
Online-Autotuning of Parallel SAH kD-Trees

Martin Tillmann, Philip Pfaffe, Christopher Kaag, Walter F. Tichy
Institute of Program Structures & Data Organization

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: {martin.tillmann, philip.pfaffe, walter.tichy}@kit.edu, christopher.kaag@partner.kit.edu

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract—We explore the benefits of using online-autotuning
to find an optimal configuration for the parallel construction
of Surface Area Heuristic (SAH) kD-trees. Using a quickly
converging autotuning mechanism, we achieve a significant
performance improvement of up to 1.96x.

The SAH kD-tree is a spatial data structure and a fundamen-
tal tool in the domain of computer graphics and simulations.
The parallel construction of these trees is influenced by several
parameters, controlling various aspects of the algorithm. How-
ever, the parameter configurations advocated in the literature
are hardly ever portable. To boost portability, we apply online-
autotuning to four state-of-the-art variants of parallel kD-
tree construction. We show that speedups over the variants’
standard configurations are possible with low programmer
effort. We further demonstrate the performance portability of
our approach by evaluating performance on varying multicore
platforms and both static and dynamic geometries.

Keywords-spatial data structures; online-autotuning; parallel
performance optimization;

I. INTRODUCTION

Spatial data structures are a fundamental tool in the
domain of computer graphics and simulations, supporting
fast range or nearest neighbor queries on multidimensional
data. While accelerating many applications in this domain,
the most prominent one may be ray tracing. Ray tracing is
a technique for synthesizing photo-realistic images, but is
also applied in radio or acoustic simulations. In its essence,
this technique casts a ray onto a given scene and simulates
its interaction with the environment, represented as a set of
(geometric) primitives.

There is a large collection of data structures that have
been proposed to accelerate the ray-primitive intersection
computation. One of the most popular among them is the
Surface Area Heuristic (SAH) kD-tree, which permits effi-
cient parallel construction, a mandatory trait for interactive
or real-time ray tracing. In recent years, several highly
parallel algorithms for constructing kD-trees have been
developed, both for multi- and many-core platforms (cf. e.g.
[1]–[3]). While these works report on great performance
gains through parallel processing, they share a common
difficulty. The SAH – the heuristic controlling how geomet-
ric primitives are assigned kD-tree nodes – as well as the
parallel implementation itself come with a set of parameters,

whose optimal configuration is not only application and
platform dependent but also dependent on input data and
user interaction. Although the authors usually propose a
“good” configuration for a given application, this suggestion
is generally not portable and is often only an educated
guess, such as using the number of hardware threads as
the number of spawned parallel tasks. Hence, an optimal
configuration needs to be identified manually to achieve
maximum performance in constructing kD-trees, which is
a tedious task. The problem is even exacerbated by the fact
that the optimal configuration does not only depend on the
hardware and the application, but also on input data and
interactive user inputs, such as scenes of varying complexity
or camera movement.

In this paper, we propose using online-autotuning to
address this problem. Autotuning has proven to be a valuable
tool to solve similar configuration problems across different
domains [4]. Although originally invented for offline op-
timization, e.g. during install or deploy time, it has since
also been applied in online tuning scenarios [5]–[7], which
enables it to deal with the dynamics of application execution.
We show that, using AtuneRT, which is an extension of
the work in [5], we are able to find optimal parameter
configurations for parallel SAH kD-tree construction with
negligible programmer involvement and little runtime over-
head. To demonstrate the effectiveness of the approach, we
implement four state-of-the-art variants of parallel kD-tree
construction from the relevant literature. Using AtuneRT,
we then evaluate these implementations in a ray tracing
scenario on different multicore platforms and on both static
and dynamic scenes.

II. RELATED WORK

In the past four decades, kD-trees have been the subject
of extensive research. Many methods exist for efficient
construction of the tree, such as the O(n log n) algorithm
by Wald and Havran [8] for ray tracing in static scenes
or the method by Günther et al. [9] for animated scenes.
Similar effort has been invested in inventing fast search
strategies for answering queries on the data structure, for
instance by Sample et al. [10], who introduce a fast search
algorithm combining depth-first branch and bound search
with an intelligent search ordering heuristic.

In more recent years, the focus has shifted towards
exploiting the benefits of parallelism brought by ubiqui-
tous parallel multicore processors. Prominent examples are
Shevtsov et al. [1] and Choi et al. [2], who combine parallel
precomputation of the upper tree levels with subsequent
parallel processing of the lower levels via space subdivi-
sion. Following this trend, specialized parallel manycore
platforms, such as GPUs, have gained a lot of attention.
Wu et al. [3] and Danilewski et al. [11] compute kD-trees
on GPUs in a top-down, breadth-first fashion. Roccia et al.
[12] distribute work load across CPU and GPU depending
on individual node sizes.

While all these works devise various optimizations for
the aspects of using (SAH) kD-trees, they expose multiple
parameters for which suitable values must be found. Al-
though autotuning has proven to be a valuable tool to find
optimal parametrizations in various domains (cf. e.g. [13]–
[15]), the benefits of autotuning kD-trees have not been
studied previously. Autotuning for spatial data structures
has, to the best of our knowledge, only been subject to
a single study: Ganestam and Dogget [16] employ model-
based online-autotuning to optimize a GPU-based ray tracing
application using the Bounding Volume Hierarchies (BVH)
data structure towards a predefined performance goal. To that
end, the rendering quality is adapted until a desired rendering
performance is reached. This work differs from ours in two
key aspects, as we maximize ray tracing rendering perfor-
mance in a fixed quality setting, and find configurations
using a search technique instead of a machine model, thus
avoiding a machine model’s inherent inaccuracy.

III. FUNDAMENTALS

A. Online-Autotuning with AtuneRT

First, we specify the autotuning problem. The different
kD-tree implementations each come with a set of tunable
parameters. A given algorithm a contains several tuning
parameters τa,j . We define a tuning parameter τa,j as the set
of valid values for this tunable parameter. In practice most
tuning parameters are closed integer intervals. We can now
define the search space Ta for an algorithm a.

Ta = τa,0 × · · · × τa,J

A configuration Ca is a valid assignment of the tuning
parameters and corresponds to a point in the search space
Ta. The execution time of an algorithm using a configuration
Ca is measured by the timing function ma. In general the
execution time is influenced by the employed hardware and
the input data. We call these factors the measuring context
K. To minimize the execution time we need to find the
optimal configuration Copt,a:

Copt,a = argmin
Ca

ma(Ca,K)

1 void DoThings () {
2 unsigned N;
3 unsigned min = 1 ;
4 unsigned max = 3 2 ;
5 unsigned s t e p = 1 ;
6 Tuner T ;
7 T . R e g i s t e r P a r a m e t e r (&N, min , max , s t e p) ;
8
9 whi le (th ingsToDo) {

10 T . S t a r t () ; / / S t a r t Measurement
11
12 # pragma omp p a r a l l e l f o r num threads (N)
13 f o r (. . .) { DoThing () ; }
14
15 T . Stop () ; / / S top Measurement
16 }
17 }

Figure 1: Example implementation using AtuneRT

Online-Autotuning searches at runtime for Copt,a, this
means that each evaluation of ma on a non-optimal con-
figuration has to amortize itself. In conjunction with the
sizeable extent of the search space Ta, a fast convergence
of the search algorithm used to find Copt,a is essential.

In this work, we use the general-purpose online-autotuner
AtuneRT (also used in [15]) which is the successor of
Atune [17], an offline-autotuner. The search algorithm of
AtuneRT samples the search space at random points to seed
a Nelder-Mead search [18]. This approach performs well in
cases where good starting configurations are unknown, and
converges quickly even in high dimensional search spaces.
AtuneRT is an application agnostic tool, and interoperates
with client applications merely via shared memory and a
small API. The client application tuning workflow is outlined
in figure 1. Here, we wish to optimize the number of
threads used in a parallel loop within a given range. More
formally speaking, we wish to find an optimal configuration
CDoThings ∈ TDoThings = τN , with τN = [min, max]
for the program variable N. Interaction with the tuner is
implemented using its core API functions:

• RegisterParameter(&N, min, max, step)
Register a variable N in memory for tuning within the
range [min, max] using a stride of step.

• Start() Start a new measurement cycle.
• Stop() End a measurement cycle and apply new

configuration.
Integrating AtuneRT with client code is thus usually

extremely simple, given that the desired pieces of the soft-
ware that are to be tuned already provide explicit tuning
parameters.

B. SAH kD-Trees

Recursive space subdivision is the core concept of con-
structing kD-trees. The k-dimensional geometric primitives

are divided into two sets by a hyperplane, the resulting
sets are then further subdivided until an end condition is
reached. In the three dimensional use case the initial axis-
aligned bounding box of the geometry is split by an axis-
aligned plane. This method has two degrees of freedom: the
selection of the plane and the end condition for stopping the
subdivision. The Surface Area Heuristic (SAH) formalizes
this problem and provides an approximation to construct op-
timal kD-trees. Optimal kD-trees minimize the time needed
to intersect a ray with the geometry.

By subdividing a bounding box b into two cuboids l
and r we can compute the surface areas (A(l), A(r))
and the number of geometric primitives contained in each
cuboid (Nl, Nr). Assuming uniform distributions of rays,
the probability p of a ray, that intersects the original cuboid
b, also intersecting a subdivision bsub is given by the ratio
of their surface areas [8].

p(bsub, b) =
A(bsub)

A(b)

Given a bounding box b and a subdividing plane h we can
now compute the cost of querying b.

cost(h, b) = CT + p(l, b) · cost(l) + p(r, b) · cost(r)

Here CT is the fixed cost of traversing a tree node and
cost(l) and cost(r) are the costs of finding an intersection
in the corresponding sub-cuboids.

However geometric primitives commonly used in com-
puter graphics such as triangles can end up intersecting
the plane h. These triangles have to be duplicated and
included in both subsets. This special case increases the
number of triangles that are stored in the kD-tree which
leads to additional costs. The SAH represents duplication
by introducing the parameter CB , the cost of duplicating a
single primitive.

The cost functions of the subdivisions l and r can be over
approximated by assuming that each contained primitive
must be tested. If the cost to intersect a single primitive
is CI , we can write the SAH cost function as:

SAH(h, b) = CT + p(l, b) ·Nl · CI

+p(r, b) ·Nr · CI

+(Nl +Nr −Nb) · CB

(1)

By solving argmin
h

(SAH(h, b)) we can now find the opti-

mal hyperplane.
Additionally, this tells us when a bounding box b should

not be further subdivided. If the cost of intersecting all prim-
itives is less than the optimal split cost further subdivision
is not profitable.

if Nb · CI < min
h

(SAHsplit(h, b)) stop (2)

As proposed the SAH relies on three parameters to
perform its computations: the cost factors CT , CI and CB .

Figure 2: Two dimensional case of the Surface Area Heuris-
tic (SAH). Triangles are separated into two subsets by line
h. The relative surface area of the two rectangles l and r
are used as probabilities for accessing the corresponding tree
nodes. The cost of accessing a tree node is proportional to
the number of contained triangles.

Parameter Semantics

CI Cost for intersecting a triangle
CB Cost for duplication of a primitive
S Max. number of subtrees per thread

(a) Parameters of the node-level, nested and in-place algorithm
implementation

Parameter Semantics

CI Cost for intersecting a triangle
CB Cost for duplication of a primitive
S Max. number of subtrees per thread
R minimal resolution of a node

(b) Parameters of the lazy construction implementation

Table I: Tunable parameters of the implementations for
parallel SAH kD-tree construction

Modern implementations and literature rely on expert knowl-
edge and experience to choose these parameters. However
as we show in section V-D different geometry or hardware
produces different optimal values for these parameters.

IV. IMPLEMENTATION

Next we describe our parallel implementation of four
state-of-the-art algorithms for kD-tree construction. Our
implementations are based closely on the works of [2] and
[8].

A. Node-level Parallel Algorithm

In [8] Wald and Havran describe the best known sequen-
tial algorithm for constructing an SAH kD-tree. Although
sequential, this algorithm allows for naı̈ve parallelization, as
for any inner tree node, the subtrees for its children may be
constructed independently. We implement a parallel version

(a) Static scenes: Bunny, Sponza and Sibenik Cathedral (b) Dynamic scenes: Toasters, Wood Doll and Fairy
Forest (with most of the geometry covered)

Figure 3: Evaluation scenes

of this algorithm by spawning OpenMP tasks for every
recursive call in the tree construction, up to a maximum
depth.

The maximum depth is determined based on a con-
figurable parameter S, defining the maximum number of
subtrees to be expanded per thread. Together with the SAH
parameters this procedure yields three tunable parameters
for this implementation, listed in Table Ia. CI and CB are
parameters of the SAH, estimating the cost of intersecting a
triangle and a ray, respectively. As the configuration of CI

and CB is only meaningful in relation to CT – the cost of
visiting an inner node – we fix CT to an arbitrary value of
10.

B. Nested Parallel Algorithm

The nested parallel algorithm presented in [2] is a more
complex version of the node-level parallel version we de-
scribed in section IV-A. In addition to handling independent
subtrees in parallel in the same way as above, Choi et al.
also parallelize the processing of geometry primitives inside
individual nodes. To this end, this list of primitives is split
into a number of chunks which are distributed across threads
and then processed in what is essentially a sequence of
parallel prefix operations. However, the interaction between
prefix operations is in fact serialized. Because of this fork-
join pattern, our implementation of the algorithm uses the
OpenMP parallel for loop for parallelization.

As this algorithm is an extension of the node-level parallel
version, it inherits its existing tuning parameters resulting in
the set of parameters listed in table Ia.

C. In-Place Parallel Algorithm

The in-place parallel algorithm is an alternative approach
to constructing an SAH kD-tree [2]. Instead of creating
nodes containing sets of triangles in a depth-first order, this
algorithm analyzes the primitives in breadth-first fashion,
keeping track of the nodes each triangle belongs to. This
way, each level of the tree is constructed at once. The
algorithm consists mainly of two operations. First, the max-
imum SAH value needs to be determined for every node
of the current level and its associated primitives, which is
implemented as a parallel prefix operation. We implement
this as before, using OpenMP parallel for. Second,

the next level of the tree needs to be created by assigning
each triangle to its containing nodes. In this step, every
triangle can be handled independently. Therefore, we again
use OpenMP parallel for in our implementation.

This algorithm is controlled by the same parameters as
the previous two, shown in table Ia.

D. Lazy Construction Algorithm

To cope with the high memory consumption and strict
response time requirements of kD-tree construction, state-
of-the-art ray tracers and kD-tree builders oftentimes resort
to a “lazy” or “on demand” construction strategy (cf. e.g.
[19], [20]). This is especially beneficial when, for instance,
rendering a scene with a high degree of occlusion, preventing
a lot of primitives from ever being considered for inter-
section with a ray. For such situations it makes sense to
only construct the spatial data structure to a certain level of
detail, and only compute higher resolutions when and where
needed.

We implement a lazy variation of the in-place parallel
algorithm by introducing a parameter R describing the
minimal tree node resolution. The tree is constructed as
before, parallelized across the primitives in the top-level
nodes and across subtrees in the lower levels, but creation
of subtrees is halted once the node contains less than R
primitives. A node will first be fully expanded once it is
being hit by a ray during ray tracing. Because individual rays
may be traced in parallel, we protect the deferred processing
of a node with an OpenMP critical section.

Our implementation of the lazy construction algorithm
inherits the parameters of the in-place algorithm, adding only
the R parameter. The full list is shown in table Ib.

V. EVALUATION

To test the performance of our kD-tree implementations,
we evaluate them in the context of a ray tracing scenario,
rendering six different 3D scenes. Because we wish to
concentrate on the performance of the spatial data structure
instead of the actual renderer, we chose a simplistic ray
tracing technique, most commonly referred to as ray casting.
Before showing and discussing our evaluation results, we
briefly introduce our ray casting implementation and the
evaluated rendering scenes.

A. Ray Casting

Invented in 1968 [21], ray casting is a simple method of
ray tracing image rendering. For every pixel in the synthe-
sized image, a ray is sent towards the scene, finding the first
intersecting geometry primitive. From this intersection point
a shadow ray is cast to the light sources to determine the
lights contribution to the resulting color. The rendered result
is then the shaded color of the primitive. To find the first
intersecting geometry primitive we query the kD-tree using
a traversal implementation based on [22, pp. 319-321]. As
the tree can be traversed independently for every ray, we
parallelize intersection testing across different rays.

To optimize ray casting, our goal is to minimize the time
to compute a given frame t. To compute a frame we have to
build the kD-tree data structure from the input geometry and
query this data structure for each ray cast in the rendering
algorithm. Therefore, time t is the sum of the construction
time tc of the kD-tree and the rendering time tr. Hence, the
execution time function is simply:

ma(Ca,K) = tc(Ca,K) + tr(Ca,K)

We use the tuning workflow seen in figure 4. After tuning
parameters are registered we start measuring the execution
time. We build the kD-tree according to the current config-
uration of the tuning parameters. The ray tracing algorithm
queries the kD-tree for ray-triangle intersections. We stop
measuring the execution time when the ray tracing is finished
and advance the animation frame. An animation changes the
geometry and necessitates a rebuild of the kD-tree from the
previous frame. Most animations retain the general distribu-
tion of the geometry and therefore the optimal configuration
only changes in small steps. Our tuning algorithm can
react to these small shifts. This continued tuning has to
amortize itself over the duration of the program. We evaluate
static geometry with the same workflow. Although in static
scenes it is not required to rebuilt the kD-tree for each
frame, we still tune the construction instead of relying on
offline-tuning. Camera positioning, system load and other
environment effects all influence the optimal configuration
and can differ each time the program is run.

B. Rendering Scenes

Using ray casting, we evaluate the performance of the
autotuning kD-tree implementations on six scenes, shown
in figure 3. The set of scenes consists of three static
scenes and three dynamic scenes. The static scenes (figure
3a) include Bunny (69666 triangles), Sponza (66450 trian-
gles) and Sibenik Cathedral (75284 triangles). The dynamic
scenes(3b) consist of Toasters (11141 triangles, 246 frames),
Wood Doll (6658 triangles, 29 frames) and Fairy Forest
(174117 triangles, 21 frames). The camera in the Fairy
Forest scene is positioned up close to an object, most
of the geometry in the scene is occluded. The cast rays

Figure 4: Ray Caster Tuning Workflow

Parameter Range

τCI
[3, 101]

τCB
[0, 60]

τS [1, 8]
τR [16, 8192] (limited to powers of 2)

Table II: Tuning Parameters

intersect only with a tiny fraction of the scenes triangles,
this constitutes a corner case for querying kD-trees.

C. Benchmark

We evaluate the ray tracing benchmark on an AMD
Opteron 6168 24-core system (1.9 GHz). To assess the
performance portability of our approach, we furthermore
evaluated the benchmark for the In-Place algorithm on the
Sibenik scene on three additional systems: An Intel Xeon
E5-1620 quadcore (3.7 GHz, 8 threads), an Intel i7-4770K
quad-core (3.5 GHz, 8 threads) and a mobile AMD A8-
4500M quad-core (1.9 GHz).

A single experiment consists of constructing the kD-tree
for each frame of a scene with the current parameter con-
figuration and then rendering the image, using the autotuner
to measure the total time required and to determine the next
configuration. The tuning parameters are defined in table II.
The search space T is thus:

T = τCI
× τCB

× τS × τR

Speedups presented in the following discussion are in re-
lation to a manually crafted base configuration Cbase =

(a) Sibenik (b) Sponza (c) Fairy Forest

Figure 5: Absolute execution time with and without tuning. Hardware: dual AMD Opteron 12-core system (1.9 GHz)

(17, 10, 3, 212) ∈ T , which is based on best practices and
recommendations from literature, such as [2], [11].

In order to achieve optimal speedups, it is mandatory
for the autotuner to reach convergence. Thus, for the static
scenes, we repeat both steps until autotuning convergence
has been reached. For the dynamic scenes on the other hand,
the autotuner sometimes takes too long to reach a converged
state before the frame sequence ends, which is why we
artificially extend the sequence by repeating every frame 5
times. This experiment is repeated 15 times for every scene.

D. Results

1) Speedup Through Autotuning: In figure 6 we see
the speedup of the four tuned algorithms over all scenes
on the Opteron dual 12-core platform. The speedup com-
pares the execution time of the tuned configuration found
by our autotuner ma(Ctun,a,K) to the base configuration
ma(Cbase,K). For the Bunny scene the in-place parallel al-
gorithm (IV-C) is slower when tuned, resulting in a speedup
of 0.99. On the Toasters and Fairy Forest scene the in-
place parallel algorithm reaches a speedup of up to 1.09.
Tuning the lazy construction algorithm (IV-D) on the Fairy
Forest scene results in the same marginal speedup of 1.09.
Both the node-level parallel algorithm (IV-A) and the nested
parallel algorithm (IV-B) cannot be improved beyond a 1.03
speedup on the Bunny scene. All other combinations achieve
satisfying speedups, the highest peaking at 1.96 with the
lazy algorithm on Sibenik. Figure 5 details the absolute
execution times of the four kD-tree implementations on three
scenes. For comparison the execution time with the base
configuration is shown next to the execution time with the
tuned configuration found by our autotuner.

While the overall impact of tuning our selection of param-
eters is evident for most scene and algorithm combinations,
local minima are a danger for the Nelder-Mead search.
The tuning of the in-place parallel algorithm on the Bunny
scene terminates in such a local minimum, in combination

(a) Bunny (b) Fairy Forest

(c) Sibenik (d) Sponza

(e) Toasters (f) Wood Doll

Figure 6: Speedup of the four tuned algorithms compared
to their base configurations. Hardware: dual AMD Opteron
12-core system (1.9 GHz)

with the overhead from the online-autotuning this results
in a slight slowdown. If the base configuration is already
close to the optimal configuration we can see only marginal
improvements. This is the case for the in-place parallel and
lazy construction algorithms on Fairy Forest, and the node-
level and nested parallel algorithms on the Bunny scene.

As seen in figure 5, the Lazy Construction algorithm
performs well on the Fairy Forest scene where most of the
geometry is occluded. Most tree nodes will not be expanded.

2) Portability of Configurations: To assess the ability of
the online-autotuning approach to provide portable perfor-
mance in the face of varying input data, figures 7a and 7b
show a comparison of tuned parameters for the in-place
algorithm on the Opteron platform for pairs of static and
dynamic scenes. For improved legibility, parameter ranges
have been normalized to [0, 100]. Outliers are shown as black
dots. The diagrams show boxplots for the tuned values of all
parameters and it is clearly visible that tuned configurations
for different scenes fall into rather different ranges. We see
that, for different input, tuned configurations are strikingly
different and are thus not portable.

Figure 7c shows a similar comparison for four different
hardware platforms for the in-place algorithm on the Sibenik
scene. We again see a great difference for the varying
platforms, indicating that once again tuned configurations
are not portable for different systems.

It is important to note that there is no such thing as
“the” optimal configuration. Instead, there may in fact be
multiple distinct configurations that lead to equally optimal
performance, which is the reason for the vertical extent of
the boxes in figure 7. Therefore and because there usually
exists a complex relationship between parameters, it is not
possible to just pick a random configuration that satisfies the
statistical properties displayed in figure 7 and expect optimal
performance. Only specific configurations achieve this goal,
making autotuning a valuable tool to solve the configuration
problem.

3) Convergence: Figure 8 shows the convergence prop-
erties of the autotuning process for the Sponza and Wood
Doll scenes as representatives for the static and dynamic
input data. In both scenes, the autotuner reaches a relatively
stable state after just about 40 iterations. However, there is a
clear difference between the static and dynamic scenes. For
the static scenes, once a stable state is reached, there is little
jitter in the speedup. We attribute this jitter to measurement
and system load noise. For the dynamic scenes, however,
we see a variance of much greater magnitude. This shows
the effect of input data on an optimal configuration: A
configuration that is optimal for one frame, may not be as
good for the subsequent one, which the autotuner needs to
correct.

(a) Static Scenes

(b) Dynamic Scenes

(c) Sibenik scene on four different hardware
platforms

Figure 7: Distribution of tuned configurations on the In-Place
Algorithm.

(a) Sponza

(b) Wood Doll

Figure 8: Mean speedup over time

4) Comparison to exhaustive search: Being a global op-
timization technique, the Nelder-Mead search is vulnerable
to local minima. To determine the effects of this threat in
our experiments, we compare the Nelder-Mead optimization
results with the results of an exhaustive search. Figure 9
shows the absolute runtime for the Sibenik scene and all
algorithms, using the configurations found by exhaustive and
Nelder-Mead search, as well as the default configuration.
The underlying measurements have been repeated 150 times.

For the nested, in-place and node-level algorithms, the
median performance achieved by the Nelder-Mead search is
within 2% of the minimal achievable runtime. However, we
can observe a small number of outliers with a speedup of
∼ 1. These point to optimization runs where the Nelder-
Mead search converges to local minima.

For the lazy algorithm, the median runtime of the Nelder-
Mead optimization results is within 10% of the median

(a) In-Place

(b) Lazy

(c) Nested

(d) Node-Level

Figure 9: Comparison between Nelder-Mead, exhaustive
search and the default configurations on the Sibenik scene.
Hardware: dual AMD Opteron 12-core system (1.9 GHz)

optimal runtime. Although there are no outliers with sig-
nificantly worse performance in this experiment, the lack
thereof does not disprove the existence of local minima.
Instead, we attribute the larger disparity between median
runtimes to local extrema, however with less adverse effects
as is visible in the other experiments.

In summary, this data suggests that the Nelder-Mead
search yields close to optimal performance. Although the
results point to rare cases in which we do not achieve a
runtime improvement through autotuning, these cases are
not worse than the default configuration. Because we employ
online autotuning, these cases can in practice be countered
by repeating the optimization as needed during application
runtime.

VI. CONCLUSION

We have used online-autotuning to optimize kD-tree data
structures. We tuned algorithm specific and parallelization
parameters of four different SAH kD-tree implementations
and evaluated the speedup on three hardware platforms and
six scenes. The resulting speedups of up to 1.96x over the
base configuration prove that optimizing these parameters
is necessary to achieve optimal performance. Finding the
optimal configurations on alternating scenes and hardware
with differing multi-threading capabilities showed that con-
figurations are hardly ever portable. However our online-
autotuning technique finds the best configuration indepen-
dent of the current context. Low programmer effort is needed
to use our simple online-autotuner API.

We believe that tuning parallelization parameters in con-
junction with algorithm parameters is especially important
as multi-threaded applications become the norm and the
diversity of hardware platforms increases. However, the
experiments we ran left one degree of freedom unexamined,
namely the question of which algorithm creates the best
performance for a given scene and given hardware. It is
hard for current autotuning techniques to provide an answer
for this question, because the elaborate employed search
techniques are generally based on the notions of “distance”
and “direction” in the search space, both of which are
undefined for an unordered set of algorithms. It is thus
an interesting open research question if autotuning in this
context can be improved beyond optimizing one algorithm
after another and then picking the best, especially because
having more than one such “nominal” parameter will quickly
lead to combinatorial explosion.

ACKNOWLEDGMENTS

We thank the Stanford University Computer Graphics
Laboratory for the Bunny model, M. Dabrovic for the
Sponza and Sibenik models as well as the Utah 3D Ani-
mation Repository for the Fairy Forest, Toasters and Wood
Doll models.

REFERENCES

[1] M. Shevtsov, A. Soupikov, and A. Kapustin, “Highly parallel
fast KD-tree construction for interactive ray tracing of dy-
namic scenes,” in Computer Graphics Forum. Wiley Online
Library, 2007.

[2] B. Choi, R. Komuravelli, V. Lu, H. Sung, R. L. Bocchino,
S. V. Adve, and J. C. Hart, “Parallel SAH k-d tree construc-
tion,” in Proceedings of the Conference on High Performance
Graphics. Eurographics Association, 2010.

[3] Z. Wu, F. Zhao, and X. Liu, “SAH KD-tree construction on
GPU,” in Proceedings of the ACM SIGGRAPH Symposium
on High Performance Graphics. ACM, 2011.

[4] C. Tapus, I.-H. Chung, and J. K. Hollingsworth, “Active har-
mony: Towards automated performance tuning,” in Proceed-
ings of the 2002 ACM/IEEE Conference on Supercomputing.
IEEE Computer Society Press, 2002.

[5] T. Karcher and V. Pankratius, “Run-time automatic perfor-
mance tuning for multicore applications,” in Euro-Par Paral-
lel Processing. Springer Berlin Heidelberg, 2011.

[6] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley,
J. Bosboom, U.-M. O’Reilly, and S. Amarasinghe, “Open-
Tuner: An extensible framework for program autotuning,” in
Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation. ACM, 2014.

[7] H. Jordan, P. Thoman, J. Durillo, S. Pellegrini, P. Gschwandt-
ner, T. Fahringer, and H. Moritsch, “A multi-objective auto-
tuning framework for parallel codes,” in International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis (SC), 2012.

[8] I. Wald and V. Havran, “On building fast kd-trees for ray
tracing, and on doing that in O(N log N),” in IEEE Symposium
on Interactive Ray Tracing, 2006.

[9] J. Günther, H. Friedrich, I. Wald, H.-P. Seidel, and
P. Slusallek, “Ray tracing animated scenes using motion
decomposition,” in Computer Graphics Forum. Wiley Online
Library, 2006.

[10] N. Sample, M. Haines, M. Arnold, and T. Purcell, “Opti-
mizing search strategies in kd trees,” in Fifth WSES/IEEE
World Multiconference on Circuits, Systems, Communications
& Computers (CSCC), 2001.

[11] P. Danilewski, S. Popov, and P. Slusallek, “Binned SAH Kd-
tree construction on a GPU,” Saarland University, 2010.

[12] J.-P. Roccia, M. Paulin, and C. Coustet, “Hybrid CPU/GPU
KD-Tree Construction for Versatile Ray Tracing,” in Euro-
graphics - Short Papers. Eurographics Association, 2012.

[13] N. Weber and M. Goesele, “Auto-tuning complex array lay-
outs for GPUs,” in Proceedings of Eurographics Symposium
on Parallel Graphics and Visualization. Eurographics Asso-
ciation, 2014.

[14] D. Gadioli, G. Palermo, and C. Silvano, “Application autotun-
ing to support runtime adaptivity in multicore architectures,”
in International Conference on Embedded Computer Systems:
Architectures, Modelling and Simulation. IEEE, 2015.

[15] M. Tillmann, T. Karcher, C. Dachsbacher, and W. F. Tichy,
“Application-independent autotuning for GPUs.” in Parallel
Computing: Accelerating Computational Science and Engi-
neering. IOS Press, 2013.

[16] P. Ganestam and M. Doggett, “Auto-tuning interactive ray
tracing using an analytical GPU architecture model,” in
Proceedings of the 5th Annual Workshop on General Purpose
Processing with Graphics Processing Units. ACM, 2012.

[17] C. A. Schaefer, V. Pankratius, and W. F. Tichy, “Atune-
IL: An instrumentation language for auto-tuning parallel
applications,” in Euro-Par Parallel Processing. Springer
Berlin Heidelberg, 2009.

[18] J. A. Nelder and R. Mead, “A simplex method for function
minimization,” The computer journal, no. 4, 1965.

[19] W. Hunt, W. Mark, and D. Fussell, “Fast and lazy build
of acceleration structures from scene hierarchies,” in IEEE
Symposium on Interactive Ray Tracing, 2007.

[20] P. Djeu, W. Hunt, R. Wang, I. Elhassan, G. Stoll, and W. R.
Mark, “Razor: An architecture for dynamic multiresolution
ray tracing,” ACM Transactions on Graphics, no. 5, 2011.

[21] A. Appel, “Some techniques for shading machine renderings
of solids,” in Proceedings of the 1968, spring joint computer
conference. ACM, 1968.

[22] C. Ericson, Real-Time Collision Detection, ser. The Morgan
Kaufmann Series in Interactive 3D Technology. Morgan
Kaufmann Publishers Inc., 2004.

	Introduction
	Related Work
	Fundamentals
	Online-Autotuning with AtuneRT
	SAH kD-Trees

	Implementation
	Node-level Parallel Algorithm
	Nested Parallel Algorithm
	In-Place Parallel Algorithm
	Lazy Construction Algorithm

	Evaluation
	Ray Casting
	Rendering Scenes
	Benchmark
	Results
	Speedup Through Autotuning
	Portability of Configurations
	Convergence
	Comparison to exhaustive search

	Conclusion
	References

