Submission to IEEE Computer

An empirical comparison of
C, C++, Java, Perl, Python, Rexx, and Tcl

Lutz Prechelt (prechelt@ira.uka.de)
Fakultt fur Informatik, Universiét Karlsruhe
D-76128 Karlsruhe, Germany
+49/721/608-4068, Fax: +49/721/608-7343
http://wwwipd.ira.uka.de/"prechelt/

March 14, 2000

Summary memory consumption, and reliability.
80 implementations of the same set of requirements areWe will consider the languages both individually and
compared for several properties, such as run time, memegynbined into groups: Perl, Python, Rexx, and Tcl and
consumption, source text length, comment density, progreften calledscripting languagesind will form one group
structure, reliability, and the amount of effort required fenlled thescript group The name scripting language com-
writing them. The results indicate that, for the given prenonly refers to languages that are for instance (more or
gramming problem, which regards string manipulation akeés) interpreted rather than compiled, at least during the
search in a dictionary, “scripting languages” (Perl, Pythgstogram development phase, and that do typically not re-
Rexx, Tcl) are more productive than “conventional lamuire variable declarations. The alternative are the more
guages” (C, C++, Java). In terms of run time and mermnventional programming languages which | will call the
ory consumption, they often turn out better than Java amoh-script group These languages (C, C++, and Java) are
not much worse than C or C++. In general, the differena@®re or less compiled and require typed variable declara-
between languages tend to be smaller than the typical difns. We will sometimes consider C and C++ as one group
ferences due to different programmers within the same lamd Java as another.
guage. The number of programs considered for each language
and the execution platforms are described in Table 1. See

] the sidebars for a discussion of setup and validity of the

Introduction study. A more detailed description of this study can be
found in a technical report [4].

When it comes to the pros and cons of various program-
ming languages, programmers and computer scientists alike
are usually highly opinionated. The present work providReSUHS
someobjectiveinformation comparing several languages,

namely C_’ C++, Java, Perl, Python, Rexx, and Tcl. It h?‘ﬁe programs were evaluated on three different input files:
the following features: _ . 21000 contains 1000 non-empty random phone numbers,
— The same program (i.e. an implementation of the Sap§ 000 contains 1000 arbitrary random phone numbers
set of reqwrements) is _conS|dered for each Iangua@gith empty ones allowed), and z0 contains no phone num-
Hence, the comparison is narrow but homogeneous. pe ot all (for measuring dictionary load time alone).

— For each language, we analyze not a single implementa-
tion of the program but a number of separate implemen- .
tations by different programmers. Such a group-wi§gun time
comparison has two advantages. First, it SmOOtheS.Wé will first investigate the total run time and then examine

the differences between individual programmers (which= .
. : . The initialization phase and the search phase separately.
threaten the validity of any comparison based on |

one implementation per language). Second, it allows Otal: 71000 data set.The global overview of the program
b perianguage). ' run times on the z1000 input file is shown in Figure 1. We
assess and compare thariability of program proper-

S : see that for all languages a few very slow programs exist,
ties induced by the different languages. but except for C++, Java and Rexx, at least three quarters

— Several different aspects are investigated, such as mfothe programs run in less than one minute. We can make
gram length, programming effort, run time efficiencygeveral interesting observations:

1

The programming problem: Phonecode
All programs implement the same functionality, namely a conversion from telephone numbers into wordgstrings

sequences, and prints the results. The conversion is defined by a fixed mapping of characters to digits as ffgpllows:
e jng rwx dsy ft am civ bku lop ghz

0 111 222 333 44 55 666 777 888 999

The task of the program is to find a sequence of words such that the sequence of characters in these worf@s exactly

process, a single digit from the phone number can appear in the result at that position. Many phone numigers have
no solution at all. Here is an example of the program output for the phone number “3586-75", where the diconary
contained the words ‘Dali’, ‘'um’, ‘Sao’, ‘da’, ‘Pik’, and 73108 others:

3586-75: Dali um

3586-75: Sao 6 um

3586-75: da Pik 5

A list of partial solutions needs to be maintained by the program while processing each number and the difjtionary
must be embedded in a supporting data structure (such as a 10-ary digit tree) for efficient access.

Table 1. Number of programs and name/version of com-
piler or interpreter used for the various languages. The Java
evaluation uses either the JDK 1.2.2 Hotspot Reference ver-
sion or the JDK 1.2.1 Solaris Production version (with JIT),
whichever was faster for each program. All programs were
executed on a 300 MHz Sun Ultra-Il workstation with 256 MB python
memory, running under SunOS 5.7 (Solaris 7). Note that the
results for C and Rexx will be based on only 5 or 4 programs,

tel

rexx

perl

respectively, and are thus rather coarse estimates of reality, Java

but for all of the other languages there are 10 or more pro-

grams, which is a broad-enough base for reasonably precise C++

results.
language no. compiler or execution platform C |
Tcl 10 tcl8.2.2 !
Rexx 4 Regina0.08g 4 16 64 256 1024 4096
Python 13 python 15.2 run time for 21000 [seconds]
Perl 13 perl 5.00502 Figure 1: Program run time on the z1000 data set. Three
Java 24 Sun JDK_1.2.1/1.2.2 programs were timed out with no output after about 21 min-
C++ 11 GNU g++2.7.2 utes. The bad/good _ratio_s range from 1.5 for Tcl up to 27 for
C 5 GNU gcc2.7.2 C++. Note the logarithmic axis. ee

Rexx, and Tcl and tends to be smaller than those of Perl
— The typical (i.e., median) run time for Tcl is not signifi- and Python.

cantly longer than that for Java or even for C++. — Except for two very slow programs, Tcl and Perl run
— The median run times of both Python and Perl are times tend to have a smaller variability than the run
smaller than those of Rexx and those of Tcl. times for the other languages.

— The median run time of Java is not significantly dif- Remember not to over-interpret the plots for C and

ferent from any of the others (not even Rexx, whef@€XX, because they have only few points. Note that the
p=0.13). Rexx programs can be made to run about four times faster

recompiling the Regina interpreter so as to use a larger

. _ b
— Don't be confused by the median for C++. Since tr}%sh table size; the additional memory overhead is negligi-

distance to the next larger and smaller points is rat

large, it is unstabl_e. The Wilcoxon Fest, which takes If we aggregate the languages into only three groups
the v_vho_le sample into account, confirms that the C"féine with C/C++, one with Java, and one with scripts), we
median in fact tends to be smaller than the Java medf% that C/C++ is faster than Java & 0.074) and tends
(p=0.18). to be faster than script® (= 0.15). There is no significant

— The median run time of C is smaller than those of Javifference between average Java and Script run times. With

2

Validity of this comparison

Any programming language comparison based on actual example programs is valid only to the degree g which
the capabilities of the respective programmers using these languages are similar. In our case, we only fieed the
programs to be comparable on average, not in individual cases. This section assesses program comparabifity threats
for the 80 programs analyzed here.

The programs analyzed in this report come from two different sources. The Java, C, and C++ prograrfs were
produced in 1997/1998 during a controlled experiment [5]; all of the subjects were Computer Science mager stu-
dents. The Perl, Python, Rexx, and Tcl programs were produced under more variable conditions: They wer@ created
by volunteers after | had posted a “Call for Programs” on several newsgroups. These subjects are more diverse in
terms of background and experience.

Programmer capabilities. It is plausible that a public call for programs may attract only fairly compegent
programmers and hence the script programs reflect higher average programmer capabilities than the rgpn-script
programs. However, two observations suggest that this is not a problem. First, with some exceptions, the tudents
who created the non-script programs were also quite capable and experienced [5]. Second, a fair fracti@h of the
script programmers have described themselves as either beginners in their respective scripting language @ even as
persons without a thorough programming background (e.g. VLSI designer, system administrator, social scigntist).

Within the non-script group, the Java programmers tend to be less experienced in their language than tlle C and
C++ programmers because Java was still a new language in 1997/1998. In the script group, the Perl subjgcts may
be more capable than the others, because the Perl language appears more than others to attract especidlly capable
people.

Work time reporting accuracy. In contrast to the non-script programs from the controlled experimentl for
which we know the real programming time accurately, nothing kept the script programmers from “roundingilown
the working times they reported when they submitted their program. Worse, some apparently read the requirements
days before they actually started implementing the solution (in one“taseneeks. . during which my subcon
scious may have already worked on the solutipn.”’

However, there is evidence that the average work times are reasonably accurate for the script group, po: The
common software engineering wisdom which says “the number of lines written per hour is independengof the
language” holds fairly well across all languages. Even better, the same data also confirms that the pro@ammer
capabilites are not higher in the script group.

Different task and different work conditions. The instructions for the non-script group focused on correctigiess
as the main goal; high reliability and at least some efficiency was required in an acceptance test. The insfguctions
of the non-script group mentioned 8 other program quality goals besides the main goal of correctness. Irgtead of
the acceptance test in the non-script group, the script group received the z1000 input and output data for f@eir own
testing. Both of these differences may represent an advantage for the script group.

Summary. Overall, it is probably fair to say that due to the design of the data collection, the data for thefscript
groups will reflect several relevant (although modest) a-priori advantages compared to the data for the n@n-script
groups and there are likely to be some modest differences in the average programmer capability between afgy two of
the languages. Due to these threats to validity, we should discount small differences between any of the lajguages,
as these might be based on weaknesses of the data. Large differences, however, are likely to be valid.

80% confidence a script will run at least 1.29 times as lotige 80% confidence level). Compared to a Java program, a

as a C/C++ program and a Java program at least 1.22 tirsespt will run at least 3.2 times as long.

as long as a C/C++ program. The bad/good ratios are m@&garch phase onlyFinally, we may subtract this run time

smaller for scripts (4.1), than for Java (18) or even C/CH#r the loading phase (zO data set) from the total run time

(35). (z1000 data set) and thus obtain the run time for the actual

Initialization phase only: z0 data set. Now we consider search phase only. Figure 3 shows the corresponding run

only reading, preprocessing, and storing the dictionary. Fignes. We find the following:

ure 2 shows the corresponding run time. — Very fast programs occur in all languages except for
We find that C and C++ are clearly faster in this case Rexx and Tcl and very slow programs occur in all lan-

than all other languages. The fastest script languages areguages without exception.

again Perl and I?ython. Rexx and Tcl are again slower than The median run time for Tcl is longer than that for

these and Java is faster.

. . Python, Perl, and C, but shorter than that of Rexx.
For the aggregate grouping we find that, compared to a)]
CIC++ program, a Java program will run at least 1.3 times 1he median run times of Python are smaller than those

as long and a script will run at least 5.5 times as long (at ©f Rexx, and Tcl. They even tend to be smaller than
those of Javay(= 0.13).

3

Plots and statistical methods

The main evaluation tool will be the multiple bo ‘
plot display, see for example Figure 1. Each of L
“lines” represents one subset of data, as named o
left. Each small circle stands for one individual d
value. The rest of the plot provides visual aids for
comparison of two or more such subsets of data.
shaded box indicates the range of the middle hal
the data, that is, from the first quartile (25% quanti
to the third quartile (75% quantile). The “whiskers”
the left and right of the box indicate the bottom a
top 10% of the data, respectively. The fat dot wit o
the box is the median (50% quantile). The “M” a ‘ ‘ ‘ ‘ ‘ ‘
the dashed line around it indicate the arithmetic m@an 2 4 8 16 32 64
and plus/minus one standard error of the mean. run time for z0 [seconds]

For quantitatively describing the variability withilf Figure 2: Program run time for loading and preprocessing
one group of values we will use thead/good ratio the dictionary only (zO data set). Note the logarithmic axis.
Imagine the data be split in an upper and a lower hjjif, The bad/good ratios range from 1.3 for Tcl up to 7.5 for
then the bad/good ratio is the median of the upper ffalf Python. ee

divided by the median of the lower half. In the boxpld, i . N .
this i just the value at the right edge of the box divi 80% confidence the run time variability of the scripts is

by the value at the left edge. In contrast to a variabifky smaller than that of Java by a factor of at least 2.1 and

measure such as the standard deviation, the bad/ Ooamaller than that of C/C++ by a factor of at least 3.4.
ratio is robust against outliers.
Most interesting observations can easily be m@de Memory consumption
d

directly in the plots. To be sure, | have also perfor) .
statistical tests (please skip the rest of this subsedorfigure 4 shows the total process size at the end of the pro-

if you are not interested in these details): Medians fjre9ram exe_cution for the 21000 input file. Several observa-
compared using a one-sided Wilcoxon Rank Sum Tstlions are interesting:

(Mann-Whitney U-Test). The result of each test iJa — The most memory-efficient programs are clearly from
p-value, that is, a probability that the observed diff@r- the C and C++ groups.

ences between the samples are only accidental a
difference (or a difference in the opposite direction)
tween the underlying populations does indeed exiq. |

N0_ The least memory-efficient programs are the clearly the
" Java programs.

will usually not give thep-value itself, but rather safj — Except for Tcl, only few of the scripts consume more
“...is larger than...” ifd < p < 0.10 or “...tends to memory than the worse half of the C and C++ programs.
be larger than...” i0.10 < p < 0.20. If p > 0.10 — Tecl scripts require more memory than other scripts.

there is “no significant difference”.

At several points | will also provide confidence i
tervals, either on the differences in means or on the Qif- | | | |
ferences in logarithms of means (that is, on the rajos tcl
of means). These confidence intervals are compiited
by Bootstrapping. They will be chosen such that tHy — "*X
are open-ended, that is, their upper end is at infi
Bootstrapping is described in more detail in [3, 5].

Note that due to the validity caveats of the stufly
these quantitative statistical inference results megely

ise

Java
indicate trends; they should not be considered pref§i
evidence. C++

c

— The median run times of Perl are smaller than those of

Rexx, Tcl, and Java. 4 16 64 256 1024 4096

.]) . run time for 21000 after loading [seconds]

- Altho'ug.hllt doesnlt look like that, the median of C++ I‘Ig—'igure 3:Program run time for the search phase only. Com-
not significantly different from any of the others. puted as time for 1000 data set minus time for zO data set.
The group-aggregated comparison indicates no signifiste the logarithmic axis. The bad/good ratios range from

cant differences between any of the groups. However, wii9 for Perl up to over 50 for C++. ee

4

tel o Ho W 1 o
python @—%
perl o
Java o o
C++
C

0 20 40 60 80
memory consumption for z1000 [MB]
Figure 4: Amount of memory required by the program, in-

cluding the interpreter or run time system, the program itself,
and all static and dynamic data structures. The bad/good ra-

tcl
rexx
python

perl

Java

C++ o §

C

200 300 400 500 600

program length [statement LOC]

Figure 5: Program length, measured in number of non-
comment source lines of code. The bad/good ratios range
from 1.3 for C up to 2.1 for Java and 3.7 for Rexx. ee

tios range from 1.2 for Python up to 4.9 for C++. ee
9 Y P scripts averaging a median of 22% as many comment lines

— For Python and Perl, the relative variability in memorgr commented lines as statement lines and the scripts aver-
consumption tends to be much smaller than for C andaging 34%.
particular C++.

— Afew (but only a few) of the scripts have a horribly higliProgram reliability

memory consumption.
y P With the z1000 input file, 5 programs (1 C, 1 C++, 1 Perl)

— On thg average for the group-aggregated view and duced no correct outputs at all, either because they were
a confidence of 80%, the Java programs consumeghple to load the large dictionary or because they were
least 32 MB (or 297%) more memory than the C/C+gmed out during the load phase. 2 Java programs failed
programs and at least 20 MB (or 98%) more memogyith near-zero reliability for other reasons and 1 Rexx pro-
than the script programs. The script programs CONsugi@m produced many of its outputs with incorrect format-
only at least 9 MB (or 85%) more than the C/C++ PrQing, resulting in a reliability of 45 percent.
grams. If we ignore the above-mentioned highly faulty pro-
| conclude that the memory consumption of Java is tygrams and compare the rest (hence excluding 13% of the

ically more than twice as high as that of scripts, and scrifZéC++ programs, 8% of the Java programs, and 5% of the
are not necessarily worse than a program written in C smript programs) by language group, we find that C/C++
C++, although they cannot beat a parsimonious C or Cptograms are less reliable than both the Java and the script
program. programs. These differences, however, all depend on just

An observation on the side: Common wisdom suggesisfew defective programs and should hence not be over-
that algorithmic programs have a time/memory tradeoffeneralized. On the other hand, since these differences
Making a program faster will usually require more menshow the same trend as the fractions of highly faulty pro-
ory. Within our given set of programs, this rule holds fagrams mentioned above, there is good evidence that this
all three non-script languages, but the opposite rule termtdering of reliability among the language groups in the
to be true for script languages: Those scripts that use mpresent experiment is real. Remember that the advantage
memory actually tend to be slower (rather than faster) thafithe scripts may be due to the better test data available to
the others. the script programmers.

Now let us compare the behavior for the more evil-
minded input file m1000, which even allows for phone num-
bers that do not contain any digits at all, only dashes and
Figure 5 shows the number of lines containing anything treashes. Such a phone number should result in an empty en-
contributes to the semantics of the program in each of ttading, but one does not usually think of such inputs when
program source files, e.g. a statement, a declaration, oreatding the requirements. Hence the m1000 input file tests
least a delimiter such as a closing brace. the robustness of the programs.

We see that non-scripts are typically two to three times Most programs cope with this situation well, but half of
as long as scripts. Even the longest scripts are shorter tti@Java programs and 4 of the script programs (1 Tcl and
the average non-script. 3 Python) crash when they encounter the first empty phone

At the same time, scripts tend to contain a significanthumber (which happens after 10% of the outputs), usually
higher density of comment® (= 0.020), with the non- due to an illegal string subscript or array subscript. 13 of

5

Program length and amount of commenting

the other programs (1 C, 5 C++, 4 Java, 2 Perl, 2 Python,
1 Rexx) fail exactly on the three empty phone numbers, but ! l l !
work allright otherwise, resulting in a reliability of 98.4%. tcl

Summing up, it appears warranted to say that the scripts
are not less reliable than the non-scripts.

rexx

python o o
Work time and productivity perl

Figure 6 shows the total work time for designing, writing, Java
and testing the program as reported by the script program-_
mers and measured for the non-script programmers.

c

\
80

source text productivity [LOC/hour]

tel s -
rexx Figure 7: Source text productivity in non-comment lines of
’ i code per total work hour. The bad/good ratios range from

1.4 for C up to 3.1 for Tcl. ee

python

perl Hoet L ductivity range of Java, all data points except maybe for the
7777777 — top three of Tcl and the top one of Perl are quite believable.

Java 8 H ® o wt‘ None of the median differences are statistically clearly

significant, the closest being Java versus C, Perl, Python, or

Tcl where0.07 < p < 0.10. Even in the group-aggregated

view with its much larger groups, the difference between

C/C++ and scripts is not significant & 0.22), only Java

is less productive than scriptp & 0.031), the difference

) being at least 5.2 LOC/hour (with 80% confidence).

Figure 6:Total working time for realizing the program. Script This comparison lends a lot of credibility to the work

group: times as measured and reported by the program- e comparison shown above. The times reported for

mers. Non-script group: times as measured by the experi- script programming are probably either not at all or only

menter. The bad/good ratios range from 1.5 for C up to 3.2 LS .

for Perl. Three Java work times at 40, 49, and 63 hours are modest_ly too optimistic, so that a work time advantage for

not shown. ee the script languages of about factor two holds. The Java

work times appear to be a bit pessimistic, probably due to

As we see, scripts (total median 3.1 hours) take less titha lower language experience of the 1997/1998 Java pro-
half as long as non-scripts (total median 10.0 hours). Keggammers.
in mind the validity threats discussed above, which may
have exaggerated this difference.

Validation. Fortunately, there is a way how we carIID rogram structure
check two things at once, namely the correctness of tifi@ne considers the designs chosen by the authors of the
work time reporting and the equivalence of the programmaiograms in the various languages, there is a striking differ-
capabilities in the script versus the non-script group. Natace.
that both of these possible problems, if present, will tend to Most of the programmers in the script group used the
bias the script group work times downwards: we would eassociative arrays provided by their language and stored the
pect cheaters to fake their time to be smaller, not larger, afidtionary words to be retrieved by their number encodings.
we expect to see more capable programmers (rather th@e search algorithm simply attempts to retrieve from this
less capable ones) in the script group compared to the narray, using prefixes of increasing length of the remaining
script group if there is a difference. rest of the current phone number as the key. Any match

This check relies on an old rule of thumb, which sayeund leads to a new partial solution to be completed later.
that programmer productivity measured in lines of code per In contrast, essentially all of the non-script program-
hour (LOC/hour) is roughly independent of the progranmers chose either of the following solutions. In the sim-
ming language. Several widely used effort estimation methle case, they simply store the whole dictionary in an array,
ods explicitly assume that productivity in lines of code paisually in both the original character form and the corre-
hour is independent of programming language, for instarsonding phone number representation. They then select
Boehm’s CoCoMo [1] and Capers Jones’ programming lasnd test one tenth of the whole dictionary for each digit of
guage table for function point estimation [2]. the phone number to be encoded, using only the first digit as

The validation of our work time data based on this rukekey to constrain the search space. This leads to a simple,
is plotted in Figure 7. Judging from the reliably known prdsut inefficient solution.

6

C++

C

total time for programming [hours]

The more elaborate case uses a 10-ary tree in whichby the bad/good ratios) is on average about as large
each node represents a certain digit, nodes at heigép- or even larger than the variability due to different lan-
resenting then-th character of a word. A word is stored guages.
at a node if the path from the root to this node represeiige to the large number of implementations and broad
the number encoding of the word. This is the most efliange of programmers investigated, these results, when
cient solution, but it requires a comparatively large numbgken with a grain of salt, are probably reliable despite the
of statements to implement the tree construction and travgilidity threats discussed in the sidebar. However, it must
sal. In Java, the large resulting number of objects also ledsemphasized that the results are valid for the phonecode
to a high memory consumption due to the severe mem@npblem only; generalizing to different application domains
overhead incurred per object by currentimplementationspuld be haphazard. It is likely that for many other prob-
the language. lems the relative results for the script group of languages

The shorter program length of the script programs cauld not be quite as good as they are. | conclude the fol-
be explained by the fact that most of the actual searchiding:
done simply by the hashing algorithm used internally by- As of JDK 1.2.1 (and on the Solaris platform), the mem-
the associative arrays. In contrast, the non-script programsory overhead of Java is still huge compared to C or C++,

require most of the elementary steps of the search processut the run time efficiency has become quite acceptable.

to be coded explicitly by the programmer. This is further_ The often so-called “scripting languages” Perl, Python,

pr%nouncsld gy tlhe (ta_ffort (or lack of it) for data structure Rexx, and Tcl can be reasonable alternatives to “con-
and variable declarations. ventional” languages such as C or C++ even for tasks

¢ nlt 'S far? 'Tirisltmi?n Olb‘:‘ﬁr\r/}?t'tcimnth;’ﬁ ge;]p'tf t?evemsn— dthat need to handle fair amounts of computation and
enhce of hash 'ablée Implementations 0 € Java antyata. Their relative run time and memory consump-

the g:th clais t“br?h”es. nolne of t?ednotn—scrlplt ﬁ)_rogtr)an;]medrs tion overhead will often be acceptable and they may
used them (but rather implemented a tree solution by han)’oﬁer significant advantages with respect to program-

w?e:ﬁasl for the script t[?]rogr;mmershthe hash tables bUIItmer productivity — at least for small programs like the
into the language were the obvious choice. phonecode problem.

) — Interpersonal variability, that is the capability and

Conclusions behavior differences between programmers using the
same language, tends to account for more differences

The following statements summarize the findings of between programs than a change of the programming

the comparative analysis of 80 implementations of the |language.

phonecode program in 7 different languages:

— Designing and writing the program in Perl, Python

Rexx, or Tcl takes no more than half as much time &3€ferences

writing it in C, C++, or Java and the resulting program)))
is only half as long. [1] Barry W. Boehm. Software Engineering Economics

. . . L Prentice Hall, Englewood Cliffs, NJ, 1981.
— No unambiguous differences in program reliability be- g

tween the language groups were observed. [2] Software Productivity Research Capers Jones.

— The typical memory consumption of a script programis Programming languages table, version 7.
about twice that of a C or C++ program. For Java it is http://www.spr.com/library/Olangtbl.htm, 1996 (as

another factor of two higher. of Feb. 2000).

— For the initialization phase of the phonecode progrd8] Bradley Efron and Robert TibshiranAn introduction
(reading the 1 MB dictionary file and creating the 70k- to the Bootstrap Monographs on statistics and applied
entry internal data structure), the C and C++ programs probability 57. Chapman and Hall, New York, London,
have a strong run time advantage of about factor 3 to 1993.

4 compared to Java and about 5 to 10 compared to

script languages. fﬂf Lutz Prechelt. An empirical comparison of C, C++,

. Java, Perl, Python, Rexx, and Tcl for a search/string-
— For the main phase of the phonecode program (search processing program. Technical Report 2000-5, Fakult”

through the internal data structure), the advantage in run fjyr |nformatik, Universiéit Karlsruhe, Germany, March
time of C or C++ versus Java is only about factor 2and 2000. ftp.ira.uka.de.

the script programs even tend to be faster than the Java
programs. [5] Lutz Prechelt and Barbara Unger. A controlled exper-

iment on the effects of PSP training: Detailed descrip-
tion and evaluation. Technical Report 1/1999, Fakult”

fur Informatik, Universiéit Karlsruhe, Germany, March
— For all program aspects investigated, the performance 1999. ftp.ira.uka.de.

variability due to different programmers (as described
7

— Within the script languages, Python and in particular
Perl are faster than Tcl for both phases.

