
Technical Report
CMU/SEI-96-TR-014

ESC-TR-96-014
June 1996

A Controlled Experiment Measuring the Effect
of Procedure Argument Type Checking

on Programmer Productivity

AB
Lutz Prechelt

Walter F. Tichy

Universität Karlsruhe, Germany

Disciplined Engineering Program

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the
SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright c
 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN ‘AS-IS’ BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN TIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212. Phone:
1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1. Introduction 1

2. Related Work 3

3. Design of the Experiment 5
3.1. Tasks 5
3.2. Subjects 7
3.3. Setup 7
3.4. Observed Variables 8
3.5. Internal and External Validity 9

4. Results and Discussion 11

5. Conclusions and Further Work 17

Appendix A. Problem A 19
A.1. Error Numbers and Gold Program 19
A.2. Program Template 23

Appendix B. Problem B 27
B.1. Error Numbers and Gold Program 27
B.2. Program Template 30

Appendix C. Error Categories and Code Letters 33

Appendix D. The Wrapper Library 35

Appendix E. Subject Data 39

References 41

CMU/SEI-96-TR-014 i

ii CMU/SEI-96-TR-014

A Controlled Experiment Measuring the Effect
of Procedure Argument Type Checking

on Programmer Productivity

Abstract: Type checking is considered an important mechanism for detecting program-
ming errors, especially interface errors. This report describes an experiment to assess the
error-detection capabilities of static intermodule type checking.

The experiment uses ANSI C and Kernighan&Ritchie (K&R) C. The relevant difference
is that the ANSI C compiler checks module interfaces (i.e., the parameter lists of calls to
external functions), whereas K&R C does not. The experiment employs a counterbalanced
design in which each subject writes two non-trivial programs that interface with a complex
library (Motif). Each subject writes one program in ANSI C and one in K&R C. The input
to each compiler run is saved and manually analyzed for errors.

Results indicate that delivered ANSI C programs contain significantly fewer interface errors
than delivered K&R C programs. Furthermore, after subjects have gained some familiarity
with the interface they are using, ANSI C programmers remove errors faster and are more
productive (measured in both time to completion and functionality implemented).

This report describes the design, setup, and results of the experiment including complete
source code and error lists.

1. Introduction

Datatypes are an important concept in programming languages. A datatype is an interpreta-
tion applied to a datum, which otherwise would just be a string of bits. Datatypes are used
to model the data space of a problem domain and are an important aid to programming and
program understanding. A further benefit is type checking: A compiler or interpreter can
determine whether a data item of a certain type is permissible in a given context, such as an
expression or statement. If it is not, the compiler has detected an error in the program. It is
the error-detection capability of type checking that is of interest in this paper.

There is some debate over whether dynamic type checking is preferable to static type check-
ing, how strict the type checking should be, and whether explicitly declared types are more
helpful than implicit ones. However, it seems that the benefits of type checking are virtu-
ally undisputed. Modern programming languages have evolved elaborate type systems and
checking rules. In some languages, such as C, the type-checking rules were even strength-
ened in later versions. Furthermore, type theory is an active area of research.

However, it seems that the benefits of type checking are largely taken on faith or are based on
personal anecdotes. For instance, Wirth states [Wirth 1994] that the type-checking facilities
of Oberon had been most helpful in evolving the Oberon system. Many programmers can
recall instances when type checking did or could have helped them. However, we could not
find any reports in the literature on controlled, repeatable experiments that test whether type
checking has any positive (or negative) effects. The cost and benefits of type checking are far
from clear, because type checking is not free: It requires effort on behalf of the programmer
in providing type information. Furthermore, there is some evidence that inspections might be
more effective in finding errors than compilers [Humphrey 1995].

CMU/SEI-96-TR-014 1

We conclude that the actual costs and benefits of type checking are largely unknown. This
situation seems to be at odds with the importance assigned to the concept: Languages
with type checking are widely used and the vast majority of practicing programmers are
affected by the technique in their day-to-day work. The purpose of this paper is to provide
initial, “hard” evidence about the effects of type checking. We describe a repeatable and
controlled experiment that confirms some positive effects: First, when applied to interfaces,
type checking reduces the number of errors remaining in delivered programs. Second, when
programmers use a familiar interface, type checking helps them remove errors more quickly
and increases their productivity.

Definitive knowledge about positive effects of type checking can be useful in two ways:
First, we still lack a useful scientific model of the programming process. Such a model is a
prerequisite for understanding the overall software production process. Understanding the
types, frequencies, and circumstances of programmer errors is an important ingredient of
such a model. Second, there are still many environments where type checking is missing or
incomplete, and such knowledge will produce pressure to close these gaps. For instance it
may pay off to invest in discriminating between the many kinds of integer values that occur in
interfaces, such as cardinal numbers, indices, differences, etc.

2 CMU/SEI-96-TR-014

2. Related Work

Work on error classification and detection obviously has a bearing on our experiment. Two
publications describe and analyze the typical errors in programs written by novices [Ebrahimi
1994; Spohrer and Soloway 1986]. The results are not necessarily relevant for professional
programmers. Furthermore, type errors do not play an important role in these studies.

Error-type analyses have also been performed in larger scale software development settings.
Type checking has not been a concern in these studies, but in some cases related informa-
tion can be derived. For instance, Basili and Perricone report that 39 percent of all errors
in a 90.000 line FORTRAN project were interface errors [Basili and Perricone 1984]. We
conjecture that some proportion of these could have been found by type checking.

The error-detection capabilities of testing methods is a question that has attracted consid-
erable interest [Frankl and Weiss 1993]. The errors found by testing are those that already
passed the type checks, so the results from these studies are hardly applicable here.

Several studies have compared the productivity effects of different programming languages.
Most of these studies used programmers with little experience and very small programming
tasks [Ebrahimi 1994]. Others used somewhat larger tasks and experienced programmers,
but lacked proper experimental control [Hudak and Jones 1994]. All of these studies have the
inherent problem that they are confounded by too many factors to draw conclusions regarding
type checking.

We are aware of only one closely related experiment, the Snickering Type Checking Experi-
ment1 with the Mesa language. In that work, compiler-generated error messages involving
types were diverted to a secret file. A programmer working with this compiler on two different
programs was shown the error messages after he had finished the programs and was asked
to estimate how much time he would have saved had he seen the messages right away.
Interestingly, the programmer had independently removed all the errors detected by the type
checker. He claimed that on one program, which was 100% his own work, type checking would
not have helped appreciably. On another program which involved interfacing to a complicated
library, he estimated that type checking would have saved 50% of total development time. It
is obvious that this type of study has many flaws. But to our knowledge it was never repeated
in a more controlled setting.

It appears that the cost and benefits of type checking have not been studied systematically.

1J.H. Morris, unpublished, 1978

CMU/SEI-96-TR-014 3

4 CMU/SEI-96-TR-014

3. Design of the Experiment

The idea behind the experiment is the following: Let experienced programmers solve program-
ming problems involving a complex library. To control for the type-checking/no-type-checking
variable, let every subject solve one problem with K&R C, and another with ANSI C. Save the
inputs to all compiler runs for later error analysis.

A number of observations regarding the realism of the setup are in order. A simple task means
that the difficulties observed will stem from using the library, not from solving the task itself.
Thus, most errors will occur when interfacing to the library, where the effects of type checking
are thought to be most pronounced. Furthermore, using a complex library is similar to the
development of a module within a larger project, where many imported interfaces must be
handled. To ensure that the results would not be confounded by problems with the language,
we used experienced programmers familiar with the programming language. However, the
programmers had no experience with the library — another similarity with realistic software
development, in which new modules are often written within a relatively foreign context.

To balance for both learning effects and intersubject ability differences, we used a counter-
balanced design: There were two independent problems to be solved (A and B, as described
below) and two treatments (ANSI C and K&R C). Each subject had to solve both problems,
each with a different language. Thus, there are two experimental groups: Group 1 solves
A(ANSI)+B(KR) (in this order) and group 2 solves B(ANSI)+A(KR).

Controlling for the sequence of problems and languages creates another two groups; see
Table 3-1. The dependent variables are described in Section 3.4.

Subjects were assigned to groups in round-robin fashion.

3.1. Tasks

Problem A (2 � 2 Matrixinversion): Open a window with four text fields arranged in a
2 � 2 pattern plus an “Invert” and a “Quit” button. See Figure 3-1. “Quit” exits the program
and closes the window. The text fields represent a matrix of real values. The values can be
entered and edited. When the “Invert” button is pressed, replace the values by the coefficients
of the corresponding inverted matrix, or print an error message if the matrix is not invertible.
The formula for 2 � 2 matrix inversion was given.

first problem A first problem B
second problem B second problem A

first ANSI C
then K&R C

Group 1 Group 2

first K&R C
then ANSI C

Group 3 Group 4

Table 3-1 Tasks and compilers assigned to the four groups of subjects

CMU/SEI-96-TR-014 5

Figure 3-1 Problem A (2 � 2 matrix inversion)

Problem B (File Browser): Open a window with a menubar containing a single menu. The
menu entry “Select file” opens a file-selector box. The entry “Open selected file” pops up a
separate, scrollable window and displays the contents of the file previously selected in the file
selector box. “Quit” exits the program and closes all its windows. See Figure 3-2.

Figure 3-2 Problem B (File browser)

For solving the tasks, the subjects did not use native Motif, but a special wrapper library;
see Appendix D. This library has operations similar to those of Motif, but with improved type
checking. For instance the library has no functions with variable-length arguments lists,
which Motif uses often. It also imposes types on the resource-name constants that reflect
the type of the resource; in Motif, all resources are handled typelessly. There was also some
simplification through additional convenience functions. For instance, there was a function
for creating a RowColumnManager and setting its orientation and packing mode in one call.

The tasks, although quite small, were not at all trivial. The subjects had to understand several
important concepts of Motif programming (such as widget, resource, and callback function).

6 CMU/SEI-96-TR-014

They had to learn to use them from abstract documentation only, without example programs
(as is typically the case in practice).

3.2. Subjects

40 unpaid volunteers participated in the study. Of these, 6 were removed from the sample:
One deleted his protocol files, one was obviously inexperienced (took almost 10 times as
long as the others), and 4 worked on only one of the two problems. After this mortality, the
A/B groups had 8+8 subjects, the B/A groups had 11+7 subjects. We consider this to be still
sufficiently balanced.

The remaining 34 subjects had the following education. Of these 2 were postdocs in computer
science (CS); 19 were PhD students in CS and had completed an MS degree in CS; another
subject was also a CS PhD student but held an MS in physics; 12 subjects were CS graduate
students with a BS in CS.

The 34 subjects had between 4 and 19 years of programming experience (� = 10:0) and all
but 11 of them had written at least 3000 lines in C (all but one at least 300 lines). Only 8
of the subjects had any programming experience with X-Windows or Motif; only 3 of them
had written more than 300 lines in X-Windows or Motif. For detailed information about the
subjects see Appendix E.

3.3. Setup

Each subject received two written documents and one instruction sheet and was then left
alone at a Sun-4 workstation to solve the two problems. The subjects were told to use
roughly one hour per problem, but no time limit was enforced. Subjects could stop working
even if the programs were not operational.

The instruction sheet was a one-page description of the global steps involved in the experi-
ment: “Read sections 1 to 3 of the instruction document; fill in the questionnaire in section 2;
initialize your working environment by typing make TC1; solve problem A by: : : ” and so on.
The subjects obtained the following materials, most of them both on paper and in files:

1. a half-page introduction to the purpose of the experiment
2. a questionnaire about the background of the subject
3. specifications of the two tasks plus the program skeleton for them
4. an introduction to Motif programming (one page) and some useful commands (for

example how to to search manuals online)
5. a manual listing first the names of all types, constants, and functions that might

be required, followed by descriptions of each of them including the signature,
semantic description, and several kinds of cross-references. The document also
included introductions to the basic concepts of Motif and X-Windows. This manual
was hand tailored to contain all information required to solve the tasks and hardly
anything else.

6. a questionnaire about the experiment (to be filled in at the end)

CMU/SEI-96-TR-014 7

Subjects could also execute a “gold” program for each task. A gold program solved its task
completely and correctly and could be used as a backup for the verbal specifications. Subjects
were told to write programs that duplicated the behavior of the gold programs. The source
code of the gold programs is shown in Appendices A.1. and B.1.

The subjects did not have to write the programs from scratch. Instead, they were given a
program skeleton that contained all necessary #include commands, variable and function
declarations, and some initialization statements. In addition, the skeleton contained pseu-
docode describing step by step what statements had to be inserted to complete the program.
The subjects’ task was to find out which functions they had to use and which arguments to
supply. Almost all statements were function calls.

The following is an example of a pseudostatment in the skeleton.

/* Register callback-function ’button pushed’ for the ’invert’ button with the number 1 as ’client data’ */

It can be implemented thus:

XtAddCallbackF(invert, XmCactivateCallback, button pushed, (XtPointer)1);

There were only few variations possible in the implementation of the pseudocode. The
complete program skeletons are shown in the Appendices A.2. and B.2.

The programming environment captured all program versions submitted for compilation along
with a timestamp and the messages produced by the compiler and linker. A timestamp for
the start and the end of the work phase for each problem was also written to the protocol file.

The environment was set up to call the standard C compiler of SunOS 4.1.3 using the
command cc -c -g for the K&R tasks and version 2.7.0 of the GNU C compiler using gcc
-c -g -ansi -pedantic -W -Wimplicit -Wreturn-type for the ANSI C tasks.

3.4. Observed Variables

After the experiment was finished, each program version in the protocol files was annotated
by hand. Each different programming error that occurred in the programs was identified and
given a unique number. For instance, for the call to XtAddCallbackF shown above, there
were 15 different error numbers, including 4 for wrong argument types, 4 for wrong argument
objects with correct type, and another 7 for more specialized errors. The complete lists and
descriptions of the error numbers for both problems are shown in Appendices A.1. and B.1.

Each program version was annotated with the errors introduced, removed, or changed (with-
out correcting them).

Additional annotations counted the number of type errors, other semantic errors, and syntactic
errors that actually provoked one or more error messages from the compiler or linker. The
timestamps were corrected for pauses that lasted more than 10 minutes. Summary statistics
were computed, for which each error was classified into one of the following categories:

8 CMU/SEI-96-TR-014

non-error: False negatives–variations that the annotators considered errors, but were in fact
correct. This class will be ignored in the following.

comp: Errors that had to be removed before the program would pass the compiler and linker,
even for K&R C. This class will be ignored.

slight: Errors resulting in slightly wrong functionality of the program, but so minor that the
programmers probably felt no need to correct them. This class will be ignored.

invis: Errors that are invisible, i.e., they do not compromise functionality, but only because of
unspecified properties of the library implementation. Changes in the library implementation
may result in a misbehaving program. Example: Supplying the integer constant PACK COLUMN
instead of the expected Boolean value True works correctly, because (and as long as) the
constant happens to have a non-zero value. This class of errors will be ignored.

invisD: same as invis, except that the errors will be detected by ANSI C parameter type
checking (but not by K&R C).

severe: Errors resulting in significant deviations from the prescribed functionality.

severeD: same as severe, except that the errors will be detected by ANSI C parameter type
checking (but not by K&R C).

These categories are mutually exclusive. Unless otherwise noted, the error statistics dis-
cussed below are computed based on the sum of severe, severeD, and invisD. The assign-
ment of errors to the above categories is shown in Appendix C.

Other metrics observed were the number of compilation cycles (versions) and time to com-
pletion, i.e., the time taken by the subjects before delivering the program (whether complete
and correct or not).

From these metrics and annotations, additional statistics were computed. For instance the
frequency of error insertion and removal, the number of attempts made before an error was
finally removed, the time an error remained in the program (“lifetime”), and the number and
type of errors remaining in the final program version.

For measuring productivity and unimplemented functionality, we define a functionality unit
(FU) to be a single statement in the gold programs. Using the gold programs as a reference
normalizes the cases in which subjects used more than one statement instead. FUs are thus
a better measure of program volume than lines of code. Gold program A has 16 FUs, B has
11.

We also annotated the programs with the number of gaps, i.e., the number of missing FUs.
An FU is counted as missing if a subject made no attempt to implement it. From this, it is
easy to derive the number of FUs implemented in a program.

3.5. Internal and External Validity

The following problems might threaten the internal validity of the experiment (the correctness
of the observations):

CMU/SEI-96-TR-014 9

1. Error messages produced by the two compilers might differ for the same error, and
this might influence productivity. Our subjective judgement here is that the error
messages of both compilers are comparable in quality, at least for the purposes
of this experiment.

2. There may be annotation errors. To insure consistency, all annotations were
made by the same person. The annotations were cross-checked first with a
simple consistency checker, and then some of them were checked manually. The
number of annotation errors found in the manual check was negligible (4%).

The following problems might limit external validity of the experiment, i.e., the generalizability
of our results:

1. The subjects were not professional software engineers. However, they were
quite experienced programmers and held degrees (many of them advanced) in
computer science.

2. The results may be domain dependent. This objection cannot be ruled out. This
experiment should therefore be repeated in domains other than graphical user
interfaces.

3. The results may not apply to situations in which the subjects are very familiar with
the interfaces used.

Despite these problems, we expect that the scenario chosen in the experiment is nevertheless
similar to many real situations with respect to type-checking errors.

10 CMU/SEI-96-TR-014

4. Results and Discussion

Most of the statistics of interest in this study have clearly non-normal distributions and some-
times severe outliers. Therefore, we present medians (to be precise: an interpolated 50%
quantile) rather than arithmetic means. Where most of the median values are zero, higher
quantiles are given.

The results are shown in Table 4-1. There are 13 different statistics in 3 main columns.
The first column shows the statistics for both tasks, independent of order. The second and
third columns reflect the observations for those tasks that were tackled first and second,
respectively. These columns can be used to assess the learning effect. Each main column
reports the medians (or higher quantiles where indicated) for the tasks programmed with ANSI
C and K&R C plus the p-value. The p-value is the result of the Wilcoxon Rank Sum Test1 and
can be interpreted as the probability that the observed differences occurred by chance. A
difference in the median is considered significant if p � 0:05. Significant results are marked in

1This test, also known as Mann-Whitney U Test, was chosen because the distributions of the variables are more
or less logistic, rather than, say, normal or double exponential.

both tasks 1st task 2nd task
Statistic ANSI K&R ANSI K&R ANSI K&R

1 hours to completion 1.3 1.35 1.6 1.6 0.9 1.3
p = 0.49 0.83 0.018

2 #versions 15 16 19 21 12.5 13
p = 0.84 0.63 0.16

3 #type error messages/hour 6.3 1.1 4.3 1.2 7.7 1.0
p = 0.0000 0.0007 0.0006

4 #error insertions/hour 5.6 6.5 4.0 4.2 6.3 6.8
p = 0.35 0.28 0.75

5 #error removals/hour 4.15 3.95 4.0 4.2 4.9 3.7
p = 0.69 0.97 0.60

6 sum of accumulated error lifetime 1.6 2.55 2.2 3.6 0.8 2.2
p = 0.035 0.26 0.025

7 #right, then wrong again (75% quant.) 1.0 1.0 1.0 1.0 0.0 1.0
p = 0.12 0.82 0.009

8 #remaining errs in delivered program 1.0 2.0 1.0 2.0 1.0 2.0
p = 0.016 0.32 0.031

9 — for invisD only (90% quantile) 0.0 1.0 0.0 1.4 0.0 0.0
p = 0.04 0.048 0.41

10 — for severe only 1.0 1.0 1.0 0.0 1.0 1.0
p = 0.66 0.74 0.65

11 — for severeD only 0.0 1.0 0.0 1.0 0.0 1.0
p = 0.0001 0.015 0.0022

12 #gaps (75% quantile) 0.25 0.0 1.5 0.0 0.0 0.0
p = 0.35 0.26 0.70

13 FU/h 8.6 9.7 7.21 8.5 12.8 10.7
p = 0.93 0.31 0.061

Table 4-1 Medians (or other quantiles as indicated) of statistics for ANSI C vs. K&R C
versions of programs and p-values for statistical significance of Wilcoxon Rank Sum
Tests of the two. Values under 0.05 indicate significant differences of the medians.
Column pairs are for 1st+2nd, 1st, and 2nd problem tackled chronologically by each
subject, respectively. All entries include data points for both problem A and problem
B.

CMU/SEI-96-TR-014 11

boldface in the table. When the p-value is not significant, nothing can be said; in other words
there may or may not be a difference.

The first statistic, time to completion, shows that there is no significant difference between
ANSI C and K&R C for the first task and both tasks together. The combined time spent for
the second task is shorter than for the first (p = 0:0012, not shown in the table), indicating
a learning effect. In the second task, ANSI C is significantly more productive. A plausible
explanation is as that when they started, programmers did not have a good understanding of
the library and were struggling more with the concepts than with the interface itself. A lack
of understanding is also borne out by the protocols. Type checking is unlikely to help gain a
better understanding. Type checks became useful only after programmers had overcome the
initial learning hurdle.

Statistic 2, the number of program versions compiled, does not show a significant difference.
Entry 3 shows that the ANSI C compiler does indeed flag type errors significantly more often
than the K&R compiler does. Each type error was counted only once per compilation for this
statistic, no matter whether it produced one or several messages. Messages produced for
other semantic or for syntactic errors were ignored.

Entries 4 to 7 are statistics that describe the internal error processes, all based on the sum of
the error categories invisD, severe, and severeD. The frequency of error insertion and removal
(entries 4 and 5) show no significant differences. The other two show some advantage for
ANSI C, and it is again most pronounced in task 2, confirming the learning effect.

ac
cu

m
ul

at
ed

 e
rr

or
 li

fe
tim

e

-2

0

2

4

6

8

10

12

Ansi K&R

Figure 4-1 Boxplots of accumulated error lifetime (in hours) over both tasks for ANSI C
(left boxplot) and K&R C (right boxplot). The upper and lower whiskers mark the
95% and 5% quantiles, the upper and lower edges of the box mark the 75% and 25%
quantiles, and the dot marks the 50% quantile (median). All other boxplots following
below have the same structure.

The total lifetime of all errors during programming (entry 6) is shorter for ANSI C overall and
in the 2nd task. The distributions of accumulated lifetime over both tasks are also shown as
boxplots in Figure 4-1. As we see, the K&R total error lifetimes are usually higher and spread
over a much wider range.

12 CMU/SEI-96-TR-014

The number of errors introduced in previously correct or repaired parts of a program (entry 7)
is significantly higher for K&R C in the 2nd task.

F
U

/h
ou

r

2

4

6

8

10

12

14

16

18

20

Ansi K&R

Figure 4-2 Boxplots of productivity (in FU/hour) over both tasks.

F
U

/h
ou

r

2

4

6

8

10

12

14

16

Ansi K&R

Figure 4-3 Boxplots of productivity (in FU/hour) for first task.

F
U

/h
ou

r

2

6

10

14

18

22

26

Ansi K&R

Figure 4-4 Boxplots of productivity (in FU/hour) for second task.

CMU/SEI-96-TR-014 13

There are no significant differences in the number of gaps in the delivered programs (entry
12). However, the p-value of 0:061 for productivity (entry 13) in the second task strongly
suggests that ANSI C is helpful for programmers after the initial interface learning phase. The
combined (both languages) productivity rises significantly from the first task to the second
task (p = 0:0001, not shown in the table); this was also reported by the subjects.

The distributions of productivity measured in FU/hour are shown in Figures 4-2 to 4-4. We
see that ANSI C makes for a more pronounced increase in productivity from the first task to
the second than does K&R C.

al

l r
em

ai
ni

ng
 e

rr
or

s

-1

0

1

2

3

4

5

6

7

8

Ansi K&R

Figure 4-5 Boxplots of total number of remaining errors in delivered programs over
both tasks.

se

ve
re

 r
em

ai
ni

ng
 e

rr
or

s

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Ansi K&R

Figure 4-6 Boxplots of number of remaining severe errors in delivered programs over
both tasks.
A clear advantage of ANSI C over K&R C is the number of errors still present in the delivered
program (entry 8). As entries 9 to 11 indicate, this result stems from the direct detection
of errors through type checking; little or no reduction of non-detectable errors (entry 10) is
achieved. The both-task distributions for entries 8, 10, and 11 are shown in Figures 4-5 to
4-7. As we see there, the distributions for severe errors differ only in the upper tail (Figure 4-
6), whereas the distributions for the severeD errors differ dramatically in favor of ANSI C
(Figure 4-7), resulting in a significant overall advantage for ANSI C (Figure 4-5).

14 CMU/SEI-96-TR-014

se

ve
re

D
 r

em
ai

ni
ng

 e
rr

or
s

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Ansi K&R

Figure 4-7 Boxplots of number of remaining severeD errors in delivered programs over
both tasks.

A detailed analysis of the errors remaining in the delivered programs is shown in Table 4-2
on page 15. Only errors that remained in more than one delivered program are included
in the table. There are no apparent patterns in this data except for those that are already

error det? KR ANSI
O101 no 2 0
O142 no 2 1
O155 no 2 0
O165 no 2 0
O604 no 0 2
sum(O) = 8 3
P143 no 3 3
P234 ANSI 2 0
P271 ANSI 3 0
P284 no 1 1
P678 ANSI 2 2
sum(P) = 11 6

error det? KR ANSI
T152 ANSI 2 0
T162 ANSI 2 0
T172 ANSI 1 1
T182 ANSI 1 1
T231 ANSI 7 0
T236 ANSI 2 0
T273 no 0 2
T277 ANSI 2 0
T524 ANSI 3 1
T541 ANSI 2 0
T585 ANSI 2 0
T679 ANSI 2 2
sum(T) = 26 7

error det? KR ANSI
V117 no 3 0
V126 no 1 4
V127 no 5 1
V128 no 1 1
V136 no 2 1
V137 no 5 1
V146 no 5 5
V716 no 4 7
sum(V) = 26 20

Table 4-2 Number of occurrences of severe and severeD errors that remained in more
than one delivered program. “error”: error type and number, see Appendices A.1.,
B.1., and C. “det?”: whether error was compiler-detectable. “KR,” “ANSI”: number of
delivered K&R or ANSI programs with this error.

apparent from the cumulative data discussed above (P and T errors). For O and V errors,
the differences between K&R and ANSI in the location of the frequency distributions are not
statistically significant (Wilcoxon Matched Pairs Test, p � 0:28 for O errors, p � 0:35 for V
errors).

There were no significant differences between the two tasks. All of the above results hardly
change if one considers the tasks A and B separately (not shown).

CMU/SEI-96-TR-014 15

Finally, the subjective impressions of the subjects as reported in the questionnaires are as
follows: 26 of the subjects (79%) noted a learning effect from the first program to the second.
9 subjects (27%) reported that they found the ANSI C type checking very helpful, 11 (33%)
found it considerably helpful, 4 (12%) found it almost not helpful, 5 (15%) found it not at all
helpful. 4 subjects could not decide and 1 questionnaire was lost.

16 CMU/SEI-96-TR-014

5. Conclusions and Further Work

Our experiment confirms the following hypotheses:

1. Type checking can reduce the number of interface errors in delivered programs.
2. When an interface is used, type checking can increase productivity, provided the

programmer has gained a basic understanding of the interface.

One must be careful generalizing the results of this study to other situations. For instance,
the experiment is unsuitable for determining the proportion of interface errors in an overall
mix of errors, because it was designed to prevent errors other than interface errors. Hence
it is unclear how large the differences will be if error classes such as declaration errors,
initialization errors, algorithmic errors, or control-flow errors are included.

Nevertheless, the experiment suggests that for many realistic programming tasks, type check-
ing of interfaces improves both productivity and program quality. Furthermore, some of the
resources otherwise expended on inspecting interfaces might be allocated to other tasks.

Further work should repeat similar error analyses in different settings (e.g. tasks with complex
data flow or object-oriented languages). In particular, it would be interesting to compare
productivity and error rates under compile-time type checking, runtime type checking, and
type inference. Other important questions concern the influence of a disciplined programming
process such as the Personal Software ProcessSM [Humphrey 1995]1. Finally, an analysis of
the errors occurring in practice might help devise more effective error detection mechanisms.

Acknowledgements

Thanks to the experimental subjects. Many thanks in particular to Paul Lukowicz for patiently
guinea-pigging the experimental setup and to SAS Institute, makers of JMP, for creating a
neat statistical tool.

1Personal Software Process is a service mark of Carnegie Mellon University

CMU/SEI-96-TR-014 17

18 CMU/SEI-96-TR-014

Appendix A. Problem A

A.1. Error Numbers and Gold Program

The following list shows the body of the gold program for problem A. Interspersed between
the statements are the error numbers and error descriptions, always relating to the preceding
statement or statements. The number given after each error number is the error incidence,
i.e., the total number of error insertions for this error number found over all protocols. For
the errors that have different error codes for the two compilers, both numbers (detectable
instances, undetectable instances) are shown separately.

int main (argc, argv)
int argc;
char *argv[];

{
Widget toplevel, manager, square, buttons, invert, quit;
XtAppContext app;
XmString invertlabel, quitlabel;

/*---------- 1. initialize X and Motif --------------------------------*/
/* (already complete, should not be changed) */
toplevel = XtVaAppInitialize (&app, "Hello", NULL, 0,

&argc, argv, fallbacks, NULL);

/*---------- 2. create and configure widgets --------------------------*/

O101 7 local ’mw’ declared (hides global ’mw’, which is used in button pushed)
O102 1 local widgets for TextFields declared, but not with name ’mw’
manager = XmCreateRowColumnManagerOCP ("manager", toplevel, XmVERTICAL,

1, False);
MY111 1 numColumns missing
Z112 1 XmPACK COLUMN or XmPACK TIGHT used instead of Bool
P113 1 XtSetValue called before Create
TZ114 0/1 first arg not String
O115 0 not ’toplevel’
V116 0 XmHORIZONTAL
V117 5 True
TZ118 1/0 no integer for numColumns [the value does not matter here!]
TZ119 0/1 XtSetxxValue called with wrong xx
O301 2 result not assigned (or to wrong variable)
P302 0 nonsense procedure called to set resource
E303 0 direct assignment to resource attempted
TZ304 0/0 resource names as strings, e.g. "XmCorientation" used with XtSetxxValue
P305 0/0 XmCreateRowColumnManager (not OCP) called, but with all 5 args
square = XmCreateRowColumnManagerOCP ("square", manager, XmHORIZONTAL,

2, True);
MY121 0 numColumns missing
Z122 5 XmPACK COLUMN or XmPACK TIGHT used instead of Bool
P123 1 XtSetValue called before Create
TZ124 0/1 first arg not String
O125 2 not ’manager’

CMU/SEI-96-TR-014 19

V126 12 XmVERTICAL or no orientation given
V127 12 False
V128 8 not 2 columns
TZ129 1/1 XtSetxxValue called with wrong xx
O311 0 result not assigned (or to wrong variable)
P312 2 nonsense procedure called to set resource
E313 1 direct assignment to resource attempted
TZ314 0/1 resource names as strings, e.g. "XmCorientation" used with XtSetxxValue
P315 0 XmCreateRowColumnManager (not OCP) called, but with all 5 args
buttons = XmCreateRowColumnManagerOCP ("buttons", manager, XmHORIZONTAL,

1, False);
MY131 0/0 numColumns missing
Z132 0/1 XmPACK COLUMN or XmPACK TIGHT used instead of Bool
P133 1 XtSetValue called before Create
TZ134 0/0 first arg not String
O135 1 not ’manager’
V136 10 XmVERTICAL or no orientation given
V137 9 True
TZ139 2/2 XtSetxxValue called with wrong xx
O321 1 result not assigned (or to wrong variable)
P322 1 nonsense procedure called to set resource
E323 0 direct assignment to resource attempted
TZ324 1 resource names as strings, e.g. "XmCorientation" used with XtSetxxValue
P325 1 XmCreateRowColumnManager (not OCP) called, but with all 5 args
mw[0] = XmCreateTextFieldWidgetW ("aw", square, 100, "a");
mw[1] = XmCreateTextFieldWidgetW ("bw", square, 100, "b");
mw[2] = XmCreateTextFieldWidgetW ("cw", square, 100, "c");
mw[3] = XmCreateTextFieldWidgetW ("dw", square, 100, "d");

TZ141 1/1 4th arg not String
O142 13 not ’square’
P143 8 XmCreateTextFieldWidget used (no ’W’, cannot set width later!)
TZ144 0/0 first arg not String
O145 1 missing assignment
V146 13 Initialization not "a", "b", "c", "d"
O147 2 result assigned to mw (without subscription)
MY148 1/0 3rd arg missing
TZ149 0/0 XtSetxxValue called with wrong xx
O331 2 result not assigned at all
P332 1 nonsense procedure called to set resource
E333 1 direct assignment to resource attempted
TZ334 0 resource names as strings, e.g. "XmCorientation" used with XtSetxxValue
P335 1 magic effect expected from weird argument to first param
D336 2 wrong procedure name, e.g. XmCreateTextFieldW
invert = XmCreatePushButtonL ("invert", buttons,

XmStringCreateLocalized ("Invert matrix"));
D151 4 XmCreatePushButton (without ’L’)
TZ152 7/12 normal String instead of XmString
TZ153 0/2 XmStringCreate called with non-String first or second arg
TZ154 1/2 first arg not String
O155 6 not ’buttons’
G156 3 uninitialized ’invertlabel’ used
P157 1 nonexisting function XmString called (or cast to) to create third arg
MY158 1/0 no second arg to XmStringCreate

20 CMU/SEI-96-TR-014

O159 1 result not assigned or assigned to wrong object
C351 0 sets XmCwidth explicitly
D352 0 nonexisting function called, e.g. XmPushButton
TZ353 1/0 second arg not Widget
quit = XmCreatePushButtonL ("quit", buttons,

XmStringCreateLocalized ("Quit"));
D161 5 XmCreatePushButton (without ’L’)
TZ162 7/12 normal String instead of XmString
TZ163 0/1 XmStringCreate called with non-String first or second arg
TZ164 1/2 first arg not String
O165 6 not ’buttons’
G166 3 uninitialized ’quitlabel’ used
P167 1 nonexisting function XmString called (or cast to) to create third arg
MY168 1/0 no second arg to XmStringCreate
O169 1 result not assigned or assigned to wrong object
C361 1 sets XmCwidth explicitly
D362 0 nonexisting function called, e.g. XmPushButton
TZ363 1/0 second arg not Widget
/*---------- 3. register callback functions ---------------------------*/

XtAddCallbackF (invert, XmCactivateCallback, button_pushed, (XtPointer)1);
D171 2 XtPointer misspelled
TZ172 5/8 no XmFuncResourcename
TZ173 1/1 no Callback function pointer
TZ174 6/7 no XtPointer
O175 2 not ’invert’ [see 196]
V176 6 not ’XmCactivateCallback’
V177 0 not button pushed (other name used)
O178 3 &d instead of 1 given, with local or non-constant d
TZ179 1/1 4th: no pointer or int
T191 2 tried to supply prototype for button pushed
T192 5 tried to supply arguments or () for button pushed
D193 1 used undeclared object for arg 4
E194 1 nonsense function called for arg 2
E195 1 cast to type client data or similar attempted
TZ196 1 first arg not a widget
XtAddCallbackF (quit, XmCactivateCallback, button_pushed, (XtPointer)99);

D181 2 XtPointer misspelled
TZ182 3/6 no XmFuncResourcename
TZ183 0/1 no Callback function pointer
TZ184 4/6 no XtPointer
O185 5 not ’quit’ [see 206]
V186 3 not ’XmCactivateCallback’
V187 0 not ’button pushed’ (other name used)
O188 3 &d instead of 1 given, with local or non-constant d
TZ189 0/1 4th: no pointer or int
TZ201 2/0 tried to supply prototype for button pushed
TZ202 2/0 tried to supply arguments or () for button pushed
D203 1 used undeclared object for arg 4
E204 0 nonsense function called for arg 2
E205 1 cast to type client data or similar attempted
TZ206 1/0 first arg not a widget
/*---------- 4. realize widgets and turn control to X event loop ------*/

CMU/SEI-96-TR-014 21

/* (already complete, should not be changed) */
XtRealizeWidget (toplevel);
XtAppMainLoop (app);
return (0);

}

/************************* Functions *************************/

void button_pushed (Widget widget, XtPointer client_data, XtPointer call_data)
{
double mat[4], new[4], det;
String s;
if ((int)client_data == 99) {

V211 6 not 99 or whatever is submitted above
T212 12 missing cast
E213 5 client data wrongly dereferenced (or wrongly not dereferenced)
C214 2 recursive call to ’button pushed’ or call to ’cbf’
E215 1 = instead of ==
O216 2 call data used instead of client data

exit (0);
E341 4 exit; (no argument and no parentheses) [exit() is acceptable]
}
else if ((int)client_data == 1) {

V221 3 not 1 or whatever is submitted above
T222 10 missing cast
E223 5 client dataf wrongly [not] dereferenced
E225 1 = instead of ==
O226 0 call data used instead of client data

int i;
for (i = 0; i <= 3; i++) {
XtGetStringValue (mw[i], XmCvalue, &s);

TZ231 12/8 value instead of pointer used, e.g. s instead of &s
TZ232 3/1 dereferenced (or a Typename) instead of referenced, e.g. *s instead of &s
E233 1 tried to assign result of XtGetValue to something
P234 14 XtGetFloatValue called
P235 2 XtGetIntValue called
TZ236 0/5 no XmStringResourceName
O237 0 not ’XmCvalue’
TZ238 1/0 &mat[i] or other float used with XtGetStringValue
TZ239 0/0 first arg not a widget

mat[i] = atof (s);
E241 1 float = atof(float) e.g. mat[0] = atof(mat[0]) or similar nonsense
P242 1 ftoa called instead of atof
T243 0 mat[i] = mw[i] or atof (mw[i]) or similar
O244 1 first arg not mw[i]

}
det = mat[0]*mat[3] - mat[1]*mat[2];
if (det != 0) {

G251 1 ’if’ clause is missing
new[0] = mat[3]/det; new[1] = -mat[1]/det;
new[2] = -mat[2]/det; new[3] = mat[0]/det;

26x
for (i = 0; i <= 3; i++)

22 CMU/SEI-96-TR-014

XtSetStringValue (mw[i], XmCvalue, ftoa (new[i], 8, 2));
P271 7 XtSetFloatValue or XtSetIntValue called
V272 3 number format not 8,2
TZ273 0/2 sprintf used with incorrect target s
MY274 1/0 arg 2 and/or 3 of ftoa missing
TZ275 1/0 String* instead of String as third arg
O276 3 used mat[i] instead of new[i]
TZ277 0/5 no XmStringResourceName
O278 0 not ’XmCvalue’
TZ279 0/1 first arg not a widget
TZ372 0 strcpy(mw[i], ftoa(new[i], 8, 2)) or similar
T373 1 mw[i] = new[i] or ftoa(new[i]...) or similar
O374 1 first arg not mw[i]

}
else
matrixErrorMessage ("Matrix cannot be inverted", mat, 8, 2);

V281 2 completely different message text
V282 7 number format not 8,2
P283 1 used CreateErrorDialog instead of matrixErrorMessage
P284 2 used printf instead of matrixErrorMessage
TZ285 1/2 not ’mat’ or ’new’
O286 1 ’new’ instead of ’mat’
MY287 1 one or several args are missing
}

}

Summing up, there are 23 errors that appear 7 or more times. The most frequent of those
(12 or more times) are P234, V146, O142, T231, T212, Z162, Z152, V127, and V126.

A.2. Program Template

The following program template was given to the experimental subjects as the starting point
for problem A.

/* Program skeleton for Problem A (2x2 matrix inversion) */

#include <stdio.h>
#include <stdlib.h>
#include "stdmotif.h"

#ifdef __STDC__ /* this function declaration is valid in ANSI C: */
void button_pushed (Widget widget, XtPointer client_data,

XtPointer call_data);
#else /* and this one in Kernighan/Ritchie-C: */
void button_pushed ();
#endif

Widget mw[4]; /* text fields for matrix coefficients:
0,1,2,3 for a,b,c,d */

CMU/SEI-96-TR-014 23

/************************* MAIN PROGRAM **************************/

#ifdef __STDC__ /* this function declaration is valid in ANSI C: */
int main (int argc, char *argv[])
#else /* and this one in Kernighan/Ritchie-C: */
int main (argc, argv)
int argc;
char *argv[];

#endif
{
Widget toplevel, /* main window */

manager, /* manager for square and buttons */
square, /* manager for 4 TextFields */
buttons, /* manager for 2 PushButtons */
invert, /* PushButton */
quit; /* PushButton */

XtAppContext app;
XmString invertlabel, quitlabel;
int i;

/*---------- 1. initialize X and Motif -------------------------------*/
/* (already complete, should not be changed) */
globalInitialize ("A");
toplevel = XtVaAppInitialize (&app, "Hello", NULL, 0,

&argc, argv, fallbacks, NULL);

/*---------- 2. create and configure widgets -------------------------*/

/* Create vertical RowColumn manager ’manager’ w. parent ’toplevel’; */
/* Create horizontal 2-column RowColumn manager ’square’ with */
/* Equalization and parent ’manager’; */
/* Create horizontal RowColumn manager ’buttons’ w. parent ’manager’; */
/* Create TextField widgets mw[0..3] with 100 pixel width each */
/* for coefficients a, b, c, d of the matrix; */
/* Create PushButton ’invert’ with label "Invert matrix" and */
/* parent ’buttons’; */
/* Create PushButton ’quit’ with label "Quit"; */

/*---------- 3. register callback functions --------------------------*/

/* Register callback function ’button_pushed’ for the ’invert’ Button */
/* with the number 1 as ’client_data’; */
/* Register callback function ’button_pushed’ for the ’quit’ Button */
/* with the number 99 as ’client_data’; */

/*---------- 4. realize widgets and turn control to X event loop -----*/
/* (already complete, should not be changed) */
XtRealizeWidget (toplevel);
XtAppMainLoop (app);
return (0);

}

24 CMU/SEI-96-TR-014

/************************* Functions *************************/

#ifdef __STDC__ /* this function declaration is valid in ANSI C: */
void button_pushed (Widget widget, XtPointer client_data,

XtPointer call_data)
#else /* and this one in Kernighan/Ritchie-C: */
void button_pushed (widget, client_data, call_data)
Widget widget;
XtPointer client_data;
XtPointer call_data;

#endif
{
/* this is the callback function to be called when clicking on

the PushButtons occurs */
double mat[4], new[4], /* old and new matrix coefficients */

det; /* determinant */
String s;
int i;

/* IF client_data indicates button ’quit’ */
/* THEN */
/* call ’exit’ */
/* ELSIF client_data indicates Button ’invert’ */
/* THEN */
/* Read values mat[0] to mat[3] from widgets mw[0] to mw[3]; */
/* Compute determinant det = mat[0]*mat[3] - mat[1]*mat[2]; */
/* IF determinant not equals zero */
/* THEN */
/* Compute coefficients new[0] to new[3] of the */
/* inverted matrix as */
/* new[0] = mat[3]/det; new[1] = -mat[1]/det; */
/* new[2] = -mat[2]/det; new[3] = mat[0]/det; */
/* Enter new coefficients into widgets mw[0] to mw[3] with */
/* 8 digits width (2 decimal places); */
/* ELSE */
/* Print "Matrix cannot be inverted" by matrixErrorMessage; */
/* FI */
/* FI */

}

CMU/SEI-96-TR-014 25

26 CMU/SEI-96-TR-014

Appendix B. Problem B

B.1. Error Numbers and Gold Program

The following list shows the body of the gold program and the error descriptions for problem
B. The structure is the same as in Appendix A.1.

int main (argc, argv)
int argc;
char *argv[];

{
Widget main_w, menubar, menu, label;
XtAppContext app;

/********** 1. initialize X and Motif ********************************/
/* (already complete, need not be changed) */
toplevel = XtVaAppInitialize (&app, "Hello", NULL, 0,

&argc, argv, fallbacks, NULL);
O501 0 local ’toplevel’ declared (hides global one needed in handle menu)

/********** 2. create and configure widgets **************************/

main_w = XmCreateMainWindowWidget ("main_window", toplevel);
TZ511 1/1 1st arg not String
TZ512 0/0 2nd arg not Widget
P513 1 called XmCreateRowColumnManager...
O515 0 not ’toplevel’
D516 1 nonexisting procedure called
O517 3 result not assigned at all or assigned to wrong object
menubar = XmCreateTrivialMenuBar (main_w, "FileBrowser",

XmStringCreate ("File Browser", "LARGE"), ’F’);
TZ521 0/1 1st arg not Widget
TZ522 1/0 2nd arg not String
TZ523 5/3 3rd arg not XmString
TZ524 4/3 4th arg not char
O525 0 not ’main w’
V526 5 XmStringCreateLocalized or not "LARGE"
O527 1 result not assigned at all or assigned to wrong object
V528 0 unreasonable value for menubar title text
V529 17 unreasonable value for shortcut key
P531 1 other procedure called
TZ532 1/1 wrong or missing arguments to XmStringCreate or related calls
A533 1 additional argument(s) to XmCreateTrivialMenuBar
label = XmCreateLabelWidget ("by", main_w,

XmStringCreate ("by Lutz Prechelt", "SMALL"));
TZ541 0/2 1st arg not String
TZ542 1/2 2nd arg not Widget
TZ543 5/2 3rd arg not XmString
P544 1 called XmCreateTextFieldWidget
O545 7 not ’main w’ nor ’toplevel’
V546 3 XmStringCreateLocalized or not "SMALL"

CMU/SEI-96-TR-014 27

O547 1 result not assigned at all or assigned to wrong object
TZ548 1/1 wrong or missing arguments to XmStringCreate
P549 1 label = XmStringCreate(...)
AX551 1 additional argument(s) to XmCreateLabelWidget
XtSetWidgetValue (main_w, XmCworkWindow, label);

TZ561 0/0 1st arg not Widget
TZ562 2/4 2nd arg not XmWidgetResourceName
TZ563 2/1 3rd arg not Widget
V564 0 not ’XmCworkWindow’
O565 1 not ’main w’
O566 0 not ’label’
P567 2 XtSetxxValue for wrong xx
P568 0 yet another procedure
G569 0 call is missing
T571 4 direct assignment to XmCworkWindow attempted
menu = XmCreatePulldownMenu3 ("TheMenu", menubar, 0,

XmStringCreateLocalized ("Select file"), ’f’,
XmStringCreateLocalized ("Open selected file"), ’O’,
XmStringCreateLocalized ("Quit"), ’Q’,
handle_menu);

TZ581 1/0 1st arg not String
TZ582 0/0 2nd arg not Widget
TZ583 0/0 3rd arg not int
TZ584 4/7 4th, 6th, or 8th arg not XmString
TZ585 2/2 5th, 7th, or 9th arg not char
TZ586 0/0 10th arg not function pointer
MY587 1/1 1st or 2nd arg missing
MY588 2/2 3rd arg missing
MY589 0/0 4th, 6th, or 8th arg missing
MY591 1/4 5th, 7th, or 9th arg missing
MY592 0/1 10th arg missing
AZ593 0 additional arg(s) present
O594 1 not ’menubar’
V595 9 not ’0’
V596 0 not ’handle menu’
T597 2 tried to supply prototype for callback function
T598 7 tried to supply arguments or () for callback function
TZ599 0/0 applied wrong cast or * or similar to callback function
P601 17 called XmStringCreate instead of XmStringCreateLocalized
V602 1 unreasonable value for menu entry text (4th, 6th, or 8th arg)
V603 3 unreasonable value for shortcut key (5th, 7th, or 9th arg)
O604 6 result not assigned at all or assigned to wrong object [minor]
TZ605 3/3 missing or wrong arg to XmStringCreate
C606 1 calls XtAddCallbackF
TZ607 1/0 wrong arguments to XtAddCallbackF
61x

/********** 4. realize widgets and turn control to X event loop ******/
/* (already complete, need not be changed) */
XtRealizeWidget (toplevel);
XtAppMainLoop (app);
return (0);

}

28 CMU/SEI-96-TR-014

/************************* Functions *************************/

void handle_menu (Widget widget, XtPointer client_data, XtPointer call_data)
{
Widget fs;

O621 0 local redeclaration of ’toplevel’
O622 0 local declaration of ’main w’, ’menu’, or ’menubar’
if ((int)client_data == 0) { /* first menu entry selected */

V631 0 ’if’ (or ’switch’) query not for values 0, 1, 2 or values mixed up
T632 0 missing cast
E633 0 client data wrongly dereferenced
C634 0 recursive call to ’button pushed’ or call to ’cbf’
E635 0 = instead of == in any ’if’
O636 0 ’call data’ used instead of ’client data’
G637 0 (if ’switch’ is used:) one or more ’break’ statements is missing
64x

Widget fs = XmCreateFileSelectorDialog (toplevel, "fileselection");
TZ651 0/1 1st arg not Widget
TZ652 0/0 2nd arg not String
O653 22 not ’toplevel’
O654 2 result not assigned at all or assigned to wrong object
P655 1 other function called
D656 1 nonexisting function called
TZ657 0/0 1st and 2nd arg exchanged
66x

XtAddCallbackF (fs, XmCokCallback, keepSelectedFile, NULL);
TZ671 1/0 1st arg not Widget
TZ672 0/1 2nd arg not XmFuncResourceName
TZ673 1/0 3rd arg not callback function pointer
TZ674 2/1 4th arg not NULL or XtPointer
O675 4 not ’fs’
O676 0 not ’keepSelectedFile’
V677 0 not ’XmCokCallback’
P678 13 called XtSetxxValue or other function instead
TZ679 5/6 wrong arguments to XtSetxxValue or other function
TZ681 0/0 tried to supply prototype for callback function
TZ682 0/0 tried to supply arguments or () for callback function
TZ683 0/0 applied wrong cast or * or similar to callback function
T684 1 XmCokCallback = keepSelectedFile or similar
69x

XtManageChild (fs);
TZ701 0/1 1st arg not Widget
O702 0 not ’fs’
P703 1 other function called
D704 2 nonexisting function called
G705 8 call is missing
}
else if ((int)client_data == 1) { /* second menu entry selected */
Widget scrolltext = XmCreateScrolledTextWindow (selectedFile(), toplevel,

25, 80);
TZ711 1/4 1st arg not String
TZ712 0/0 2nd arg not Widget

CMU/SEI-96-TR-014 29

TZ713 1/0 3rd or 4th arg not int
MY714 0/0 1st or 2nd arg is missing
MY715 0/0 3rd or 4th arg is missing
V716 23 not ’selectedFile()’ or equivalent
O717 2 not ’toplevel’
V718 1 not 25, 80
O719 1 result not assigned at all or assigned to wrong object
O721 0 assigned to a Widget that is already in use and is overwritten
P723 1 other function called
D724 0 nonexisting function called
TZ725 1/0 uses XtSetxxValue with wrong xx or with parameter type errors
73x

XtSetStringValue (scrolltext, XmCvalue, readWholeFile (selectedFile()));
TZ741 0/1 1st arg not Widget
TZ742 0/1 2nd arg not XmStringResourceName
TZ743 2/3 3rd arg not String
V744 0 not ’XmCvalue’
O745 2 not ’scrolltext’
O746 6 3rd value not contents of file
P747 1 XtSetxxValue for wrong xx
P748 1 yet another procedure
C749 1 some additional call to XtSetxxValue
TZ751 2/3 no string arg to ’readWholeFile’
V752 0 not ’selectedFile()’
T753 1 XmCvalue = readWholeFile(...) or similar

}
else if ((int)client_data == 2) { /* third menu entry selected */
exit (0);

E761 2 exit; (no argument and no parentheses) [exit() is acceptable]
}

}

Summing up, there are 10 errors that appear 7 or more times. The most frequent of those
(12 or more times) are V716, O653, P601, V529, and P678.

B.2. Program Template

The following program template was given to the experimental subjects as the starting point
for problem A.

/* Program skeleton for Problem B (File Browser) */

#include <stdio.h>
#include <stdlib.h>
#include "stdmotif.h"

#ifdef __STDC__ /* this function declaration is valid in ANSI C: */
void handle_menu (Widget widget, XtPointer client_data,

XtPointer call_data);

30 CMU/SEI-96-TR-014

#else /* and this one in Kernighan/Ritchie-C: */
void handle_menu ();
#endif

Widget toplevel;

/************************* MAIN PROGRAM **************************/

#ifdef __STDC__ /* this function declaration is valid in ANSI C: */
int main (int argc, char *argv[])i
#else /* and this one in Kernighan/Ritchie-C: */
int main (argc, argv)
int argc;
char *argv[];

#endif
{
Widget main_w, /* main window */

menubar, /* the one-entry menu bar */
menu, /* the pulldown menu */
label; /* the label displayed in the work window */

XtAppContext app;

/*---------- 1. initialize X and Motif ------------------------------*/
/* (already complete, should not be changed) */
globalInitialize ("B");
toplevel = XtVaAppInitialize (&app, "Hello", NULL, 0,

&argc, argv, fallbacks, NULL);

/*---------- 2. create and configure widgets ------------------------*/

/* Create MainWindow widget ’main_w’ with parent ’toplevel’; */
/* Create MenuBar ’menubar’ w. entry ’File Browser’ in ’LARGE’ font */
/* and with parent ’main_w’; */
/* Create Label widget ’label’ w. entry ’by <Name>’ in ’SMALL’ font; */
/* Enter ’label’ as ’workWindow’ of ’main_w’; */
/* Create PulldownMenu ’menu’ with entries ’Select file’, ’Open */
/* selected file’ and ’Quit’ (callback function ’handle_menu’); */

/*---------- 3. register callback functions -------------------------*/
/* (handle_menu was already registered above, nothing to be done) */

/*---------- 4. realize widgets and turn control to X event loop ----*/
/* (already complete, should not be changed) */
XtRealizeWidget (toplevel);
XtAppMainLoop (app);
return (0);

}

/************************* Functions *************************/

#ifdef __STDC__ /* this function declaration is valid in ANSI C: */
void handle_menu (Widget widget, XtPointer client_data,

XtPointer call_data)

CMU/SEI-96-TR-014 31

#else /* and this one in Kernighan/Ritchie-C: */
void handle_menu (widget, client_data, call_data)
Widget widget;
XtPointer client_data;
XtPointer call_data;

#endif
{
Widget fs;
if ((int)client_data == 0) { /**** first menu entry selected ****/
Widget fs;
/* Create and manage FileSelectorDialog ’fs’; */
/* Enter ’keepSelectedFile’ as callback function of ’OK’ button; */

}
else if ((int)client_data == 1) { /**** second entry selected ****/
Widget scrolltext;
/* Create 25 x 80 character ScrolledTextWindow ’scrolltext’ with */
/* parent ’toplevel’ and the selected file name as the title; */
/* Read the selected file and enter its contents into ’value’ */
/* resource of ’scrolltext’; */

}
else if ((int)client_data == 2) { /**** third entry selected ****/
/* call ’exit’; */

}
}

32 CMU/SEI-96-TR-014

Appendix C. Error Categories and Code Letters

The following list defines which error categories (as discussed in the text in Section 3.4.) were
assigned to the numbers shown in the previous sections.

� The following error numbers belong to category non-error: 151 161 283.

� The following error numbers belong to category comp: 302 303 124 312
313 322 323 147 332 333 336 157 352 167 362 171 191 192 193 194 195
181 201 202 203 204 205 212 213 214 222 223 225 233 242 516 549 571
597 598 599 632 634 635 656 681 682 683 684 704 724 753.

� The following error numbers belong to category invis: 122 311 565 568
569.

� The following error numbers belong to category slight: 351 361 272 281
282 529 601 602 603 718.

� The following error numbers belong to category severe: 101 102 112 113
115 116 117 301 123 125 126 127 128 132 133 135 136 137 321 142 143
145 146 331 335 155 156 159 165 166 169 175 176 177 178 185 186 187
188 211 215 216 341 221 226 237 244 251 273 276 278 374 284 286 501
513 515 517 525 526 527 528 531 544 545 546 547 564 566 594 595 596
604 606 621 622 631 633 636 637 653 654 655 675 676 677 702 703 705
716 717 719 721 723 744 745 746 748 749 752.

� The following error numbers belong to category severeD: 111 304 121 314
315 131 324 141 148 334 152 153 353 162 163 363 172 173 174 179 196
182 183 184 189 206 231 232 234 235 236 238 239 241 243 271 274 275
277 279 372 373 285 287 512 521 522 523 524 532 541 542 543 548 563
581 582 583 584 585 586 587 588 589 591 592 605 607 651 657 671 672
673 678 679 701 711 712 713 714 715 725 741 742 743 751 761.

� The following error numbers belong to category invisD: 114 118 119 305
129 134 139 325 144 149 154 158 164 168 511 533 551 561 562 567 593
652 674 747.

The above categories describe the effect of an error and could thus be called external cate-
gories. Beside this category, each error number is also associated with an error-type code
letter that describes the type or origin of the error. You find such a letter in front of each error
number in the error-number lists. The purpose of the error-type codes is to make consistent
application of the error numbers simpler and to facilitate further analyses of the annotations
that are not described in this report.

CMU/SEI-96-TR-014 33

The meaning of the error type codes is as follows:

A additional parameter(s)
X ditto, but not flagged by compiler
M missing parameter(s)
Y ditto, but not flagged by compiler
T parameter or operand of wrong type
Z ditto, but not flagged by compiler

B debug code inserted/removed/changed [is not an error]
C additional procedure call that should not be there
D missing or wrong declaration or typo in use of existing object that leads to confusion.

(Not all errors of this type are annotated.)
E faulty expression [only if V does not apply]
G gap: missing statement, although program section is otherwise finished
O wrong variable object used as argument or assigned to
P wrong procedure called for desired effect (or wrong desired effect)
V wrong value given for parameter or used in expression [see E and O]

34 CMU/SEI-96-TR-014

Appendix D. The Wrapper Library

Instead of reproducing the complete library documentation given to the subjects, we will
show only the interface description of the wrapper library here. The subjects were not told
to look into this file, however, since the documentation contained more information and also
cross-references.

This is the file stdmotif.h:

/* Simple interface module for standardized calls of Motif widgets */
/* simplifies the parameter lists. All functions have fully */
/* type-checked prototypes with ANSI C and none with K&R C */
/* Lutz Prechelt, 1995/05/31 */

#include <Xm/Xm.h>
#define __USE_FIXED_PROTOTYPES__
#include <stdio.h>
#include <stdlib.h>

#ifdef __STDC__
#define _A_(l) l
#else
#define _A_(l) ()
#endif

/*************** Motif extensions ********************************/

/* artificial type-checking for resource-name <--> resource type */
typedef struct { String a; } XmIntResourceName;
typedef struct { String a; } XmFloatResourceName;
typedef struct { String a; } XmFuncResourceName;
typedef struct { String a; } XmStringResourceName;
typedef struct { String a; } XmWidgetResourceName;

/* type-checkable resource name constants */
extern XmIntResourceName

XmCcolumns,
XmCnumColumns,
XmCorientation,
XmCpacking,
XmCrows,
XmCwidth;

extern XmFuncResourceName
XmCactivateCallback,
XmCcancelCallback,
XmChelpCallback,
XmCokCallback;

extern XmStringResourceName
XmCvalue;

extern XmWidgetResourceName
XmCworkWindow;

CMU/SEI-96-TR-014 35

/* ----- create a popup dialog window widget with an OK button */
Widget XmCreateErrorDialogOK _A_((Widget parent, String resourcename,

XmString message));

/* ----- create file selector dialog box */
Widget XmCreateFileSelectorDialog _A_((Widget w, String name));

/* ----- create a label widget with given label text */
Widget XmCreateLabelWidget _A_((String resourcename, Widget parent,

XmString text));

/* ----- create a bare MainWindow widget */
Widget XmCreateMainWindowWidget _A_((String resourcename, Widget parent));

/* ----- create a pulldown menu with exactly three entries */
Widget XmCreatePulldownMenu3 _A_((String resourcename, Widget menubar,

int menunumber,
XmString entry1, char key1,
XmString entry2, char key2,
XmString entry3, char key3,
void (*callback) (Widget, XtPointer, XtPointer)));

/* ----- create a PushButton widget with a given label */
Widget XmCreatePushButtonL _A_((String resourcename, Widget parent,

XmString label));

/* ----- create a RowColumn manager */
Widget XmCreateRowColumnManager _A_((String resourcename, Widget parent));

/* ----- create a preconfigured RowColumn manager */
Widget XmCreateRowColumnManagerOCP _A_((String resourcename,

Widget parent,
int orientation, int numColumns,
Boolean equalize));

/* ----- create a scrolled text widget without any resources set */
Widget XmCreateScrolledTextWidget _A_((Widget parent,

String resourcename));

/* ----- create a stand alone scrolled text widget of lines x columns */
Widget XmCreateScrolledTextWindow _A_((String resourcename, Widget parent,

int nrOfLines, int nrOfColumns));

/* ----- create empty TextField widget */
Widget XmCreateTextFieldWidget _A_((String resourcename, Widget parent));

/* ----- create TextField widget with given width and initial string */
Widget XmCreateTextFieldWidgetW _A_((String resourcename, Widget parent,

int width, String value));

/* ----- create MenuBar widget with exactly one entry */
Widget XmCreateTrivialMenuBar _A_((Widget parent, String resourcename,

36 CMU/SEI-96-TR-014

XmString menuname, char key));

/* ----- install callback function with type-checked resource name */
void XtAddCallbackF _A_((Widget w, XmFuncResourceName r,

void (*f) (Widget, XtPointer, XtPointer),
XtPointer client_data));

/* ----- read a value of a resource from a widget */
void XtGetIntValue _A_((Widget w, XmStringResourceName r,

int *value));
void XtGetFloatValue _A_((Widget w, XmFloatResourceName r,

double *value));
void XtGetStringValue _A_((Widget w, XmStringResourceName r,

String *value));
void XtGetWidgetValue _A_((Widget w, XmStringResourceName r,

Widget *value));

/* ----- change the value of a resource for a widget */
void XtSetIntValue _A_((Widget w, XmIntResourceName r,

int value));
void XtSetFloatValue _A_((Widget w, XmFloatResourceName r,

double value));
void XtSetStringValue _A_((Widget w, XmStringResourceName r,

String value));
void XtSetWidgetValue _A_((Widget w, XmWidgetResourceName r,

Widget value));

/*************** other extensions ********************************/

/* ----- fallback resources ----- */
extern String fallbacks[];

/* ----- convert floating point number into String of given form */
String ftoa _A_((double x, int width, int precision));

/* ----- global Initialization (protocol stamp) */
void globalInitialize _A_((String programname));

/* ----- callback function: store filename selected in fileselector box */
void keepSelectedFile _A_((Widget w, XtPointer client_data,

XtPointer callback_data));

/* ----- print error message along with 2x2 matrix in given format */
void matrixErrorMessage _A_((String message,

double matrixcoefficients[4],
int width, int precision));

/* ----- read file and return its contents in newly allocated string */
String readWholeFile _A_((String filename));

/* ----- retrieve filename stored by keepSelectedFile() */
String selectedFile _A_(());

CMU/SEI-96-TR-014 37

38 CMU/SEI-96-TR-014

Appendix E. Subject Data

Information about the experimental subjects: sex, experimental group, education, occupation,
total programming experience e in years, lines programmed in C/C++, lines programmed in X
Windows or Motif. (“theor.” means zero practical programming experience, but theoretical
knowledge.)

sex G education occupation e C/C++ X/Motif
003 m 2 M.S. CS Ph.D. student CS 10 <30000 0
005 m 2 B.S. CS M.S. student CS 10 <30000 0
006 m 3 B.S. CS M.S. student CS 9 <3000 0
007 m 4 B.S. CS M.S. student CS 10 <30000 0
008 m 1 B.S. CS M.S. student CS 7 <3000 theor.
009 m 2 Ph.D. CS Postdoc CS 15 >30000 0
010 m 3 B.S. CS M.S. student CS 7 <3000 0
011 m 4 M.S. CS Ph.D. student CS 19 >30000 <30000
012 m 1 M.S. CS Sys.progr.&admin. 15 <30000 <3000
013 f 2 M.S. Physics Ph.D. student CS 8 >30000 <300
014 m 3 M.S. CS Ph.D. student CS 8 <3000 0
015 m 4 M.S. CS Ph.D. student CS 17 >30000 0
016 m 1 M.S. CS Ph.D. student CS 10 <300 0
017 m 2 B.S. CS M.S. student CS 10 >30000 0
018 m 3 B.S. CS M.S. student CS 9 <30000 0
019 m 4 M.S. CS Ph.D. student CS 12 >30000 0
020 m 1 Ph.D. CS Postdoc CS 15 <30000 <300
021 m 2 B.S. CS M.S. student CS 5 <3000 0
023 m 4 M.S. CS Ph.D. student CS 7 >30000 0
025 m 2 B.S. CS M.S. student CS 6 <30000 <300
026 m 3 M.S. CS Ph.D. student CS 6 >30000 0
027 m 4 B.S. CS M.S. student CS 8 <3000 0
028 m 1 M.S. CS Ph.D. student CS 12 <30000 theor.
029 m 2 M.S. CS Ph.D. student CS 10 <30000 <300
031 m 4 B.S. CS M.S. student CS 12 <30000 0
032 f 1 M.S. CS Ph.D. student CS 10 <3000 0
033 m 2 M.S. CS Ph.D. student CS 12 <3000 0
036 m 1 M.S. CS Ph.D. student CS 15 >30000 <3000
037 m 2 B.S. CS M.S. student CS 10 <3000 0
038 m 3 M.S. CS Ph.D. student CS 10 <30000 <300
039 m 4 M.S. CS Ph.D. student CS (questionnaire lost)
040 f 1 M.S. CS Ph.D. student CS 4 <3000 0
041 m 2 M.S. CS Ph.D. student CS 13 <30000 0
042 m 3 M.S. CS Ph.D. student CS 8 >30000 <300

CMU/SEI-96-TR-014 39

40 CMU/SEI-96-TR-014

References

[Basili and Perricone 1984] Victor R. Basili and B.T. Perricone. Software errors and
complexity: An empirical investigation. Communications of the ACM, 27(1):42–52,
January 1984.

[Ebrahimi 1994] Alireza Ebrahimi. Novice programmer errors: Language constructs
and plan composition. Intl. J. of Human-Computer Studies, 41:457–480, 1994.

[Frankl and Weiss 1993] Phyllis G. Frankl and Stewart N. Weiss. An experimental
comparison of the effectiveness of branch testing and data flow testing. IEEE
Trans. on Software Engineering, 19(8):774–787, August 1993.

[Hudak and Jones 1994] Paul Hudak and Mark P. Jones. Haskell vs. Ada vs. C++
vs. awk vs. : : :an experiment in software prototyping productivity. Technical report,
Yale University, Dept. of CS, New Haven, CT, July 1994.

[Humphrey 1995] Watts Humphrey. A Discipline for Software Engineering. SEI Series
in Software Engineering. Addison Wesley, Reading, MA, 1995.

[Soloway and Iyengar 1986] Elliot Soloway and Sitharama Iyengar, editors. Empirical
Studies of Programmers. Ablex Publishing Corp., Norwood, NJ, June 1986. (The
papers of the First Workshop on Empirical Studies of Programmers, Washington
D.C.)

[Spohrer and Soloway 1986] James G. Spohrer and Elliot Soloway. Analyzing the
high frequency bugs in novice programs. In [Soloway and Iyengar 1986], pages
230–251, 1986.

[Wirth 1994] Nikolaus Wirth. Gedanken zur Software-Explosion. Informatik Spektrum,
17(1):5–20, February 1994.

CMU/SEI-96-TR-014 41

13a. TYPE OF REPORT

Final

UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

19. ABSTRACT (continue on reverse if necessary and identify by block number)

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

FIELD SUB. GR.GROUP

22c. OFFICE SYMBOL

ESC/ENS (SEI)
22b. TELEPHONE NUMBER (include area code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

SEI

ESC/ENS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

63756E N/A N/A N/A

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

(please turn over)

CMU/SEI-96-TR-014 ESC-TR-96-014

 A Controlled Experiment Measuring the Effect of Procedure Argument Type Checking on Programmer Productivity

 1996, June 41

type checking, experiment, errors, defects, ANSI C

Type checking is considered an important mechanism for detecting programming errors, especially interface errors. This report describes an experiment
to assess the error-detection capabilities of static intermodule type checking.

The experiment uses ANSI C and Kernighan&Ritchie (K&R) C. The relevant difference is that the ANSI C compiler checks module interfaces (i.e., the
parameter lists of calls to external functions), whereas K&R C does not. The experiment employs a counterbalanced design in which each subject writes
two non-trivial programs that interface with a complex library (Motif). Each subject writes one program in ANSI C and one in K&R C. The input to each
compiler run is saved and manually analyzed for errors.

Results indicate that delivered ANSI C programs contain significantly fewer interface errors than delivered K&R C programs. Furthermore, after
subjects have gained some familiarity with the interface they are using, ANSI C programmers remove errors faster and are more productive (measured in
both time to completion and functionality implemented).

This report describes the design, setup, and results of the experiment including complete source code and error lists.

Lutz Prechelt, Walter F. Tichy

