
Submission to IEEE Computer

An empirical comparison of
C, C++, Java, Perl, Python, Rexx, and Tcl

Lutz Prechelt (prechelt@ira.uka.de)
Fakultät für Informatik, Universität Karlsruhe

D-76128 Karlsruhe, Germany
+49/721/608-4068, Fax: +49/721/608-7343

http://wwwipd.ira.uka.de/˜prechelt/

March 14, 2000

Summary
80 implementations of the same set of requirements are
compared for several properties, such as run time, memory
consumption, source text length, comment density, program
structure, reliability, and the amount of effort required for
writing them. The results indicate that, for the given pro-
gramming problem, which regards string manipulation and
search in a dictionary, “scripting languages” (Perl, Python,
Rexx, Tcl) are more productive than “conventional lan-
guages” (C, C++, Java). In terms of run time and mem-
ory consumption, they often turn out better than Java and
not much worse than C or C++. In general, the differences
between languages tend to be smaller than the typical dif-
ferences due to different programmers within the same lan-
guage.

Introduction

When it comes to the pros and cons of various program-
ming languages, programmers and computer scientists alike
are usually highly opinionated. The present work provides
someobjectiveinformation comparing several languages,
namely C, C++, Java, Perl, Python, Rexx, and Tcl. It has
the following features:
– The same program (i.e. an implementation of the same

set of requirements) is considered for each language.
Hence, the comparison is narrow but homogeneous.

– For each language, we analyze not a single implementa-
tion of the program but a number of separate implemen-
tations by different programmers. Such a group-wise
comparison has two advantages. First, it smoothes out
the differences between individual programmers (which
threaten the validity of any comparison based on just
one implementation per language). Second, it allows to
assess and compare thevariability of program proper-
ties induced by the different languages.

– Several different aspects are investigated, such as pro-
gram length, programming effort, run time efficiency,

memory consumption, and reliability.
We will consider the languages both individually and

combined into groups: Perl, Python, Rexx, and Tcl and
often calledscripting languagesand will form one group
called thescript group. The name scripting language com-
monly refers to languages that are for instance (more or
less) interpreted rather than compiled, at least during the
program development phase, and that do typically not re-
quire variable declarations. The alternative are the more
conventional programming languages which I will call the
non-script group. These languages (C, C++, and Java) are
more or less compiled and require typed variable declara-
tions. We will sometimes consider C and C++ as one group
and Java as another.

The number of programs considered for each language
and the execution platforms are described in Table 1. See
the sidebars for a discussion of setup and validity of the
study. A more detailed description of this study can be
found in a technical report [4].

Results

The programs were evaluated on three different input files:
z1000 contains 1000 non-empty random phone numbers,
m1000 contains 1000 arbitrary random phone numbers
(with empty ones allowed), and z0 contains no phone num-
ber at all (for measuring dictionary load time alone).

Run time

We will first investigate the total run time and then examine
the initialization phase and the search phase separately.
Total: z1000 data set.The global overview of the program
run times on the z1000 input file is shown in Figure 1. We
see that for all languages a few very slow programs exist,
but except for C++, Java and Rexx, at least three quarters
of the programs run in less than one minute. We can make
several interesting observations:

1



The programming problem: Phonecode
All programs implement the same functionality, namely a conversion from telephone numbers into word strings

as follows. The program first loads a dictionary of 73113 words into memory from a flat text file (one word per line,
938 Kilobytes overall). Then it reads “telephone numbers” from another file, converts them one by one into word
sequences, and prints the results. The conversion is defined by a fixed mapping of characters to digits as follows:
e jnq rwx dsy ft am civ bku lop ghz

0 111 222 333 44 55 666 777 888 999

The task of the program is to find a sequence of words such that the sequence of characters in these words exactly
corresponds to the sequence of digits in the phone number. All possible solutions must be found and printed. The
solutions are created word-by-word and if no word from the dictionary can be inserted at some point during that
process, a single digit from the phone number can appear in the result at that position. Many phone numbers have
no solution at all. Here is an example of the program output for the phone number “3586-75”, where the dictionary
contained the words ‘Dali’, ‘um’, ‘Sao’, ‘da’, ‘Pik’, and 73108 others:
3586-75: Dali um

3586-75: Sao 6 um

3586-75: da Pik 5

A list of partial solutions needs to be maintained by the program while processing each number and the dictionary
must be embedded in a supporting data structure (such as a 10-ary digit tree) for efficient access.

Table 1: Number of programs and name/version of com-
piler or interpreter used for the various languages. The Java
evaluation uses either the JDK 1.2.2 Hotspot Reference ver-
sion or the JDK 1.2.1 Solaris Production version (with JIT),
whichever was faster for each program. All programs were
executed on a 300 MHz Sun Ultra-II workstation with 256 MB
memory, running under SunOS 5.7 (Solaris 7). Note that the
results for C and Rexx will be based on only 5 or 4 programs,
respectively, and are thus rather coarse estimates of reality,
but for all of the other languages there are 10 or more pro-
grams, which is a broad-enough base for reasonably precise
results.

language no. compiler or execution platform
Tcl 10 tcl 8.2.2
Rexx 4 Regina 0.08g
Python 13 python 1.5.2
Perl 13 perl 5.005_02
Java 24 Sun JDK 1.2.1/1.2.2
C++ 11 GNU g++ 2.7.2
C 5 GNU gcc 2.7.2

– The typical (i.e., median) run time for Tcl is not signifi-
cantly longer than that for Java or even for C++.

– The median run times of both Python and Perl are
smaller than those of Rexx and those of Tcl.

– The median run time of Java is not significantly dif-
ferent from any of the others (not even Rexx, where
p = 0:13).

– Don’t be confused by the median for C++. Since the
distance to the next larger and smaller points is rather
large, it is unstable. The Wilcoxon test, which takes
the whole sample into account, confirms that the C++
median in fact tends to be smaller than the Java median
(p = 0:18).

– The median run time of C is smaller than those of Java,

M
ooo oo o oo oo

M
o ooo

M
o oooo oo o oo oo o

M
o oo oo o oo o oo oo

M
o ooo o oo o ooo oo oo o oooo o ooo

M
o o oo oo

oo o oo

M
o o oooC

C++

Java

perl

python

rexx

tcl

4 16 64 256 1024 4096

run time for z1000 [seconds]

Figure 1: Program run time on the z1000 data set. Three
programs were timed out with no output after about 21 min-
utes. The bad/good ratios range from 1.5 for Tcl up to 27 for
C++. Note the logarithmic axis. ��

Rexx, and Tcl and tends to be smaller than those of Perl
and Python.

– Except for two very slow programs, Tcl and Perl run
times tend to have a smaller variability than the run
times for the other languages.

Remember not to over-interpret the plots for C and
Rexx, because they have only few points. Note that the
Rexx programs can be made to run about four times faster
by recompiling the Regina interpreter so as to use a larger
hash table size; the additional memory overhead is negligi-
ble.

If we aggregate the languages into only three groups
(one with C/C++, one with Java, and one with scripts), we
find that C/C++ is faster than Java (p = 0:074) and tends
to be faster than scripts (p = 0:15). There is no significant
difference between average Java and Script run times. With

2



Validity of this comparison
Any programming language comparison based on actual example programs is valid only to the degree to which

the capabilities of the respective programmers using these languages are similar. In our case, we only need the
programs to be comparable on average, not in individual cases. This section assesses program comparability threats
for the 80 programs analyzed here.

The programs analyzed in this report come from two different sources. The Java, C, and C++ programs were
produced in 1997/1998 during a controlled experiment [5]; all of the subjects were Computer Science master stu-
dents. The Perl, Python, Rexx, and Tcl programs were produced under more variable conditions: They were created
by volunteers after I had posted a “Call for Programs” on several newsgroups. These subjects are more diverse in
terms of background and experience.

Programmer capabilities. It is plausible that a public call for programs may attract only fairly competent
programmers and hence the script programs reflect higher average programmer capabilities than the non-script
programs. However, two observations suggest that this is not a problem. First, with some exceptions, the students
who created the non-script programs were also quite capable and experienced [5]. Second, a fair fraction of the
script programmers have described themselves as either beginners in their respective scripting language or even as
persons without a thorough programming background (e.g. VLSI designer, system administrator, social scientist).

Within the non-script group, the Java programmers tend to be less experienced in their language than the C and
C++ programmers because Java was still a new language in 1997/1998. In the script group, the Perl subjects may
be more capable than the others, because the Perl language appears more than others to attract especially capable
people.

Work time reporting accuracy. In contrast to the non-script programs from the controlled experiment, for
which we know the real programming time accurately, nothing kept the script programmers from “rounding down”
the working times they reported when they submitted their program. Worse, some apparently read the requirements
days before they actually started implementing the solution (in one case“two weeks. . . during which my subcon-
scious may have already worked on the solution.”)

However, there is evidence that the average work times are reasonably accurate for the script group, too: The
common software engineering wisdom which says “the number of lines written per hour is independent of the
language” holds fairly well across all languages. Even better, the same data also confirms that the programmer
capabilites are not higher in the script group.

Different task and different work conditions. The instructions for the non-script group focused on correctness
as the main goal; high reliability and at least some efficiency was required in an acceptance test. The instructions
of the non-script group mentioned 8 other program quality goals besides the main goal of correctness. Instead of
the acceptance test in the non-script group, the script group received the z1000 input and output data for their own
testing. Both of these differences may represent an advantage for the script group.

Summary. Overall, it is probably fair to say that due to the design of the data collection, the data for the script
groups will reflect several relevant (although modest) a-priori advantages compared to the data for the non-script
groups and there are likely to be some modest differences in the average programmer capability between any two of
the languages. Due to these threats to validity, we should discount small differences between any of the languages,
as these might be based on weaknesses of the data. Large differences, however, are likely to be valid.

80% confidence a script will run at least 1.29 times as long
as a C/C++ program and a Java program at least 1.22 times
as long as a C/C++ program. The bad/good ratios are much
smaller for scripts (4.1), than for Java (18) or even C/C++
(35).
Initialization phase only: z0 data set. Now we consider
only reading, preprocessing, and storing the dictionary. Fig-
ure 2 shows the corresponding run time.

We find that C and C++ are clearly faster in this case
than all other languages. The fastest script languages are
again Perl and Python. Rexx and Tcl are again slower than
these and Java is faster.

For the aggregate grouping we find that, compared to a
C/C++ program, a Java program will run at least 1.3 times
as long and a script will run at least 5.5 times as long (at

the 80% confidence level). Compared to a Java program, a
script will run at least 3.2 times as long.
Search phase only.Finally, we may subtract this run time
for the loading phase (z0 data set) from the total run time
(z1000 data set) and thus obtain the run time for the actual
search phase only. Figure 3 shows the corresponding run
times. We find the following:

– Very fast programs occur in all languages except for
Rexx and Tcl and very slow programs occur in all lan-
guages without exception.

– The median run time for Tcl is longer than that for
Python, Perl, and C, but shorter than that of Rexx.

– The median run times of Python are smaller than those
of Rexx, and Tcl. They even tend to be smaller than
those of Java (p = 0:13).

3



Plots and statistical methods
The main evaluation tool will be the multiple box-

plot display, see for example Figure 1. Each of the
“lines” represents one subset of data, as named on the
left. Each small circle stands for one individual data
value. The rest of the plot provides visual aids for the
comparison of two or more such subsets of data. The
shaded box indicates the range of the middle half of
the data, that is, from the first quartile (25% quantile)
to the third quartile (75% quantile). The “whiskers” to
the left and right of the box indicate the bottom and
top 10% of the data, respectively. The fat dot within
the box is the median (50% quantile). The “M” and
the dashed line around it indicate the arithmetic mean
and plus/minus one standard error of the mean.

For quantitatively describing the variability within
one group of values we will use thebad/good ratio:
Imagine the data be split in an upper and a lower half,
then the bad/good ratio is the median of the upper half
divided by the median of the lower half. In the boxplot,
this is just the value at the right edge of the box divided
by the value at the left edge. In contrast to a variability
measure such as the standard deviation, the bad/good
ratio is robust against outliers.

Most interesting observations can easily be made
directly in the plots. To be sure, I have also performed
statistical tests (please skip the rest of this subsection
if you are not interested in these details): Medians are
compared using a one-sided Wilcoxon Rank Sum Test
(Mann-Whitney U-Test). The result of each test is a
p-value, that is, a probability that the observed differ-
ences between the samples are only accidental and no
difference (or a difference in the opposite direction) be-
tween the underlying populations does indeed exist. I
will usually not give thep-value itself, but rather say
“. . . is larger than. . . ” if0 < p � 0:10 or “. . . tends to
be larger than. . . ” if0:10 < p � 0:20. If p > 0:10

there is “no significant difference”.
At several points I will also provide confidence in-

tervals, either on the differences in means or on the dif-
ferences in logarithms of means (that is, on the ratios
of means). These confidence intervals are computed
by Bootstrapping. They will be chosen such that they
are open-ended, that is, their upper end is at infinity.
Bootstrapping is described in more detail in [3, 5].

Note that due to the validity caveats of the study
these quantitative statistical inference results merely
indicate trends; they should not be considered precise
evidence.

– The median run times of Perl are smaller than those of
Rexx, Tcl, and Java.

– Although it doesn’t look like that, the median of C++ is
not significantly different from any of the others.

The group-aggregated comparison indicates no signifi-
cant differences between any of the groups. However, with

M
oo o ooo oo oo

M
o ooo

M
o ooooo o oo oo o

M
o oo oo o ooo oo oo

M
o oo o oo oo oooo oo ooo o oooo oo

M
o oo oo ooooo

M
o oo ooC

C++

Java

perl

python

rexx

tcl

2 4 8 16 32 64

run time for z0 [seconds]

Figure 2: Program run time for loading and preprocessing
the dictionary only (z0 data set). Note the logarithmic axis.
The bad/good ratios range from 1.3 for Tcl up to 7.5 for
Python. ��

80% confidence the run time variability of the scripts is
smaller than that of Java by a factor of at least 2.1 and
smaller than that of C/C++ by a factor of at least 3.4.

Memory consumption

Figure 4 shows the total process size at the end of the pro-
gram execution for the z1000 input file. Several observa-
tions are interesting:

– The most memory-efficient programs are clearly from
the C and C++ groups.

– The least memory-efficient programs are the clearly the
Java programs.

– Except for Tcl, only few of the scripts consume more
memory than the worse half of the C and C++ programs.

– Tcl scripts require more memory than other scripts.

M

o oo oo o oo oo

M
o ooo

M
ooo oo o o o oo oo o

M
o oo ooo oo ooo oo

M
o ooo o oo o ooo oo oo o oooo o oo

o

M
o o oo oo oo o oo

M
oo oooC

C++

Java

perl

python

rexx

tcl

4 16 64 256 1024 4096

run time for z1000 after loading [seconds]

Figure 3:Program run time for the search phase only. Com-
puted as time for z1000 data set minus time for z0 data set.
Note the logarithmic axis. The bad/good ratios range from
2.9 for Perl up to over 50 for C++. ��

4



M
ooo ooo oooo

M
o ooo

M
oooo ooooo

o ooo

M
o oo ooo ooooo o o

M
o oooo o oooo o oo oo oo o ooo o oo

M
ooo oo oo oooo

M
oooo oC

C++

Java

perl

python

rexx

tcl

0 20 40 60 80

memory consumption for z1000 [MB]

Figure 4: Amount of memory required by the program, in-
cluding the interpreter or run time system, the program itself,
and all static and dynamic data structures. The bad/good ra-
tios range from 1.2 for Python up to 4.9 for C++. ��

– For Python and Perl, the relative variability in memory
consumption tends to be much smaller than for C and in
particular C++.

– A few (but only a few) of the scripts have a horribly high
memory consumption.

– On the average for the group-aggregated view and with
a confidence of 80%, the Java programs consume at
least 32 MB (or 297%) more memory than the C/C++
programs and at least 20 MB (or 98%) more memory
than the script programs. The script programs consume
only at least 9 MB (or 85%) more than the C/C++ pro-
grams.

I conclude that the memory consumption of Java is typ-
ically more than twice as high as that of scripts, and scripts
are not necessarily worse than a program written in C or
C++, although they cannot beat a parsimonious C or C++
program.

An observation on the side: Common wisdom suggests
that algorithmic programs have a time/memory tradeoff:
Making a program faster will usually require more mem-
ory. Within our given set of programs, this rule holds for
all three non-script languages, but the opposite rule tends
to be true for script languages: Those scripts that use more
memory actually tend to be slower (rather than faster) than
the others.

Program length and amount of commenting

Figure 5 shows the number of lines containing anything that
contributes to the semantics of the program in each of the
program source files, e.g. a statement, a declaration, or at
least a delimiter such as a closing brace.

We see that non-scripts are typically two to three times
as long as scripts. Even the longest scripts are shorter than
the average non-script.

At the same time, scripts tend to contain a significantly
higher density of comments (p = 0:020), with the non-

M
o o oooo oo oo

M
o ooo

M
oo oo oo oo o oooo

M
ooo oo oo oooo oo

M
oooooo o o oo oo ooo oo o oooo oo

M
oo oo oo ooo oo

M
ooo o oC

C++

Java

perl

python

rexx

tcl

0 100 200 300 400 500 600

program length [statement LOC]

Figure 5: Program length, measured in number of non-
comment source lines of code. The bad/good ratios range
from 1.3 for C up to 2.1 for Java and 3.7 for Rexx. ��

scripts averaging a median of 22% as many comment lines
or commented lines as statement lines and the scripts aver-
aging 34%.

Program reliability

With the z1000 input file, 5 programs (1 C, 1 C++, 1 Perl)
produced no correct outputs at all, either because they were
unable to load the large dictionary or because they were
timed out during the load phase. 2 Java programs failed
with near-zero reliability for other reasons and 1 Rexx pro-
gram produced many of its outputs with incorrect format-
ting, resulting in a reliability of 45 percent.

If we ignore the above-mentioned highly faulty pro-
grams and compare the rest (hence excluding 13% of the
C/C++ programs, 8% of the Java programs, and 5% of the
script programs) by language group, we find that C/C++
programs are less reliable than both the Java and the script
programs. These differences, however, all depend on just
a few defective programs and should hence not be over-
generalized. On the other hand, since these differences
show the same trend as the fractions of highly faulty pro-
grams mentioned above, there is good evidence that this
ordering of reliability among the language groups in the
present experiment is real. Remember that the advantage
of the scripts may be due to the better test data available to
the script programmers.

Now let us compare the behavior for the more evil-
minded input file m1000, which even allows for phone num-
bers that do not contain any digits at all, only dashes and
slashes. Such a phone number should result in an empty en-
coding, but one does not usually think of such inputs when
reading the requirements. Hence the m1000 input file tests
the robustness of the programs.

Most programs cope with this situation well, but half of
the Java programs and 4 of the script programs (1 Tcl and
3 Python) crash when they encounter the first empty phone
number (which happens after 10% of the outputs), usually
due to an illegal string subscript or array subscript. 13 of

5



the other programs (1 C, 5 C++, 4 Java, 2 Perl, 2 Python,
1 Rexx) fail exactly on the three empty phone numbers, but
work allright otherwise, resulting in a reliability of 98.4%.

Summing up, it appears warranted to say that the scripts
are not less reliable than the non-scripts.

Work time and productivity

Figure 6 shows the total work time for designing, writing,
and testing the program as reported by the script program-
mers and measured for the non-script programmers.

M
o o oooo o o oo

M
o o oo

M
ooo oo oo o ooo o o

M
o oo o ooo o ooo oo

M
o oo ooo o ooo oo o oo oo ooo o

M
oo oo ooo o o oo

M
oo oo oC

C++

Java

perl

python

rexx

tcl

0 5 10 15 20 25

total time for programming [hours]

Figure 6:Total working time for realizing the program. Script
group: times as measured and reported by the program-
mers. Non-script group: times as measured by the experi-
menter. The bad/good ratios range from 1.5 for C up to 3.2
for Perl. Three Java work times at 40, 49, and 63 hours are
not shown. ��

As we see, scripts (total median 3.1 hours) take less than
half as long as non-scripts (total median 10.0 hours). Keep
in mind the validity threats discussed above, which may
have exaggerated this difference.

Validation. Fortunately, there is a way how we can
check two things at once, namely the correctness of the
work time reporting and the equivalence of the programmer
capabilities in the script versus the non-script group. Note
that both of these possible problems, if present, will tend to
bias the script group work times downwards: we would ex-
pect cheaters to fake their time to be smaller, not larger, and
we expect to see more capable programmers (rather than
less capable ones) in the script group compared to the non-
script group if there is a difference.

This check relies on an old rule of thumb, which says
that programmer productivity measured in lines of code per
hour (LOC/hour) is roughly independent of the program-
ming language. Several widely used effort estimation meth-
ods explicitly assume that productivity in lines of code per
hour is independent of programming language, for instance
Boehm’s CoCoMo [1] and Capers Jones’ programming lan-
guage table for function point estimation [2].

The validation of our work time data based on this rule
is plotted in Figure 7. Judging from the reliably known pro-

M
oo oo oooo o o

M
oooo

M
oo oo oo oo o oooo

M
ooooo oo oo oooo

M
o o

o
oo o oo oo ooo oooo oo oo o oo

M
o oo oo o ooo o o

M
o oo ooC

C++

Java

perl

python

rexx

tcl

0 20 40 60 80

source text productivity [LOC/hour]

Figure 7: Source text productivity in non-comment lines of
code per total work hour. The bad/good ratios range from
1.4 for C up to 3.1 for Tcl. ��

ductivity range of Java, all data points except maybe for the
top three of Tcl and the top one of Perl are quite believable.

None of the median differences are statistically clearly
significant, the closest being Java versus C, Perl, Python, or
Tcl where0:07 � p � 0:10. Even in the group-aggregated
view with its much larger groups, the difference between
C/C++ and scripts is not significant (p = 0:22), only Java
is less productive than scripts (p = 0:031), the difference
being at least 5.2 LOC/hour (with 80% confidence).

This comparison lends a lot of credibility to the work
time comparison shown above. The times reported for
script programming are probably either not at all or only
modestly too optimistic, so that a work time advantage for
the script languages of about factor two holds. The Java
work times appear to be a bit pessimistic, probably due to
the lower language experience of the 1997/1998 Java pro-
grammers.

Program structure

If one considers the designs chosen by the authors of the
programs in the various languages, there is a striking differ-
ence.

Most of the programmers in the script group used the
associative arrays provided by their language and stored the
dictionary words to be retrieved by their number encodings.
The search algorithm simply attempts to retrieve from this
array, using prefixes of increasing length of the remaining
rest of the current phone number as the key. Any match
found leads to a new partial solution to be completed later.

In contrast, essentially all of the non-script program-
mers chose either of the following solutions. In the sim-
ple case, they simply store the whole dictionary in an array,
usually in both the original character form and the corre-
sponding phone number representation. They then select
and test one tenth of the whole dictionary for each digit of
the phone number to be encoded, using only the first digit as
a key to constrain the search space. This leads to a simple,
but inefficient solution.

6



The more elaborate case uses a 10-ary tree in which
each node represents a certain digit, nodes at heightn rep-
resenting then-th character of a word. A word is stored
at a node if the path from the root to this node represents
the number encoding of the word. This is the most effi-
cient solution, but it requires a comparatively large number
of statements to implement the tree construction and traver-
sal. In Java, the large resulting number of objects also leads
to a high memory consumption due to the severe memory
overhead incurred per object by current implementations of
the language.

The shorter program length of the script programs can
be explained by the fact that most of the actual search is
done simply by the hashing algorithm used internally by
the associative arrays. In contrast, the non-script programs
require most of the elementary steps of the search process
to be coded explicitly by the programmer. This is further
pronounced by the effort (or lack of it) for data structure
and variable declarations.

It is an interesting observation that despite the exis-
tence of hash table implementations in both the Java and
the C++ class libraries none of the non-script programmers
used them (but rather implemented a tree solution by hand),
whereas for the script programmers the hash tables built
into the language were the obvious choice.

Conclusions

The following statements summarize the findings of
the comparative analysis of 80 implementations of the
phonecode program in 7 different languages:
– Designing and writing the program in Perl, Python,

Rexx, or Tcl takes no more than half as much time as
writing it in C, C++, or Java and the resulting program
is only half as long.

– No unambiguous differences in program reliability be-
tween the language groups were observed.

– The typical memory consumption of a script program is
about twice that of a C or C++ program. For Java it is
another factor of two higher.

– For the initialization phase of the phonecode program
(reading the 1 MB dictionary file and creating the 70k-
entry internal data structure), the C and C++ programs
have a strong run time advantage of about factor 3 to
4 compared to Java and about 5 to 10 compared to the
script languages.

– For the main phase of the phonecode program (search
through the internal data structure), the advantage in run
time of C or C++ versus Java is only about factor 2 and
the script programs even tend to be faster than the Java
programs.

– Within the script languages, Python and in particular
Perl are faster than Tcl for both phases.

– For all program aspects investigated, the performance
variability due to different programmers (as described

by the bad/good ratios) is on average about as large
or even larger than the variability due to different lan-
guages.

Due to the large number of implementations and broad
range of programmers investigated, these results, when
taken with a grain of salt, are probably reliable despite the
validity threats discussed in the sidebar. However, it must
be emphasized that the results are valid for the phonecode
problem only; generalizing to different application domains
would be haphazard. It is likely that for many other prob-
lems the relative results for the script group of languages
would not be quite as good as they are. I conclude the fol-
lowing:
– As of JDK 1.2.1 (and on the Solaris platform), the mem-

ory overhead of Java is still huge compared to C or C++,
but the run time efficiency has become quite acceptable.

– The often so-called “scripting languages” Perl, Python,
Rexx, and Tcl can be reasonable alternatives to “con-
ventional” languages such as C or C++ even for tasks
that need to handle fair amounts of computation and
data. Their relative run time and memory consump-
tion overhead will often be acceptable and they may
offer significant advantages with respect to program-
mer productivity — at least for small programs like the
phonecode problem.

– Interpersonal variability, that is the capability and
behavior differences between programmers using the
same language, tends to account for more differences
between programs than a change of the programming
language.

References

[1] Barry W. Boehm. Software Engineering Economics.
Prentice Hall, Englewood Cliffs, NJ, 1981.

[2] Software Productivity Research Capers Jones.
Programming languages table, version 7.
http://www.spr.com/library/0langtbl.htm, 1996 (as
of Feb. 2000).

[3] Bradley Efron and Robert Tibshirani.An introduction
to the Bootstrap. Monographs on statistics and applied
probability 57. Chapman and Hall, New York, London,
1993.

[4] Lutz Prechelt. An empirical comparison of C, C++,
Java, Perl, Python, Rexx, and Tcl for a search/string-
processing program. Technical Report 2000-5, Fakult¨at
für Informatik, Universität Karlsruhe, Germany, March
2000. ftp.ira.uka.de.

[5] Lutz Prechelt and Barbara Unger. A controlled exper-
iment on the effects of PSP training: Detailed descrip-
tion and evaluation. Technical Report 1/1999, Fakult¨at
für Informatik, Universität Karlsruhe, Germany, March
1999. ftp.ira.uka.de.

7


