas version ALT employs a simpler solution that
exhibits only the functionality and flexibility actually
required.

We use well-documented, modestly-sized, artificial pro-
grams that contain implementations of the design patterns
ABSTRACT FACTORY, COMPOSITE, DECORATOR, FACADE,
OBSERVER, and VISITOR as described in the book [7]. The
subjects are professional software engineers. We compare
different groups of subjects before and after a two-day
design pattern course.

1.4 Related Work

A great deal of work is currently being done in both
scientific and industrial context towards identifying de-
sign patterns, writing them up, discussing and teaching
them, building support tools, etc. [1], [2], [3], [6]. Reports
on the effects of patterns are available in anecdotal form
from various practitioners [1], but there has been little
work done in a quantitative fashion, let alone in a
controlled environment.

In fact, the only quantitative, controlled experiment on
patterns reported so far appears to be [10] (see [9], [11] for
details). It investigates communication improvements
through patterns in a maintenance situation. Maintenance
can be done quicker and with fewer errors if design
patterns are explicitly documented. This result confirms
some of the purported positive effects on communication,
but does not address effects of patterns on actual software
structure.

1.5 Article Overview

In Section 2, we describe the experimental design, the
underlying performance model, the subjects” background,
and how the experiment was done. We also discuss the
internal and external validity of the experiment. Section 3
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describes the programs used in the experiment, the work
tasks, and the expected and actual results. We will assume
that the reader understands the relevant design patterns
and their properties; thus, we will not describe them. The
conclusion sketches the common denominator of the
results, possible consequences for proper program design,
and further research questions to be investigated.

2 DESCRIPTION OF THE EXPERIMENT

We now give a short description of the experiment design
and conduct. More detail, including the original experi-
ment documents such as the programs, the work tasks,
and the raw result data are available from http://
wwwipd.ira.uka.de/EIR/.

2.1 Experiment Objectives

It is tempting to use design pattern solutions even if the
actual design problem is simpler than the one solved by the
pattern. In this experiment, we consider the case that not
all of the flexibility of a particular design pattern is needed
in a program. Therefore, the solution based on patterns
could be replaced by a simpler one. We want to test
whether still using the design pattern in such cases is
helpful or harmful. We compare design pattern solutions
versus alternative solutions for programs involving differ-
ent design patterns and for subjects having different levels
of pattern knowledge.

2.2 Hypotheses

Our hypotheses that will be spelled out informally as
expectations take the form that a design pattern P does not
improve the performance of subjects doing a maintenance
exercise X on program A (containing P) when compared to
subjects doing the same exercise X on an alternative
program A’ (not containing P). The "helpful,” “harmful,”
or "neutral” interpretations are derived from the rejection
or nonrejection of these hypotheses.

2.3 Design

Our experimental design uses three independent and two
dependent variables. The independent variables are the
programs and change tasks, the program version, and the
amount of pattern knowledge; the dependent variables are
time and correctness.

e “Program and change task.” We use four different
programs, each with a different purpose, different
design patterns, and two or three different main-
tenance tasks.

e “Program version.” There are two different, func-
tionally equivalent versions of each program. One
version (named “pattern version,” PAT) employs
one or more design patterns, the other (named
“alternative version,” ALT) represents a somehow
simpler design using fewer design patterns or
simplified versions of them. This is the central
variable of our experiment. However, the subjects
did not know that this variable was in the experi-
ment at all; they only knew “the experiment tests the
usefulness of patterns.”
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TABLE 1
Order of Programs Per Group
temporal sequence group A | group B | group C | group D
PRE 1st problem | ST PaT | GR PaT | CO ALT | BO ALT
PRE | 2nd problem | GR Art | ST ALT | BO PaT | CO PaAT
pattern course
PosT | 3rd problem | CO Arr | BO Art | ST PaT | GR PAT
Post | 4th problem | BO Pat | CO Pat | GR Arr | ST ALt

ST, BO, CO, and GR are the programs and ALT or PAT indicates which program version was used. See descriptions in the text. For instance, in the
context of program BO, we will call group D the PRE-ALT group, group B the POST-ALT group, B+D together the ALT group, C+D together the

PRE group, etc.

“Amount of pattern knowledge.” This is the
difference between pretest and posttest. The experi-
ment had two parts on two different days. The first
part (the pretest, PRE) was performed in the morning
of the first day. Then a pattern course was taught
during the afternoon and the next morning. In the
afternoon of Day 2 the second part of the experiment
(the posttest, POST) was performed.

Before the experiment, the participants had only
little pattern experience; about half of the partici-
pants had no pattern knowledge at all. Therefore, the
posttest represents subjects with significantly higher
pattern knowledge than the pretest.

Dependent variable “time.” The time (in minutes)
taken for each maintenance task.

Dependent variable “correctness.” We decided
whether the participant’s solutions fulfilled the
requirements of the task or not. For many tasks, all
groups achieved near-perfect correctness, so we will
often ignore this variable.

We divided the subjects into four groups. In both pretest
and posttest, each group maintained one PAT program and
one ALT program, with two or three work tasks for each.
Overall, each subject worked on all four programs, and each
program was used as often in the pretest as in the posttest
and as often in the PAT version as in the ALT version. The
design is summarized in Table 1.

2.4 Performance Model
For this experiment, we consider the time required for a
task to be the sum of the following components:

1. understanding the task,
2. finding out which parts and aspects of the program
are relevant to the task,
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Fig. 1. Left: Years of professional experience of the subjects in each group.

each group.

3. understanding these relevant aspects of the program,

4. understanding how to perform the requested change
(change design), and

5. performing the requested change (change imple-

mentation).

The first of these components is identical for the PAT and
ALT version, the others may depend on the actual program
structure. For the second and later tasks to be performed on
one program, parts of the time components 2 and 3 may be
reused. The five components may contribute rather differ-
ently to the overall task completion time, depending on the
particular program and task.

2.5 Subjects and Groups

The 29 subjects are all professional software engineers. On
average, they had worked as software professionals for
4.1 years and their average C++ experience was 2.4 years.
Their work typically had a good mix of design, coding, test,
and maintenance activities. Fifteen subjects already had
some pattern knowledge before the course.

Data about programming and working experience was
gathered by a questionnaire weeks before the course. Based
on the questionnaire’s results, the prospective 32 subjects
were carefully assigned into four groups so as to balance as
well as possible the professional experience, C++ experi-
ence, and, in particular, the level of knowledge of the
relevant patterns. Four registered subjects did not appear at
the experiment. One additional participant appeared on
short notice and was assigned ad-hoc.

The resulting actual group sizes were six to eight subjects
in each group, with two to three having theoretical or
practical pattern knowledge of the relevant patterns before
the course. For more detailed information about the groups,
see Fig. 1 and Table 2.
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Right: Years of C++ programming experience of the subjects in
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TABLE 2
Pattern Knowledge of the Groups Before the Pattern Course
| Abstract Factory | Observer | Decorator | Composite | Visitor
Group A Taz Tas - _ Tas
Group B 5B1 333 5B1 TBg 5p1 3B1 Th: TB3
Group C 3c2 Tos 2¢2 Tes Tes lo2 Tos Tor Tos
Group D - Tps Tpa Tpy Tps 3ps 1ps

Each subject with pattern knowledge of the relevant patterns before the course is listed with the subject label given as the subscript to the number of
times s/he has previously used the pattern. T means that the subject has only theoretical knowledge of the pattern.

2.6 Experiment Conduct

The experiment was performed in November 1997 with
sd&m personnel in Munich. The pretest started at 9:30 am,
the posttest at 12:40 pm the next day. The subjects worked
asynchronously and there was no time limit for completing
the tasks; all subjects finished their tasks within three hours.

The subjects received all documents printed on paper:
general instructions, a program description, a program
listing, work task descriptions, and a postmortem ques-
tionnaire. The solutions were delivered in handwriting. The
overall amount of text written was small so handwriting
speed was not a limiting factor.

2.7 Threats to Internal Validity

Internal validity is the degree to which the observed effects
depend only on the intended experimental variables. Due to
the small group sizes, we must be concerned whether
groups differed significantly. Relevant aspects of similarity
are overall software capabilities, C++ capabilities, and
previous pattern experience. We have reduced differences
by balancing the groups explicitly using random blocked
assignment (often somewhat misleadingly called rando-
mized blocking although not the blocking is random, rather
the assignment of each block’s members to the groups is
[4]). The blocking was performed in a subjective manual
process based on the substitute measures of capability
available from the preexperiment questionnaire, as de-
scribed in Section 2.5. Despite later subject loss (right at the
start of the experiment), the resulting groups appear
reasonably similar and our results give no reason to believe
the opposite. Furthermore, an analysis of variance (see
Section 3) indicates that only a small fraction (= 7.5 percent)
of variation is explained by interpersonal differences of
subjects, anyway.

A second consideration is the precision and accuracy of
the time stamps recorded by the subjects. By cross-checking,
we found these data to be highly accurate and reliable.

2.8 Threats to External Validity

External validity is the degree to which the results are
generalizable, i.e., transfer to other situations. Several
differences to real software maintenance situations limit
the generalizability of this experiment: First, the original
designers and implementors may be the ones who maintain
the program. This was not the case in our experiment and
our results do not apply to such cases. The maintainers may
also have more pattern experience than our participants.
The consequences of this difference are unclear; but we do
not believe them to be dramatic. Second, real programs will
often be less well documented than the experiment
programs, real programs are typically larger, and change
tasks rarely revolve closely around a design pattern. The
effects of such differences probably differ from one case to
the next. Third, real maintainers implement and test their
solutions (instead of only writing them on paper), that will
typically trade some of the incorrectness observed in the
experiment against additional time. Furthermore, without
an explicit theory of SW maintenance, it is difficult to
predict what effect other design patterns (and alternatives)
than the five specific ones used in the experiment may have.

3 REsuLTs

First, we perform an analysis of variance (ANOVA) for
identifying the variables that are most relevant for explain-
ing work time. Table 3 shows the most relevant factors
found. Clearly, the differences between the various work
tasks are most important. The next most important
variables are the difference between PAT and ALT for each

TABLE 3
Analysis of Variance (AOV) of Work Time

DF | Sum Sq | Mean Sq | F Value | Pr(F)
worktask 8 32570 4071.2 59.153 | <0.001
worktaskxPATALT 7 3700 528.5 7.679 <0.001
worktaskxPREPOST 8 2079 259.8 3.775 <0.001
worktaskxcorrectness | 13 2861 220.1 3.197 <0.001
subject ID 28 4444 158.7 2.306 <0.001
order 1 40 40.2 0.584 0.446
residuals 195 | 13421 68.8

The variables for the model are the work task (per program), PAT or ALT, PRE or POST, correctness of the solutions (on a 4-point ordinal scale),
subject ID, and order (first or second test of session). Order is not significant and the contribution of subject identity is relatively small; the other
factors deserve separate discussion.
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Fig. 2. Time in minutes required for program Stock Ticker work task 1. Each dot marks one subject, the square is the arithmetic mean, the line
indicates plus/minus one standard error of the mean. The top part (four lines) shows the four individual groups. The middle part (two lines) shows the
same but with the PRE-PAT and POST-PAT groups combined and the PRE-ALT and POST-ALT groups combined. Likewise, the bottom part (two

lines) shows PAT plus ALT groups combined.

task (with a mean contribution about one-eighth as large),
and the difference between PRE and POST for each task
(one-sixteenth as large). Therefore, our discussion will be
structured along these variables. As we will see below, the
correctness differences are relevant for few worktasks only.
The systematic interpersonal differences (as described by
the influence of the variable subject ID) are not dramatically
large. The order difference between the first and second
program within the pretest or within the posttest is not a
significant factor at all.

Hence, for the further analysis, the results are discussed
worktask by worktask. For each of the programs, we
describe the program and its use of design patterns, the
work tasks and solutions, and the expected and actual
results.

The expectations form the basis of our discussion and
interpretation of the quantitative results. Note that this style
of discussion is dense, but no simpler form would
adequately characterize the effects we observed.

For the actual statistical analysis, we did not want to
rely on the assumption of normal distributions as made in
the standard analysis of variance techniques. The usually
nonparametric techniques, such as Kruskal-Wallis or
Wilcoxon test, on the other hand, perform an analysis
with respect to the medians of samples, rather than the
means. However, we would be more interested in the
means because the mean is more relevant for final
software development cost. Therefore, for further analysis,
we use distribution-free Bootstrap methods [5]. Given two
samples A and B of work time values to be compared, we
compute a bootstrap distribution' of differences of mean
work times and directly read p-values from this distribu-
tion (percentile method).

3.1 Observer: Stock Ticker (ST)

Program description. Stock Ticker is a program for directing
a continuous stream of stock trades (title, volume, unit
price) from a stock market to one or more displays that are

1. The bootstrap distribution is computed empirically by doing the
following 10,000 times: Given A, compute a bootstrap resample A’ by taking
a random sample of size |A| with replacement. Likewise, compute B’ from
B. The difference of the resample means (A’ — B) becomes one element of
the bootstrap distribution.

also part of the program. The displays advertize the
information or part of the information.

Both versions of Stock Ticker consist of seven classes.
The PAT version contains an OBSERVER in which four of
the seven classes participate. This version of the program
has 343 lines (including comments and blank lines). The
ALT version of the program includes one class that
contains an instance variable for each display and updates
the displays when the data changes. No dynamic
registration of observers is implemented. This version
has 279 lines.

3.1.1 Work Task 1

“In the given program listing only one of the two concrete display
types is used. Enhance the program such that a second display [of
the yet unused display type] is shown.” The PAT groups
only had to invoke the pattern method subscribe with a
new instance of the display. The ALT groups had to
introduce a new display instance variable and invoke the
displaying of new data on each data update. The main work
in this task is to comprehend the structure of the program,
in particular how the displays receive data.

Expectations. The structure of the PAT version is more
complicated than the structure of the ALT program version.
When subjects lack knowledge of the OBSERVER pattern (in
the pretest) they have to find out how the OBSERVER
mechanism works, thus PRE-PAT subjects should require
more time than PRE-ALT subjects (we call this expectation
“E1”). Given sufficient pattern knowledge, on the other
hand, the PAT group may understand the program
structure more quickly than the ALT group (E2).

Results. Fig. 2 supports E1: PRE-PAT subjects require
more than twice as much time than PRE-ALT subjects
(151 percent more time, 46.6 minutes versus 18.5 minutes,
significance p < 0.001). In the posttest, however, the
PAT subjects still required more time than the ALT subjects
(23 percent more time, 20 minutes versus 16.2 minutes,
significance p = 0.023), refuting E2. We conclude that, for
this application and this type of maintenance tasks, the use
of the OBSERVER pattern may be harmful.
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Fig. 3. Time required for program stock ticker work task 2.

3.1.2 Work Task 2

“Change the program so that new displays can be added
dynamically at runtime.” The PAT groups only had to realize
that nothing needed to be done. The ALT groups had to add
the functionality of an OBSERVER (at least two lines had to
be changed, one line had to be deleted, and one method had
to be added.)

Expectations. In contrast to all other tasks in the
experiment, this task is clearly unfair; we expect the ALT
version to be clearly at a disadvantage (E3). In the PAT
version of the program the subjects need to know that the
OBSERVER already implements the functionality required.
POST subjects should immediately recognize this; PRE
subjects might lack the relevant knowledge, slowing them
down. The PRE-ALT subjects may have to reinvent the
OBSERVER solution and all ALT subjects have to implement
it, hence they should be far slower.

Results. Fig. 3 confirms E3. The unfair task is completed
on average 29 percent faster on the PAT version (15.3 minutes
versus 21.4 minutes, significance of difference p = 0.045). For
both versions, the difference between PRE and POST is not
significant.

3.2 Composite and Visitor: Boolean Formulas (BO)
Program description. Boolean Formulas contain a library for
representing Boolean formulas (AND, OR, XOR, NOT, and
variables) and for printing the formulas in two different
styles. Furthermore, it contains a small main program that
generates a formula and invokes both printing routines.

The PAT version of Boolean Formulas consists of 11 classes
spanning 470 lines. The boolean formulas are represented
by a COMPOSITE. The printing routines are implemented as
VISITORs. For each concrete class of the COMPOSITE, a
printing method is implemented in each of the two
VISITORs. Each class of the COMPOSITE provides a dispatch
method for the VISITORs.

The ALT version of the program is shorter: eight classes
spanning 374 lines. It has almost the same structure as the
PAT version except for the VISITOR pattern, that is
completely missing. The different printing routines are
located directly in each COMPOSITE class instead. The
VISITOR solution allows for adding new visitors without
changing the COMPOSITE classes.

3.2.1 Work Task 1

“Enhance the program to evaluate the Boolean formulas, i.e., to
determine the result for a given formula represented by a
COMPOSITE and values of the variables.” The printing routines
serve as structural examples. The PAT groups had to create
a new VISITOR and the ALT groups had to add new
methods to each concrete class of the COMPOSITE.

Expectations. In principle, it should be easier to create a
single new class similar to another rather than adding a
method to several classes. This should favor the PAT groups.
However, the VISITOR pattern is technically quite difficult
to understand. We expect that it will take more time for the
PAT groups to understand the current application of the
VISITOR pattern than for the ALT groups to find where to
add the methods (E1). Gaining pattern knowledge should
help all groups (E2) because even in the ALT program a
COMPOSITE is present, so the POST subjects presumably
understand the structure of the formula representation
faster. The PAT group might profit more from the pattern
course than the ALT group (E3) because the working
mechanism of the VISITOR is confusing.

Results. As one can see from Fig. 4, POST-ALT group is
30 percent faster than the POST-PAT group as expected
(29.5 minutes versus 42.4 minutes, significance p = 0.034),
confirming a part of E1. However, in the pretest, there is a
trend in the opposite direction (11 percent slower,
52.2 minutes versus 47.1 minutes, albeit no significant
difference, p = 0.299), rejecting the other part. Probably in
PRE-PAT, the VISITOR is largely just taken for granted and
imitated by the subjects (instead of analyzed and under-
stood) and, thus, does not increase complexity. This also
explains why the PAT group does not profit more from the
pattern course than the ALT group (thus, E3 is wrong),
although both show some improvement as expected in E2.
Overall, it may be that an unrequired VISITOR, although it
appears complicated, is not necessarily harmful—but, the
data is not quite conclusive in this respect.

3.2.2 Work Task 2

For the second task of this program our instructions were
insufficiently clear. As a result, most subjects completely
misunderstood the job and delivered something very
different from what we had intended. We therefore ignore
the task here.
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Fig. 4. Time required for program Boolean Formulas work task 1.

3.3 Decorator: Communication Channels (CO)

Program description. Communication Channels is a wrapper
library. A communication channel establishes a connection
for transparently transferring arbitrary-length packets of
data and one can turn on additional logging, data
compression, and encryption functionality. The library does
not implement the functionality itself, but only provides a
FACADE to a system library. However, this application of
the FACADE pattern is irrelevant to the experiment.

The PAT version is designed with a DECORATOR for
adding the functionality to a bare channel, having the
classes for logging, data compression, and encryption as
decorator classes. The program consists of 365 lines in six
classes.

The ALT version comprises but a single class, that uses
flags and if-sequences for turning functionality on or off;
the flags can be set when creating a channel. It consists of
318 lines. Communication channels is the only program
where the ALT program has a structured (as opposed to
object-oriented) design.

3.3.1 Work Task 1

“Enhance the functionality of the program such that error-
correcting encoding (bit redundancy) can be added to commu-
nication channels.” The underlying functionality is again
provided by a given class, so the subjects only had to
integrate the new functionality into the program.

The PAT subjects had to add a new DECORATOR class
while the ALT subjects had to make additions and changes
at various points in the existing program.

Expectations. We expect two influences of the DECORA-
TOR on the subjects’ behavior. First, the ALT version is
easier to understand because its behavior is not delocalized
as in the multiple decorator classes. This would lead to the
conclusion that the ALT groups are faster than the PAT
groups, especially in the pretest. Second, a counter-
influence results from the structure of the DECORATOR:
The functionality is encapsulated in classes and one need
hardly care about mutual influences. In particular, in the
ALT version, the subjects have to ensure they add the new
functionality at the correct places in the program for proper
sequencing of the various switchable functionalities; this
will consume time and may lead to omissions and mistakes.
We expect the second influence to be stronger than the first
and, hence, the PAT version to be preferable (E1), especially
at higher levels of pattern knowledge (E2).

Results. As one can see from Fig. 5 the PAT groups are
indeed significantly faster than ALT groups (38 percent
faster, 28.8 minutes versus 46.2 minutes, significance
p < 0.001), confirming El. The pattern-solution is clearly
preferable.

There is no significant difference between PRE-ALT and
POST-ALT, as expected (46.5 minutes versus 45.9 minutes,
significance p = 0.46), but also none between PRE-PAT and
POST-PAT (27.5 minutes versus 29.8 minutes, significance
p = 0.29), thus rejecting E2. This means the positive effect of
pattern use is even independent of pattern knowledge in
this case.

L o L POST PAT
(R . < R— POST ALT
PRE PAT
PRE ALT
PAT
ATARSAL QP g CEES. Q0. M. ALT
Be B3 G AIAP ASRg BUES  ABS Y POST
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time in minutes

Fig. 5. Time required for program Communication Channels work task 1.



PRECHELT ET AL.: A CONTROLLED EXPERIMENT IN MAINTENANCE COMPARING DESIGN PATTERNS TO SIMPLER SOLUTIONS

1141

——————————————— e POST PAT
e S L o POST ALT
B RL_ 2 e 25 PRE PAT

@ =2 PRE ALT

time in minutes

Fig. 6. Time required for program Communication Channels work task 2.

The pattern-solution is also superior in terms of
correctness: Errors were made by seven out of eight
PRE-ALT subjects and by six out of seven POST-ALT while
in the PAT group no errors occurred at all.

3.3.2 Work Task 2
A communication channel has different states (namely,
opened, closed, or failed) and its operations have different
result codes (OK, failure, or impossible). Work task 2 called
to “determine under which conditions a reset() call will return the
‘impossible” result.” To do this the subjects had to find the
spots where the states were changed. In the PAT version,
these spots are spread over the different decorator classes.
Expectations. Program understanding is gained in the
first working task. So, only the new details relevant for this
task need to be understood now. This will be easier for the
more localized ALT program with respect to both work time

(E3) and correctness (E4).

Results. The results as shown in Fig. 6 are inconclusive
for this task: The error rate in the ALT groups is almost as
high as in the PAT groups (in contrast to E4) and the ALT
group is much faster in the pretest than in the posttest. The
latter is unexpected and can only be explained by a subject
fatigue effect in the (afternoon) posttest or by pure chance
(which is plausible since the task is only five minutes long).
Overall, E3 is still supported though. Note that this task is
rather minor and that all figures use different scales.

3.3.3 Work Task 3

“Create a channel object that performs compression and
encryption.” The ALT subjects had to create only a single
object, giving parameters for the functionality flags, while
PAT subjects had to determine the proper nesting of the
decorators to get the required functionality in the requested
order. (A similar sequence problem plagued the ALT
subjects in task 1.)

Expectations. The PAT groups will take longer (E5) and
commit more errors (E6).

Results. Both expectations are supported (see Fig. 7):
Overall, the ALT group is significantly faster (53 percent
faster, three minutes versus 6.4 minutes, significance
p < 0.001) than the PAT group. More importantly, we
counted six wrong solutions (out of 14) for PAT, while no
errors were observed for ALT. However, this object creation
problem could be overcome by a suitable convenience
method without changing the overall design.

3.4 Composite and Abstract Factory: Graphics
Library (GR)

Program description. Graphics Library contains a library for
creating, manipulating, and drawing simple types of
graphical objects (lines and circles) on different types of
graphical output devices (alphanumeric display, pixel
display). In a central class (generator), the output device
is selected. Depending on the output device, the corre-
sponding types of graphical objects are created. Some basic

POST PAT
POST ALT
PRE PAT
PRE ALT

o] 5

time in minutes

Fig. 7. Time required for program Communication Channels work task 3.
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Fig. 8. Time required for program Graphics Library work task 1.

graphical objects (lines and points) are implemented
identically for all graphical output devices, but the
implementation of complex objects like circles or the
graphical context depends on the graphical output device.
Furthermore, graphical objects can be collected in groups,
that can be manipulated like individual objects.

Patterns used in the PAT version of this program are
ABSTRACT FACTORY for the generator classes and COM-
POSITE for hierarchical object grouping.

The ALT version of the program realizes the instantiation
of the appropriate classes for each graphical output device
by switch-statements in but a single generator class. The
combination and manipulation of graphical object groups
are realized with a quasi-COMPOSITE. The only difference is
that groups are not treated as graphical objects as in the
COMPOSITE. As a result, a group B is included in another
group A by adding each element of B individually to A, i.e.,
there is no hierarchical group nesting.

This program pair has the smallest structural difference
between the PAT and ALT version of all four program pairs
in the experiment. The PAT version is 13 classes in 682 lines;
the ALT version 11 classes in 663 lines.

3.4.1 Work Task 1

“Add a third type of output device (plotter).” Subjects main-
taining the PAT program had to introduce a new concrete
factory class, extend the factory selector method, and add
two concrete product classes. Subjects in the ALT groups
had to enhance the switch statements in all methods of the
generator class. The appropriate classes of graphical objects
for the new output device had to be added as for PAT.

Expectations. Regarding the maintenance task, the time
for finding the changes and additions is expected to be
almost equal for the PAT and the ALT groups. So, the
main difference in time required for this task will be
caused by program understanding. Here, we expect the
simpler ALT program to be easier to understand, at least
in the pretest (E1).

Pattern knowledge will help both groups (E2) because of
the COMPOSITE structure in both programs. The pattern
group may profit a little more from the pattern course
because it eases understanding the structure of the
ABSTRACT FACTORY.

Results. The results shown in Fig. 8 support both
expectations. Both groups maintaining the ALT program

were faster than the corresponding PAT groups with the
same pattern knowledge level, supporting E1 (15 percent
faster, 32 minutes versus 37.5 minutes, total significance
p = 0.10). The improvement from PRE to POST (E2) is
17.3 percent (40.5 minutes versus 33.5 minutes, significance
p = 0.17) for the PAT group and 22.8 percent (36.4 minutes
versus 28.1 minutes, significance p = 0.031) for the ALT
group. That is 21.2 percent overall (38.6 minutes versus
30.4 minutes, significance p = 0.021).

3.4.2 Work Task 2

Determine whether or not a certain sequence of operations
would result in an x-shaped figure. This work task is a
small comprehension test concerning the COMPOSITE
structure. The key to the answer for both groups is finding
out that only references to graphical objects (not copies of
objects) are stored in an object group.

Expectations. The structure of both programs is quite
similar in the region of interest. So, we do not expect to
observe significant differences between the ALT and the
PAT groups (E3). But, we expect a difference between PRE
and POST: Subjects without pattern knowledge are slower
than subjects with pattern knowledge (E4) because the latter
are familiar with the COMPOSITE.

Results. As we see in the lower part of Fig. 9, the
difference between PAT and ALT (PAT is 21 percent faster
than ALT, 13.6 minutes versus 17.2 minutes, significance
p = 0.085) is very similar to the difference between POST
and PRE (POST is 21 percent faster than PRE, 13.6 minutes
versus 17.2 minutes, significance p = 0.091). Both are only
weakly significant. However, we tend to consider the large
value of subject A6 an outlier. Deleting it makes both
differences disappear, so that E3 is confirmed but E4 is
rejected: The performance does not depend on pattern
knowledge.

4 CONCLUSION

We investigated the question whether (with respect to
maintenance) it is useful to design programs with design
patterns even if the actual design problem is simpler than
that solved by the design patterns, i.e.,, whether using
patterns that over-kill the problem at hand is useful or
harmful.

We found evidence of both cases, depending on the
situation. Software engineering common sense turned out
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Fig. 9. Time required for program Graphics Library work task 2.

to be a pretty accurate (but not perfect) predictor of these
effects for three out of the four programs used in this
experiment. Summarizing the individual expectations ver-
sus actual results for these programs and tasks yields the
following picture:

e Program “Stock Ticker (ST)” (OBSERVER):
Expectation. The pattern solution is more compli-
cated and, thus, harmful, unless its flexibility is
really required.

Actual result. A negative effect from unnecessary
application of the OBSERVER pattern, particularly for
subjects with low pattern knowledge.

e Program “Boolean Formulas (BO)” (COMPOSITE,
VISITOR):

Expectation. The VISITOR is difficult to understand
and, thus, harmful.

Actual result. A neutral effect—the VISITOR does
not significantly increase the required time.

e Program “Communication Channels (CO)” (DEC-
ORATOR):

Expectation. Due to the isolation of different parts of
the functionality (and, thus, delocalization of the
overall functionality), the pattern solution is easier to
change, but more error-prone to call.

Actual result. As expected.

e Program “Graphics Library (GR)” (COMPOSITE,
ABSTRACT FACTORY):

Expectation. The two versions are structurally
similar, so we anticipate at most small performance
differences.
Actual result. As expected, only small differences
were found.

Note that these expectations were only qualitative, so the
quantitative experiment results provide additional informa-
tion beyond confirming or rejecting the hypotheses.

We suggest the following lessons learned. First, it is
usually, but not always, useful to use a design pattern if
there are simpler alternatives. Second, use software en-
gineering common sense to find the exceptions where a
simpler solution should be prefered, even if a design
pattern solution could easily be applied. Third, even where
this common sense suggests that using a pattern might not
be a good idea, it is sometimes right to use it (as with the
Visitor in our program BO). Hence, if in doubt, using the
pattern rather than the simpler solution appears to be a

good default approach. Fourth, a thorough understanding
of specific design patterns often helps when maintaining
programs using them, even if these programs are neither
very large nor very complicated. If this observation holds in
general, it suggests limitations to the usefulness of patterns
once the catalog of available patterns becomes large and
programmers do not know them all.

We emphasize that, unless there is a clear reason to
prefer the simpler solution, it is probably wise to choose the
flexibility provided by the design pattern solution because
unexpected new requirements often occur. This aspect was
deliberately ignored in our experiment. In those cases
where the pattern solution was not beneficial, its added
complexity can be viewed as the price for its flexibility.

As a consequence of lessons one and three, we need to
make sure that the software engineers are familiar with
alternatives. This means that in our university courses, we
must not just teach the current fad blindly (whether it is
OO or patterns), but we should teach alternative ap-
proaches as well.

Further research should address the following questions:
Are there alternative simpler solutions for specialized
applications of other (kinds of) design patterns as well?
Are the trade-offs involved similar to the ones discussed
here? What are the effects of pattern versus nonpattern
designs for long term maintenance involving many interact-
ing changes? How does the use or nonuse of patterns
influence activities other than pure maintenance, e.g.,
inspections or code reuse? Can we characterize the
situations in which (current) design common sense mis-
leads us?
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