
TRENDS IN
INFORMATION SYSTEMS
An Anthology of Papers from Conferences
of the IFIP Technical Comnlittee8 'Information Systems'
to C0f1Zmenl0rate their Tenth Anniversary

edited by

B. LANGEFORS
Formerly at the University of Stockholm
Stockholm, Sweden

A. A. VERRIJN-STUART
University of Leiden
Leiden, The Netherlands

G. BRACCHI
Politecnico di Milano
Milan, Italy

1986

A Data Model for Programming Support Environments

llnd its Application

Walter F. Tichy

Department of Computer Sciences
Purdue University

West Lafayette, Indiana 47907

A critical issue in programming support environments is the data base that stores
all project informa+i·)n. This paper presents a model that can be used for analyz
ing and designin!) such data bases. The model represents systems as families
consisting of multiple versions and configurations. It is based on AND/OR graphs
and has the hier Irt,hical model, the relational model, and the sequential release
model as subclas ~.;e;~.

A refinement of the model yields the concept of the weI/-formed configuration.
This concept establishes the basic rules for interface control and system com
position. A generalization of the model leads to a data base structure that is a
directed, attributed graph. This idea is illustrated by presenting design and
implementation of a data base for the sequential release model.

1. Introduction

219

Programming support environments (PSE's) have recently been stressed as an approach to

improve programmer productivity and software quality [1,2,3,4,5]' A PSE provides a rich set of

sophisticated tools that support or automate various tasks during software development and

maintenance. The tools operate on a common data structure, namely the data base that stores

all information associated with a project. As in all software designs, the selection of an ade

quate data structure is crucial for a successful PSE. The design of that data structure is the

subject of this paper.

An important observation for PSE data bases is that all large software products evolve into

families of related versions and configurations. The existence of system families has long been

acknowledged by Parnas and others [6,7,8,9], yet all current programming language designs

and most existing PSE's still ignore or skirt the issue. A few examples of system families are in

order.

The most common situation when multiple versions arise is during program maintenance. In

order to correct or enhance a software system, a subset of the modules must be modified. Nor

mally this takes more than one iteration, resulting in several revisions per affected module. Some

sequences of modifications turn out to lead into the wrong direction, making It necessary to back

up to an earlier point. If one did not store the intermediate revisions, programmers have to

"undo" the changes they made since the backup point, or "redo" some changes to regain the

backup point from the initial revision. Both processes can be extremely difficult and time con

suming.

© IFIP, 1982. Reprinted from Automated tools for information systems deSign,
H.-J. Schneider and A.I. Wasserman, eds., Proceedings of the WG8.1 Working
Conference, Orleans, 26-28 January 1982, pp. 31-48.

220 w.F. Tichy

Now suppose that the maintenance project is finished, resulting in a new system version.

At this point one can usually discard the intermediate revisions that lead from the initial to the

new revision. The initial revision, however, can often not be thrown away if a large user commun

ity depends on it. Thus, a system's administrator is forced to maintain "obsolete " versions [10].

The f,>orting of programs to different environments is another cause for multiple versions.

Compilers are typically ported to different environments, resulting in large families. Consider, for

instance, Pascal [11] and C [12], which are available on a wide range of architectures. The

same is now possible with some operating systems: Versions of UNIX [1] and Thoth [13] run on

significantly different machines. The portability of programs is also a major goal of the Ada

language and support efforts [3]. However, it is naive to assume that a program will execute

correctly in every environment as long as it is written in a portable language. In reality, all kinds

of minor and major changes are necessary, causing a single system to branch out into many

parallel versions.

Enhancement and customization are additional, powerful forces that cause new versions to

arise almost spontaneously. Users always apply a successful system in unexpected ways or

unforeseen situations. Invariably, this requires improvements, bells and whistles to be added.

Soon the system starts evolving away from its original characteristics, new errors creep in, and

so the modification cycle goes on.

The naive approach to the problems of multiple versions is to eliminate them altogether.

Unfortunately, this is not a viable approach. System families arise in response to widely differing

demands. We shall never be able to write the all-encompassing compiler, operating system,

telecommunications system, etc., that will adequately serve all user communities. On the other

hand, the ad hoc approach of constructing a new, unique program for every user group is too

costly. We need to economize by building system families whose members share common parts.

In other words, we need to learn how to deal effectively with system families.

III Section 2 we present a model that has been designed specifically for multi-version pro

grammed systems. This model leads to the concept of the well-formed configuration. Subclasses

of the model are discussed in Section 3. Section 4 describes design and implementation of a

small, multi-version PSE data base.

2. The AND/OR Graph Model for Families of Programmed Systems

Our model is based on AND/OR graphs [14]. An AND/OR graph is a directed, acyclic graph in

which each node is either a leaf (without successors), an AND node, or an OR node. AND nodes

and OR nodes must have at least one successor. When a node has a single successor, it can be

viewed either as an OR node or an AND node.

Programming Support Enl'ironments 221

Leaf nodes

The leave nodes are primitive objects in our model and represent program modules, inter

mediate code, documentation fragments, test data, etc.

OR nodes

OR nodes represent version groups. Successors of an OR node are considered equivalent

according to some criterion. Thus, an OR node implies a choice -- one may choose one (or

several) of its successors.

AND nodes

AND nodes represent configurations. All successors of an AND node must be combined to

form a complete configuration. Thus, an AND node implies an integration process; this

corresponds to a link-editing process for pure software configurations, a loading process

for hardware/software configurations, and an assembly process for pure hardware confi

gurations .

As an example, suppose we have a system S with three configurations C1, C2, and E. Sup

pose furthermore that configuration C 1 consists of components A and B, configuration C2 of

components C and D, and configuration E is primitive (Le., a single component). This situation can

be diagrammed in the following way (see Figure 1).

A

C1

I

B c

S

I

L
C2

I
E

D

Fig. 1 : An AND/OR graph with one OR node and two AND nodes.

The node with the label S is an OR node since it allows a choice of three alternatives. The

nodes C 1 and C2 are AND nodes, since their successors need to be combined. In the diagram,

the AND nodes are marked with the symbol "<====>" linking their successors .

Note that we are dealing with a directed graph, not merely a tree or a forest. In a directed

graph, a single node may have several predecessors. This permits the modeling of component

sharing. For example, a situation like in Figure 2 is impossible to realize in a tree (except by

copying whole subtrees).

222

A B

W. F. Tichy

s
I

Conrron D

!
C2

I

Fig. 2: Configurations C1 and C2 share node Common.

E

AND and OR nodes may be intermixed freely. Thus, one can form version groups out of primi

tive nodes, configurations, and even other version groups. Likewise, configurations may consist

of primitive nodes, configurations and version groups. This reflects the orthogonality of the con

cepts of version group and configuration.

We shall now demonstrate with a few more examples how AND/OR graphs can be used to

represent various types of hardware/software systems, including their documentation and test

data. This will be accomplished by attaching special significance to the branches emanating from

AND nodes and OR nodes.

In our model, a program module cannot be subdivided. However, each module normally

evolves in a sequence of revisions that are incremental changes to some initial version. The revi

sions are ordered by their creation date. This situation is dia(,rammed with an OR node (see Fig

ure 3).

L
80:08:01

M

I

! ! !
80:08:05 80:08: 14 80:00:05

Fig. 3: Revisions of a software module.

Suppose furthermore that our compiler is capable of generating code for the PDP-11, the

VAX-11, and the Intel 8086 from any of the revisions. Assume that in each case the compiler

may generate optimized or non-optimized code. This is represented with two more levels of OR

nodes (see Figure 4).

Programming Support Enl'ironments 223

M

I

L ! ! !
80:08:01 80:08:05 80:08: 14 80:09:05

I
! ! L

PDP11 VAX11 8086

I I I

opt noopt opt noopt opt noopt

Fig. 4: Revisions, target versions, and optimized versions.

Now suppose that we would like to add documentation to our module, for example a general

description and some implementation decisions. That is quite easily done by adding yet another

OR node, this time on top. Note that the documentation lIlay go through several revisions, just like

source code. It may even be compiled for several output devices, for example for the terminal,

the line printer, the photo typesetter, etc. Thus, the structure for documentation is similar to the

one for implementation (see Figure 5).

I
of

80:08:01

!
PDP11

L
80:08:05

I
t

VAX11

Impl

I

! !

M

I

80:08:14 80:09:05

!
8086

Doc

80:08:06 80:00:10 L:
! L

Printer Plotter

Fig. 5: M has two alternatives, implementation and documentation.

Note that OR nodes with documentation and implementation branches are different from the

OR nodes we have seen so far. Up to now, OR nodes only combined equivalent implementations.

Documentation and implementation are also equivalent, but in a different sense: they describe

the same object, one giving the specification, the other the implementation. Recall that we

224 w.F. Tichy

defined OR nodes as representing an inclusive-or relation. Thus, we can even model the view

that documentation and implementation form an entity.

Clearly, an OR branch for documentation can be added wherever desirable. For example, one

may add documentation to the revisions in the form of a "change log." One can also associate

documentation with higher-level nodes to supply a general overview, a user's manual, or the

requirements specification.

The AND/OR graph can be applied to hardware as well. However, the decomposition into

sub graphs may have a somewhat different shape. For example, there may be components that

have no revisions, like bolts or other standard parts. There may be additional document types,

like circuit sclJematics or instructions for the assembly of certain configurations. Hybrid confi

gurations consisting of both hardware and software are best represented with AND nodes. For

instance, if a particular program is to be stored in a specific PROM, then both components should

be successors of the same AND node. A combination of hardware and software is permissible

anywhere in the graph. For instance, we may want to indicate that a certain operating system

can run on several machine models, or that some software components have to be distributed

over specific nodes in a network.

All these different interpretations are actually overloading our simple AND lOR graph model.

The three basic node types are no longer sufficient. For building intelligent software tools, we

need additional node types. The types indicate the semantics associated with a given node.

Software tools can then take advantage of that information. We shall come back to this idea in

Section 4.

2.1. Generic Configurations and the Selection Problem

A Single AND node may actually represent a number of possible configurations if some of its

successors are OR nodes. Such an AND node represents a generic configuration and is therefore

called a generic AND node. Generic AND nodes are important for avoiding the combinatorial

explosion of the number of AND nodes.

Consider Figure 6, which describes the I/O subsystem of some larger family. It has two

major versions, one for the line printer (LPT), and one for the terminal (Termina/). The LPT version

is a configuration consisting of three components: open, close, and put. The modules open and

close exist as a sequence of revisions, labeled with release numbers. The node put has two

machine specific versions, one for the VAX and one for the PDP77. Each of those has again

several revisions.

Programming Support Enl'ironments 225

10

I

L !
Lf'f(default) Terminal

I
1<===================>1<====================>1

open close put

I I I

1 1 1 1 ! 1 ! !
1.1 1.5 2.3 1.2 2.2 3.1 VAX(default) PDP11

-+- I

! ! 1 1 !
1 .1 1.5 1.1 2.1 3.1

Fig. 6: Several versions of an I/O subsystem.

This diagram compactly represents 3"3"(2+3)=45 configurations. Without the generic node

LPT, we would need 45 structurally identical AND nodes. If we add just one more revision to

module open, the number of configurations increases to 60, and we would need 15 more AND

nodes. By contrast, with generic nodes we have to add only a single offspring to module open.

This example should demonstrate that the lack of generic configurations may lead to serious

bookkeeping problems as the number of modules and revisions increases 1

In large families, there are easily thousands of configurations that can be created by arbi

trary selection of offsprings at OR nodes. Relatively few of them will actually work together. The

problem is how to select the proper ones. One possibility is to use "cutoff" release numbers,

"cutoff" dates, and defaults. A cutoff release number (date) selects at each node the revision

with the number (date) that is less than or equal, but closest to the cutoff. In the above exam

ple, 10:2.3 would select the configuration 10pen:2.3, close:2.2, put: VAX: 7.5j. This is consistent

with the practice of defining releases to be the newest revisions of all components at a given

date. Note also the application of two user-specified defaults (LPT and VAX). The default for

release numbers and dates should correspond to the newest one for each component. We also

need a mechanism to specify "symbolic" release numbers like current, experimental, stable, etc.

Of course, it must be possible to override the defaults to express something like: "I want the

default for everything, except that I need the Terminal-version of 10." This is specified with

10.Termina/. Notations for cascading those selections are easily included.

1 The cardinality of a node, I.e., the number of versions represented by It, Is computed as follows. (1) The car
dinality of a leaf node Is 1; (2) the cardinality of an AND node Is the product of the cardinalities of Its offspr
ings; (3) the cardinality of an OR node Is the sum of the cardinalities of Its offsprings (assuming that exactly
one alternative must be chosen).

226 w.F. Tichy

An additional selection mechanism involves the labeling of OR branches. The labels serve as

criteria for global selection. For example, suppose that some of the branches emanating from OR

nodes are labeled basic, inlermediate, or advanced, indicating the obvious qualities about the

three choices. Assume that these labels arc spread through a large graph . Then one can select a

desired configuration by simply requesting, for instance, the basic branch wherever there is a

cllOice. (Note that this is similar to the global selection by cutoff date.) This technique is also

convenient for specifying the target machine or optimized/un optimized versions. An example is

IO:PDPll :nonopt.

2.2. Well-Formed Configurations

An extremely important issue in multi-person projects is interface control: to establish and

maintain consistent interfaces between the numerous components. The concept of the weI/

formed configuration, defined in this section, forms the basis for interface control. Our concept

is a generalization of the conditions on system structure presented in [15] and [16].

We start by associating an interface with every node in our graph. An interface consists of

two sets: the provided facilities and the required facilities. The provided facilities are the data

types, operations, data structures, etc. exported from a node. An example of provided facilities

are the visible interfaces of Ada packages [1 7]. The required facilities are the types, opera

tions, data structures, etc. that must be imported into the node.

C:p(C)

I r(C)

t<====================>t
N1:p(Nl) N2:p(N2)

r(N1) r(N2)

Fig. 8: A configuration with two components; interfaces attached.

The set of facilities provided by a node N is denoted as peN), the set of required facilities

as r(N)2. We have to make sure that a facility mentioned in the provided set of a node does not

also occur in the required set. This leads to the following definition.

A node N is free of contradictions if and only if

peN) nr(N) = ¢

2 We could link the interfaces into our diagram with some extra OR nodes, but it is more convenient to think of
them as node attributes. Compare Section 4.

Programming Support Enl'ironments 227

We define node fVl to be upward compatible with node N if fVl provides at least what N pro

vides, and requires not more than what N does. That means that fVl can be used instead of N, but

not vice versa.

Node fVl is upward compatible with node N if and only if

p(fVl) 2 P(N) and r(fVl) r::. r(N)

Similarly, two nodes are compatible if they have the same interface. Thus, compatible

nodes are interchangeable.

The nodes fVl and N are compatible if and only if

p(fVl) =p(N) and r(fVl) =r(N)

The last two definitions apply to arbitrary pairs of nodes. They will be especially interesting for

OR nodes.

We can now define well-formed nodes. There are different, recursive definitions for each

node class (leaf, AND, and OR nodes).

A. A leaf node is well-formed if and only if it is free of contradictions.

B.

(Since a leaf node usually corresponds to a given source module, we have to make sure that

the source actually satisfies the interface. Techniques for implementing that have been

presented in [18].)

An OR node R with direct successors K 1, ... ,Kn (n>l) is well-formed if and only if

R is free of contradictions;

ii. There exists at least one direct successor Ki(l<;i,;n) of R which is well-formed and

upward compatible with R.

(Since only one Ki needs to satisfy condition ii, we can add documentation to OR nodes

without problem, or make configurations versions of each other although they have different

interfaces.)

C. An AND node S with direct successors K1, ... ,Kn (n;;o,l) is well-formed if and only if

S is free of contradictions;

ii. All Ki (l,;i,;n) are well-formed;

iii. p(Ki) np(Kj) = ¢ if i I'j (freeness of conflicts)

n
iv. p(S)r::. U p(K

i
)

1=1
n n

v. r(S)2(U r (Ki)- up(Ki »
I =1 1=1

Since configurations correspond to AND nodes, we say that a configuration Is well-formed if

its AND node is well-formed. The basic conditions given above are precisely those which must be

checked when a configuration is built from a set of components. The conditions can also be used

II

228 w.F. Tichy

to construct the interfaces of newly created AND nodes and OR nodes if a system designer is

composing new system versions interactively. They are applied in search algorithms that com

pose well-formed configurations automatically, as discussed by [16]. The interfaces can also

be used to assess proposed interface changes by analyzing the effects for each node. Finally,

interface changes can be carried out by propagating the modifications to all affected nodes, as

described in [18]. The required algorithms and their complexities are currently being explored.

3. Comparison of other Models for Representing System Families

In this section, we analyze the data models underlying some existing software tools. The

comparison concentrates on what kind of AND/OR graph structures the tools permit. We shall see

that most of them placG severe restrictions on the shape of the graph. We distinguish the fol

lowing 4 major submodels. (Example implemGntations or proposals are noted in parenthesis.)

More detail can be found in [19].

a) The Hierarchical Model (Ada [17), Simula67 [20], Mesa [21]),

b) The Relational Model ([22] and [23]),

c) The Sequential Release Model (SCCS/MAKE [24,25]).

d) The AND lOR graph model ([9,15, 16]).

The hierarchical model imposes a partial ordering on the program modules, and multiple ver

sions are not permitted. The result is an AND/OR graph without any OR nodes. In the relational

model, configurations are specified as lists of components in rows of a single, large matrix or

several, cascaded matrices . Again, no multiple versions are permitted. Because of the lack of

OR nodes, both the hierarchical and relational models are essentially equivalent. Versions cannot

be specified, which makes it impossible to build tools within these models that worl; on version

groups rather than individual components. Generic configurations are also lacking, which leads to

the combinatorial explosion of the number of configurations.

The sequential release model allows program modules to exist as a sequence of revisions .

This leads to a graph where OR nodes are permitted only as predecessors of leaf nodes. Confi

gurations that are structurally identical and whose modules differ only in the revision numbers

can be represented with a single, generic configuration. However, it is not possible to indicate

that two different configurations are actually versions of each other, no matter how slight the

differences. This is due to the fact that the sequential release model permits no internal OR

nodes.

The general AND/OR graph model has none of these restrictions. Any two configurations

can be made versions of each other, and a single, generic description suffices for structurally

identical configurations. Structurally similar configurations can be described without duplication

of information. Hardware configurations, documentation, test configurations, and test data can

be added without problem. (None of the examples listed under point d permits an AND/OR graph

Programming Support Environments 229

in its full generality.)

4. Application of the Model

We noted previously that three node classes (leaves, AND nodes, and OR nodes) are not

sufficient for building an intelligent PSE. For example, software tools need to treat revisions of

source modules differently from object code or configuration versions. Yet in our basic model,

these are all offsprings of OR nodes. We suggested already that types associated with nodes

would alleviate the problem, because then the tools can be programmed to treat each type prop-

erly. Besides the types, we also need to attach various attributes to the nodes, for recording

creation dates, release numbers, selection labels, access lists, interfaces, etc.

A refinement of the AND/OR graph model that pGrmits this information to be represented is

the directed, altributed graph . Every node in an attributed graph has a type and a set of attri-

butes. The type determines the attribute set associated with a node. In this section, we use

attributed graphs to define a PSE data base for the Revision Control System (RCS) . ReS is a

variant of the sequential release model.

4.1. Design of the ReS Data Base

As a first step, we specify the general structure of the attributed graph. We could use the

data declaration facility of a general purpose programming language for that. However, this

approach would dictate a large number of representational details which are either wrong or

should not be fixed at this point. The same is true for the CODASYL data definition language.

The latter also forces some awkward constructions for certain kinds of graphs. Instead, we use

IDL (Interface Description Language) [26]. IDL is a language for declaring attributed graphs as

abstract data types. It has been used for defining Diana, the intermediate form of Ada programs

[27]. IDL satisfies three important requirements. First, IDL is programming language indepen

dent. Thus, IDL graphs may be manipulated by tools written in diverse languages. Second, IDL

does not prescribe any particular realization -- the graphs are merely conceptual ones. Indeed,

we chose a rather uncommon way of implementing IDL graphs, to be discussed in Section 4.2.

Third, IDL defines a standard, externally visible ASCII representation for graphs. In this form, the

graph can be read by the user, and communicated between arbitrary tools and even arbitrary

PSEs on different computer systems. All that is needed are encoders and decoders for porting

the contents of a PSE data base from one implementation to the next.

Below is the IDL specification of RCS. The reader need not be familiar with the IDL notation;

those aspects of IDL that are used here are informally described as we go along.

, I

230 W.F Tichy

mode Revision.sonstrol....system root RCSnode is

end

RCSnode ::= Delta I Module I Config;
-- There are 3 basic node types.

Delta => RevisionNo : string,
Date : string,
Author : string,
LogEntry : string,
State : string,
Text : string,
Next : Delta,
Branches : seq of Delta;

-- This specifies the attributes of nodes of type Delta.

Module

Lock

AccessSet
Language
Locks
Head

=> RevisionNo
Locker

: set of string,
: string,
: set of Lock,
: Delta;

: string,
: string;

-- A lock node indicates which branch is locked for expansions.

Call fig => AccessSet
ReleaseNo
State
Components

: set of string,
: string,
: string,
: set of RCSnode;

Fig, 9: IDL specification for the revision control system,

The first line of the specification indicates that a new data type with the name

Revision....control....system is defined. The root clause gives the starting symbol of the specifica

tion. There are 3 basic node types in the graph: Delta, Module, and Config. The delta nodes

represent the revisions of a module and are organized in a tree with the initial revision as the

root. The tree has a main branch, called the trunk, along which the main development occurs.

The field Next links deltas on the same branch of the tree. A delta may sprout one or more paral

lel branches. The entries in the field Branches point to the first delta on each branch. Figure 10

illustrates an example tree with 3 branches (not counting the trunk). Deltas on the trunk are

numbered 1.1, 1.2, ... , 2.1, 2.2, etc. Other branches are numbered fork.1, fork.2, ... etc, where

fork is the number of the delta that sprouts thE: branch. Deltas on a branch are again numbered

sequentially, using the branch number as a prefix.

Programming Support t'nPironments 231

M:>dule M1

1
2.1 1,3.1,1 1.2,2.2

! r r
1.2.1.1 1.3 1.2.2.1

r ! r
1.2

!
1.1

Fig. 10: A revision tree with 3 side branches.

Note that the links in the trunk point backwards from the latest delta rather than forwards

from the root. This is an optimization to speed up access time. The latest delta on the main

branch is the one that is most often used. We therefore store this version intact. All others are

stored as a set of differences that will restore the revision given the previous one. To obtain, for

instance, revision 1.3, the differences stored in delta 1.3 are applied to revision 2.1. The older

the revision is, the more deltas need to be applied. This technique is called reverse deltas. Del

tas conserve space, and reverse deltas minimize the average time needed to restore a revision 3 .

Unfortunately, reverse deltas do not work so well for side branches. To avoid keeping a

complete copy of the newest revision on each branch, we use forward deltas from the branch

point. Thus, applying to delta 2.1 first delta 1.3 and then 1.3.1.1 will regenerate revision

1.3.1.1. This is still shorter than regenerating 1.3.1.1 from the root 1.1.

Let us now examine the definition of the Delta node more carefully. The text following the

symbol "=>" is a record definition. Each field or attribute declaration is composed of an attribute

name and a type. RevisionNo numbers the deltas as discussed above. The Date field records the

creation date and time, and the Author field stores the identification of the person who created

the new revision. The Log Entry attribute contains a short note describing the nature of the

change that made the revision necessary. The author of the revision is prompted by the data

base system to supply the log entry when the revision is deposited. State indicates the status

of a revision, for example whether it is experimental, stable, or released. Finally, the attribute

Text contains the actual program text.

The Module node contains attributes that are common to all deltas. The AccessSet attribute

is a set of user names that have write-permission, i.e., those who may create deltas. (Read per

mission is given to all other users.) The Language field records the programming language or

3 The use of reverse, non-intermixed deltas is one of the chief differences between Res and sees.

I I

232 w.F. Tichy

document formatting language used. This is needed for automatic system or document genera

tion. The locks make sure that there are no overlapping changes on a branch while somebody is

preparing a new revision for it. A LocI< node records the branch number and locker. The field

Head points to the most recent revision on the main branch.

Nodes of type Config record configurations. The offsprings of this AND node are recorded

in the attribute Components. Note that this is a set of RCSnodes. Thus, members of this set may

be modules, configurations, and even deltas. The attribute IIccessSet defines who may change

the node. There are additional fields to record the release number and the state of the confi-

guration. Figure 11 presents an example instantiation of RCS.

4.2. Implementation of ReS

A prototype of RCS has been successfully implemented on a VAX/UNIX system. It uses

reverse deltas, but without branches. The purpose of the prototype was to investigate the

feasibility of a PSE data base patterned after an attributed graph. A more ambitious project pro

viding a full attributed graph structure (including reverse deltas and branches) is under way.

Another project develops ADABASE, a PSE data base specifically designed for the Ada program

ming language [28]. We wish to report here on the important implementation decisions and the

data base operations of the prototype.

An important problem is the representation of the attributed graph. The naive approach

would be to place an encoding of the graph into a single file. Since the file is the unit of change,

only one programmer at a time can modify the graph. This leads to unacceptable delays since

there are usually several people modifying the data base simultaneously. For example, there may

be several programmers checking modules in and out for modification, adding documentation and

object modules, constructing test configurations, and accessing the data base for interfaces

and various other data items.

The opposite approach of placing every node into a separate file may lead to another kind

of inefficiency caused by frequent directory lookups. We therefore adopted the approach that

one or several nodes may be stored in a single file. Pointers to nodes in the same file can be

traversed quickly; pointers to "remote" nodes require a directory lookup or even a network

transfer. In that manner one can optimize the data base bandwidth by rearranging the assign

ment of node groups to files (possibly spread over a computer network). In RCS, one should

place each Module node together with all its descendants into a single file because these nodes

are usually accessed together.

The encoding of the graph is the standard ASCII representation defined in the IDL manual.

This simplifies the operations for browsing through the graph. Graphics support for pictorial

AccessSet

ReleaseNo

State

Components

AccessSet

Language

Locks

Head

r RevisionNo

i Date

Author

I Log Entry

State

Text

r Next

: Branches

r

AevlslonNo

I Date

Author

Log Entry

: State

I Text

Next

Branches

RevlslonNo

Date

Author

1 Log Entry

State

Text

Next

1 Branches

Programming Support Environments 233

C1: Conllg C2: Con fig

1"pjd"1 AccessSet I"svb", "pjd", "wlt"l

1.1 ReleaseNo 3.3

Ex.perlmental State Released

.... Components 1/-

~ / ~
"'

,

i
M2: Module M1: Module

I I"pjd", "wlt " l I Access5et '''wIt'', "svb"l

, Languag e C C
Revis lonNa I 4.0 ! I LOCKS

! I "wIt " , Locker

, Head ,
01: Delta !

1.6 04: Delta

81 : 5 : 2 : 18 : 56 ! AevlslonNo 4.0

"pjd" Date 81:6:2:9:9

"underflow test fixed" Autl10r "wft"

: Log Entry

'"'."".~
"bin. search corrected"

I State Released
~-programtext

! Text "begin ". end"

i Next <>
, Branches <>

02: Delta I
2.1

81 : 5 : 6 : 12: 00 !
"pjd "

"error 32/ A corrected"

Stable
I

6-programtex t

<>

03: Delta

3.0

81:5:16:15:34

"pjd"

"funtlon E-EYS fixed"

Released I

"begln ", end" I

I

<>

Fig. 11: Example data base for ReS,

234 Hl.F. Tichy

rather than textual display is uncler investigation. The high-level operations for handling revi

sions are patterned after SCCS [24]. A synopsis of the commands is given below.

Rcs

Co

Ci

Rlog

Rcs modifies or initializes a module or configuration node. There are parameters to expand

or shrink the access set, and to specify the other attriL "tes. Special options lock, unlock,

or break the lock of a branch. Rcs may only be executed by users on the access set.

Co checks out a revision of a module node for update or inspection. If an update is desired,

Co first locks the corresponding branch (if not already locked). This avoids that two people

create overlapping updates to the same branch. (A lock can be released by performing an

update with the Ci command, or by releasing it , without update, using Rcs.)

Co places the retrieved rEvision into a file in the user's directory for editing or inspection,

or sends it to the terminal for perusal. The desired revision may be selected by revision

number, symbolic name, creation date, state, or author. The default is the most recent revi-

sian.

Ci appends a new revision to a branch . Only the user who locked the branch in his name

may execute it. Normally, the new revision number is obtained by incrementing the number

of the latest revision, but the user can specify a higher number explicitly. After successful

completion, Ci releases the lock.

Rlog displays the log messages and other information about module and delta nodes in a

variety of formats.

Make

Make compiles a configuration. Normally, it selects the latest revisions of all modules com-

posing it, but the notation suggested in Section 2 can be used to specify other selections

by state, symbolic name, cutoff date, or cutoff release number. It is also possible to select

specific versions individually. Make uses the Language field to determine which processor

(e.g., compiler or document formatter) to call. It does not attempt to avoid redundant com

pilations and lin kings.

Programming Support Enl'ironments 235

Make could be extended to save redundant compilations and lin kings if our graph structure

included de.ived versions. In that case we would need additional offsprings at Delta and Config

nodes for recording object modules and the derivation history. We have omitted these details

for CIMity. It should also be noted that it is easy to add an OR node for representing versions of

configurations.

5. Conclusions

We I,ave introduced a simple and flexible model for representing families of programmed

systems. The model allows the sharing of components among configurations, treats configura

tions and versions completely orthogonally, provides generic configurations, and yields the con-

cept of the well-formed configuration. The model can also be used to compare the data base

structures underlying other software tools.

A refinement of the model leads to a directed, attributed graph with several node types. We

designed the graph structure for the revision control system and presented a data base imple-

menting that structure. The design and implementation demonst rate that the directed, attributed

grapl. is adequate for developing data cases for programming support environments.

Acknowledgments : Part of this work was done at the ITT Programming Technology Center in

Stratford,Conn., and I am especially grateful for comments from Donn Combelic and Tom Love .

References

1. Kernighan, Brian W. and Mashey, John R., "The UNIX Programming Environment," Software -
Practice and Experience 9(1) pp. 1-15 (Jan. 1979).

2. Habermann, A. Nico, "An Overview of the Gandalf Project," in eMU Computer Science
Research Review 1978-1979, Carnegie-Mellon University (1979).

3 . Buxton, John N. and Druffel, Larry E., "Requirements for an Ada Programming Support
Environment: Rationale for Stoneman ," PI' . 66-72 in Proceedings of COMPSAC 80, IEEE
Computer Society Press (Oct. 1980).

4. Osterweil, Leon J., "Software Environment Research: Directions for the Next Five Years,"
IEEE Computer 14(4) pp. 35-43 (April 1981).

5. Teite!man, Warren and Masinter, Larry, "The Interlisp Programming Environment," IEEE Com
puter 14(4) pp. 25-33 (April 1981).

6. Parnas, David l., "On the Design and Development of Program Families," IEEE Transactions
on Software Engineering SE-2(1) pp. 1-8 (Mar. 1976).

7. Pamas, David L., "DeSigning Software for Ease of Extension and Contraction," IEEE Tran
saclions on Sot/ware Engineering SE-5(2) pp. 128-138 (March 1979).

8. Habermalln, A. Nico, Flon, Lawrence, and Cooprider, Lee W., "Modularization and Hierarchy in
a Family of Operating Systems," Communications of the ,IlCM 19(5) pp. 266-272 (May
1976).

9. Coopricier, Lee W., The Representation of Families of Programmed Systems, PhD thesis,
Carnegie-Mellon University, Department of Computer Science (1978).

236 w.F. Tichy

10. Belady, L.A. and Lehman, M.M., "The Characteristics of Large Systems," pp. 106-138 in
Research Directions in Software Technology, ed. Peter Wegner,M.I.T. Press (1979).

11. Wirth, Niklaus, "The Programming Language Pascal," Acta Informatica 1 pp. 35-63 (1971).

12. Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Prentice-Hall
(1978).

13. Cheriton, David R., Malcom, Michael A., Melen, Lawrence S., and Sager, Garry R., "Thoth, a
Portable Real-Time Operating System," Communications of the ACM 22(2) pp. 105-115
(Feb. 1979).

14. Nilsson, Nils J., Problem Solving Methods in Artificial Intelligence, McGraw-Hili (1971).

15. Tichy, Walter F., Software Development Control Based on System Structure Description, PhD
Thesis, Carnegie-Mellon University, Department of Computer Science (Jan. 1980).

16. Habermann, A. Nico and Perry, Dewayne E., "Well-Formed System Compositions," CMU-CS-
80-117. Technical Report, Carnegie-Mellon University, Department of Computer Science
(March 1980).

17. Ichbiah, Jean D., Reference Manual for the Ada Programming Language, United States
Department of Defense (July 1 980) .

18. Tichy, Walter F., "Software Development Control Based on Module Interconnection," pp.
29-41 in Proceedings of the 4th International Conference on Software Engineering, ACM,
IEEE, ERO, GI (Sept. 1979).

19. Tichy, Walter F., A Model for Representing Families of Programmed Systems, Technical
Report, Purdue University, Computer Science Department (January 1981).

20. Birtwistle, G., Enderin, L., Ohlin, M., and Palme, J., "DECsystem-1 0 Simula Language Handbook
Part 1," C8398, Swedish National Defense Research Institute (March 1976).

21. Mitchell, James G., Maybury, William, and Sweet, Richard, Mesa Language Manual, Technical
Report, Xerox Palo Alto Research Center (Feb. 1978).

22. Belady, L.A. and Merlin, P.M., "Evolving Parts and Relations: A Model for System Families,"
RC-6677, Technical Report, IBM Thomas J. Watson Research Center (1977).

23. ITT" CMSS3 Users's Manual, International Telephone and Telegraph (1980) . Document No.
2111TT26366-PC

24. Rochkind, Marc J., "The Source Code Control System," IEEE Transactions on Software
Engineering SE-1 (4) pp. 364-370 (Dec. 1975).

25. Feldman, Stuart I., "Make - A Program for Maintaining Computer Programs," Software -
Practice and Experience 9(3) pp. 255-265 (March 1979).

26. Nestor, John R., Wulf, William A., and Lamb, David A., IDL - Interface Description Language,
Formi'll Description, Technical Report, Carnegie-Mellon University, Computer Science
Department (Feb. 1981).

27. Goos, Gerhard and Wulf, William A., Diana Reference Manual, Technical Report, Carnegie
Mellon University, Computer Science Department (March 1981).

28. Tichy, Walter F., ADABASE -- A Data Base for Ada Programs, Technical Report, Purdue Univer
sity, Computer Science Department, in preparation (November 1981).

Area 4: FORMAL METHODS

G. RICHTER, Clocks and their Use for Time Modeling

"Information systems: Theoretical alld formal aspects", A. Semadas,
1. Bubenko, fl'. and A. Olh'e. cds. , Proceedings of the WC8.1 Working Conference,
Sitges, 16-18 April 1985, pp. 49-66.

P.A.S. VELOSO and A.L. FURTADO, Towards Simpler and Yet Complete Formal
SpeCifications

"1nfOrmation systems: Theoretical and formal aspects", A. Semadas,
1. Bubenko, jr. and A. Olil'e, cds .. Proceedings o/the WC8.1 Working Conference.
Sitges, 16-18 April 1985, pp. 175-189.

	Model1
	Model2
	Model3
	Model4
	Model5
	Model6
	Model7
	Model8
	Model9
	Model10

