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Kurzfassung

Heutzutage ist jeder Desktopcomputer, und auch ein stets steigender Anteil von mobilen
Geräten, mit Mehrkernprozessoren ausgestattet. Einige Geräte verfügen sogar über weitere
Prozessoren, wie z.B. eine dedizierte Grafikkarte (GPU), welche tausende zusätzliche Kerne
anbietet. Diese zusätzliche Rechenleistung kann von sequenziellen Programmen nicht aus-
genutzt werden. Deshalb müssen Programme geschrieben werden, welche mit mehreren
verschiedenen Prozessoren umgehen können. Allerdings ist das Erstellen von Programmen
für solche heterogenen Systeme eine schwierige Aufgabe: Erstens, bieten die verschiede-
nen Prozessoren auch verschiedene Programmierschnittstellen an und haben verschiedene
Stärken und Schwächen. Zweitens, ist eine parallele Lösung im Generellen komplexer als
ihr sequentielles Gegenstück. Drittens muss der Programmierer selbst entscheiden, welcher
Teil der Berechnung auf welchem Prozessor ausgeführt wird. Die richtige Verteilung der
zu erledigenden Arbeit ist ein zeitintensiver und fehleranfälliger Vorgang. Es ist allerdings
auch ein sehr wichtiger Vorgang, denn falsche Entscheidungen führen hier zu zeitweise
ungenutzen Prozessoren und anschließend zu einem Performanzverlust. In dieser Arbeit
beabsichtigen wir diese Schwierigkeiten zu beseitigen, indem wir ein Werkzeug einführen,
welches automatisiert Schleifen partitioniert und diese auf einem heterogenen, CUDA fähi-
gen System ausführt. Das automatisierte Transformieren von sequentiellen Programmen,
sodass diese auf mehreren Prozessoren gleichzeitig laufen können, löst die ersten beiden
Probleme: Weder Wissen über parallele Programmierung, noch über spezielle Prozes-
soren (wie z.B. Grafikkarten) ist vonnöten. Das dritte Problem lösen wir, indem wir
einen Tuning-Algorithmus einsetzen, welcher automatisiert die optimale Verteilung der
Rechenarbeit über die vorhandenen Prozessoren bestimmt. Dies erlaubt es dem Pro-
grammierer einfache sequentielle Anwendungen zu schreiben und trotzdem die zusätzliche
Rechenleistung zu nutzen, die durch die moderne Hardware zu Verfügung stehen. Wir
evaluieren unseren Ansatz indem wir Algorithmen aus dem Gebiet der Linearen Algebra
parallelisieren. Die Ergebnise zeigen, dass wir damit einen Performanzgewinn von bis zu
1.45 erreichen, verglichen mit der sequentiellen Version dieser Algorithmen.



Abstract

Today every desktop computer and an increasing amount of mobile devices provide multi-
core CPUs. Some devices even feature a dedicated graphics processing unit (GPU) that
may provide thousands of additional cores. This extra processing power cannot be ex-
ploited by writing single threaded programs. Instead programs have to be implemented
with multiple concurrent processing units in mind. Writing programs to run in such
a heterogeneous environment is a difficult task: Firstly, different processing units expose
different programming interfaces and exhibit different strengths and weaknesses. Secondly,
a parallel solution is generally more complex than its sequential counter part. Thirdly, the
programmer has to decide which part of the computation is executed by which processing
unit. Finding the right distribution of work is a time-consuming and error prone process.
It is, never the less, an important step as making the wrong decision leads to idle process-
ing units and subsequently to a loss in performance. In this thesis, we aim to address these
difficulties by implementing a tool that automatically partitions loops and then executes
these partitions on a heterogeneous system with a CUDA enabled GPU. Automatically
transforming sequential programs to run in parallel on multiple processing units solves the
first two problems: Neither knowledge of parallel programming nor of programming for
specific processing units would be required. We address the third problem by utilizing a
tuning algorithm which automatically finds the optimal distribution of work over available
processing units. This would allow the programmer to write simple sequential programs
while still harnessing the additional processing power provided by modern hardware. We
evaluate our approach by parallelizing algorithms from the domain of linear algebra. The
results show, that we achieve a speedup of up to 1.45 compared to the sequential version
of the algorithms.
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1. Introduction

In this work, we implement a tool that automatically partitions loops and then executes
these partitions on heterogeneous systems. Partitioning a loop is the process of dividing
a loop to form two or more new loops, each iterating over a portion of the original loops
iteration space. A heterogeneous system is a system that is equipped with, and uses,
different kinds of processing units. An example of this is a system that has access to a
CPU and a GPU.

The remainder of this chapter is structured as follows: In section 1.1 we motivate the need
for our tool, before we state the goals we want to achieve with this work in section 1.2.
Finally we present the structure of this document in section 1.3.

1.1 Motivation

In 1975 Moore’s Law predicted the number of transistors on a chip to double every two
years. This prediction has correctly approximated the increase in transistors and thus the
rising clock speed of processors for 30 years. The stagnation of this growth in the early
2000s can be ascribed to physical issues arising from smaller and smaller transistors: It
is too hard to effectively dissipate the heat and the power consumpution is too high.[Sut]
In order to uphold the increasing clock speed, the hardware industry integrates multiple
CPUs on a single chip. In addition to multiple cores in a single processor, the search for
more computing power has lead to the utilisation of formerly special purpose processors like
graphics processing units (GPU). Originally only used for graphics and image processing,
newer GPUs today additionaly support general purpose computing. General purpose
computing allows a programmer to harness the power of GPUs to solve problems differing
from graphics computation. These include, but are not limited to, problems in fields
such as machine learning, medical imaging, cryptography and data mining.[CBM+08] In
comparison to CPUs, GPUs have been—and still are—massively parallel offering 100s or
1000s of cores per processing unit.

In contrast to the increasingly parallel hardware world, a large part of software solutions
is still completely or to a great extent expressed as sequential programs and is thus unable
to profit from advancing hardware. Moving from sequential to parallel programming,
however, presents a significant paradigm shift. This means that patterns used in the one
paradigm have different or detrimental implications when used in the other. An example of
this is mutable state: A sequential program generally makes extensive use of mutable state
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2 1. Introduction

to model side effects. A parallel solution, on the other hand, is often designed to eliminate
or at least minimize the amount of shared mutable state. As a programmer, learning a
new paradigm can be very costly and time intensive. Additionally, a lot of software in use
today was not build with concurrency in mind—it had or would have to be added as an
afterthought. This leads to a further increase in complexity, because the programmer has
to deal with the overhead of the existing solution, instead of being able to design a parallel
one from the start. Further challenges are posed by targeting dedicated devices, like GPUs,
as both—the host and the dedicated processor—only have access to their own dedicated
memory. This entails, that data held in host memory has to be explicitly transferred to
and from the GPU, before and after the execution of a kernel.

Simply knowing how to parallelize parts of a sequential program is not enough to positively
affect the execution speed—further questions have to be answered. We need to determine
which parts of the program are actually worth parallelizing. As an example, we might
encounter a part whose structure lends itself nicely to parallelization, but which only
represents a very small amount of the overall workload. The overhead introduced by
managing the concurrency might outweigh the increases in performance achieved by the
added parallelism. In the case of dedicated devices this overhead can be very high, due to
the need to transfer memory back and forth.

Another decision that has to be made, is how to distribute the workload over the available
processors. One way to decide this is by trial and error: Test multiple different configu-
rations and choose the best one. This manual approach, however, is very time consuming
and relies on programmer intuition rather than a deterministic algorithm. Autotuning
can remedy this problem, by automating and systematizing the manual approach. The
profiling results of one test run are used to determine the configuration for the next one.
The best configuration is found by minimizing a cost function.

1.2 Goals

With the rising availablity of parallel systems and general purpose GPUs, sequential solu-
tions need to be adapted to be able to use the full power provided to them. In the previous
section, we mention three challenges that emerge when transforming a sequential program
to make use of highly parallel hardware. First, parallel programming in general—and
GPU programming in particular—require a deep level of additional knowledge compared
to conventional sequential programming. By automatically parallelizing sequential parts,
our tool helps programmers lacking the necessary skills to take advantage of parallel hard-
ware. Second, annotations or markers in the input program are not needed for our tool to
find suitable sections for parallelization – this is also done automatically. The final chal-
lenge our tool solves on behalf of the programmer, is optimizing the transformed program.
It automatically and dynamically decides how the given workload has to be distributed
over available processing units to minimize execution time.

1.3 Document Structure

The remainder of this document is structured as follows. Chapter 2 explains the concepts
and technologies used in this work. These are the relevant APIs and tools in the LLVM
Compiler Infrastructure project, an introduction to autotuning and the parallel computing
platform CUDA. In chapter 3 we show how other approaches have been used to solve
problems in the areas of code generation for GPUs, heterogeneous code execution and
autotuning. In chapter 4 we continue with the concept of this work, outlining our goals
in greater detail, how we detect parallelism, how we generate code for the GPU and how
we integrate the autotuner into our solution. The concrete implementation of our tool is
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then described in chapter 5, where we explain in detail the implementation of the concepts
outlined in the previous chapter. Finally, in chapter 7 we summarize this work and give
an outlook on further steps to be taken.





2. Foundations

This chapter describes technologies and concepts used in this work. The first section 2.1
introduces the compiler framework LLVM by explaining the parts that are relevant to gain
an understanding of this work. We then move on to explain the concept of autotuning
and discuss the advantages and disadvantages of it in section 2.2. Finally we describe the
parallel computing platform CUDA and its virtual machine for parallel thread execution
(PTX) in section 2.3.

2.1 LLVM

The LLVM Compiler Infrastructure is a collection of projects related to compiler tech-
nologies. These projects include among others a set of libraries called LLVM Core, a
C/C++/Objective-C compiler and debugger and a back-end for the GNU Compiler Col-
lection. We will focus on LLVM Core which is used for code analysis, optimization and
generation. LLVM Core libraries do not process a high level language directly but need
a compiler front-end to first compile said language to LLVM IR. LLVM IR stands for
LLVM intermediate representation, which is similar to an assembly language in static sin-
gle assignment (SSA) form. After the code has been processed by LLVM Core, a compiler
back-end translates it to native machine code.

The remainder of this section will explain the LLVM IR in greater detail in section 2.1.1
and describe how the analyses and optimizations are organized in section 2.1.2. It will
then describe how LLVM IR represents loops in section 2.1.3, how Scalar Evolution is
structured in section 2.1.4 and how Polly finds parallelizable loops in section 2.1.5.

2.1.1 Intermediate Representation

This subsection gives a short overview over the structure and key elements of code ex-
pressed in LLVM IR.

The top-level construct is a module containing globals (global variables and functions).
A module is seen as a single compilation unit to be later linked by the LLVM linker.
When the linker combines multiple modules it merges their globals and the entries in their
respective symbol tables and resolves any forward declarations.

A global variable holds a pointer to a region of memory. The allocation happens at compile
time in contrast to local variables which are allocated at runtime.

5



6 2. Foundations

x = 9

if (x < n) then x = x + 1

y = x + 2

Figure 2.1: A variable that has a different value in two branches of the CFG expressed as
pseudo code.

if.cond:

%x = 9

%cmp = icmp ult i32 %x, %n

br i1 %cmp, label %if.true, label %if.end

if.true:

%x.1 = add i32 %x, 1

br if.end

if.end:

%y = add i32 %?, 2

Figure 2.2: A variable that has a different value in two branches of the CFG expressed in
LLVM IR.

A function in the IR is similar to a function in higher level languages. Its signature consists
of a return type, a name, an argument list and a body. The argument list contains zero or
more arguments each of which has a name and a type. The body is compromised of one
or more basic blocks, which in turn consist of one or more instructions. The basic blocks
each end in a terminator instruction like a branch or a return instruction and thus form
the nodes of the control flow graph (CFG) of the function.

An instruction has one operator operating on one or more operands. Instructions that
do not manipulate the control flow produce a result which is stored in a variable. After
this variable has been assigned it can never be written again. Results of subsequent
computiations must be stored in new variables. This property is known as static single
assignment (SSA) and simplifies or even enables certain compiler optimizations.

The SSA form poses a problem when a variable is altered in two different control flow
branches that are later rejoined. The if statement in figure 2.1 demonstrates the problem.
The actual value of x in line 3 depends on the control flow of the program: If n is smaller
than or equal to 9, x ’s value will be 9, otherwise it will be 10. After lowering this pseudo
code to LLVM IR we will get code similar to that in figure 2.2. Now we do not know which
of the two (x or x.1 ) we should use as an operand to the add instruction in the last line.
This is solved by introducing a so called phi node into the CFG. In LLVM IR this node is
represented as an instruction taking a mapping of basic blocks to values as an argument.
When the phi instruction is executed it will return a value based on the path the control
flow took to reach the phi node. A phi instruction for our example is depicted in figure
2.3. If the control flow comes from the if.cond, block phi returns the value of x ; if it comes
from if.true, phi returns the value of x.1.

2.1.2 Pass Management

In LLVM analyses and transformations are expressed as so called passes. The pass manager
schedules these passes based on certain criteria with the goal of optimizing the compile
time. Some passes depend on certain analysis results to be available before they can do
their work. Others can only be run after a certain transformation has taken place. Each
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; ...

if.end:

%phi = phi i32 [%x, %if.cond], [%x.1, %if.true]

%y = add i32 %phi, 2

Figure 2.3: A phi node joining two control flow branches where each one has a different
value of the same variable.

pass declares which passes have to be run before it itself can be executed. Based on this
information the pass manager is then able to determine the passes’ execution order.

Another criterion is the scope of a pass. The scope defines how much of the input program
is processed at once. A module pass operates on the whole module and thus has the
broadest scope. It is allowed to add and remove functions, manage arbitrary state and
has no constraints on the order in which it processes functions. With such a broad scope
a module pass has to be scheduled in sequence in relation to all other passes. In contrast
to this a function pass can be scheduled in parallel to work on the same module as other
function passes. This is made possible by narrowing its scope to that of a single function
and by limiting the kinds of transformations it can apply. Thus a function pass is not
allowed to add or remove functions and must not maintain state across different functions.
It is also unable to decide the order in which it processes the functions in a particular
module. This is decided by the pass manager. A basic block pass has an even narrower
scope (constrained to a single basic block) which allows for even more flexibility when
scheduling.

In addition to dependencies and scopes, scheduling is affected by another criterion. After
a pass is finished processing a particular piece of code it tells the pass manager whether or
not that piece has been modified. In case the code has been modified, the pass manager
can then use the available dependencies information to work out which passes have to
recompute their results.

2.1.3 Representation of Loops

This and the following subsection are base on a presentation [llv] given at the 2009 LLVM
Developers’ Meeting.

The LLVM IR does not have a direct representation of a loop. Instead, a loop is expressed
by using a conditional branch instruction that branches back to a certain block as long
as a certain condition is being met. This is not a strong definition, but rather the most
common denominator for a piece of code to be considered a loop. Thus, a lot of different
ways of expressing a loop arise. All of which would have to be considered when writing
analyses and transformations dealing with loops. In order to fix this problem, LLVM
offers a few mechanism that transform a loop into a canonical representation. Other
parts of the compiler based on this representation only have to deal with this one loop
form. Additionally this representation is optimized to make it easy to use for analyses and
transformations. A loop is said to be in canonical form if it has the following properties:

The first property is a single entry point, which means that every control flow path going
through the loop has to come from the same node in the CFG. This is accomplished
by inserting a new block called the preheader in front of the loop’s header. All blocks
previously branching to the header are then changed to branch to the preheader. This
makes the preheader the only block to be branching to the header.

The loop also has to have a single backedge, which is the only branch instruction with
a target inside the loop. The backedge branches from the end of the loop’s body to its
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header. There are possibly two transformations applied to achieve a single backedge. The
first one is called loop rotation and is applied to remove branches from inside the loop.
This is done by moving the conditional branch to the end of the loop body and inserting
an initial conditional branch just before the loop. The second one can be applied if the
loop has more than one backedge. Each additional backedge is turned into its own inner
loop, with the header copied from the original loop. The header contains another branch
instruction, but its target is an exit block outside the loop.

Furthermore, an exit block of the loop must have exactly one other block branching to
it from inside the loop, i.e. it has to have exactly one predecessor. This is achieved in a
similar manner to the preheader insertion. A new block is inserted before the exit block
who’s only incoming edges in the CFG are from inside the loop. Its one outgoing edge is
connected to the former exit block, which still has all other edges from outside the loop.

The last property describes canonicalized induction variables. This means the loop has
only one induction variable starting at zero and stepping by one each iteration. All other
induction variables are expressed as closed expressions taking the value of the induction
variable as an argument.

2.1.4 Scalar Evolution

LLVM comes with an analysis pass called Scalar Evolution. Scalar stands for a LLVM
value and evolution for the way this value is computed. This pass maps values it analyses
to Scalar Evolution expressions (SCEVs) in its own expression language. The language
includes simple arithmetic expressions, constants and add recurrences. It is defined recur-
sively such that the operands of a SCEV are again SCEVs. The most important SCEV is
the add recurrence which describes how a particular value inside a loop evolves in relation
to the loop’s iterations. A particular add recursion is made up of a SCEV representing the
start value, an integer value representing the stride and the name of a block identifying
the loop.

2.1.5 Polly

Polly[GGL12] is one of the projects under the general LLVM Compiler Infrastructure. It
represents memory access patterns of a loop as a polyhedron, a mathematical structure.
Polly can transform this structure and then generate code for OpenMP or GPUs from it.
By transforming the structure, Polly can optimize and parallelize said code. One of the
first steps in Polly’s algorithm is finding parallelizable loops and annotating its results in
the LLVM IR. A third party tool like ours can then make use of this information.

2.2 Autotuning

Optimizing the performance of an algorithm or a software program can be a difficult task.
It is not always known or predictable how a change affects the performance of a system. It
might, however, be possible to identify certain parameters that can be altered to modify
in turn the way a system is executed. If such parameters exist, the optimization problem
is reduced to finding a set of values for said parameters that maximize the performance.
This new problem might still be impractical to solve manually. If we consider only a
few parameters, each having a large value range, we might still end up with a very high
number of possible combinations. In addition to this, such parameters often are not
independent, further complicating the matter. The parper [WPD01] gives the problem
of cache optimizations for particular hardware architectures as an example. Here, several
factors like cache blocking, different caching strategies and sizes interlock in ways that are
difficult to predict. This is where an empirical approach like autotuning can help find a
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solution in a limited time. It uses a profiling mechanism to measure the quantity of the
system we want to optimize for (e.g. program execution time). It also uses a search function
which takes the above mentioned parameters as well as previously collected profiling info
as input and a set of values (a configuration) as output. Each value in a configuration
belongs to one of the parameters. The tuning process starts with an initial configuration
of the tuning parameters. Next, the program is run with this configuration while the
profiling mechanism collects measurements about the running program. Based on these
measurements, the search function can now return a new configuration to be used in the
next execution of the program. This is repeated until the search function finds an optimal
configuration. Whether this optimum is a global or local one depends on the concrete
formulation of the search function.

2.2.1 Offline and Online Tuning

Autotuning algorithms can be classified into two groups, offline and online tuning. An
algorithm in the first group finds the optimal configuration by doing a certain amount of
test runs. The program is then deployed together with said configuration and runs without
the configuration changing. A tuning algorithm is said to be an online tuner, if it profiles
the program after it has been deployed. This requires the tuning system to be deployed
alongside the program to optimize. It collects data and changes the configuration while
the program is running in order to optimize constantly.

Offline tuning has no runtime overhead, as the optimal configuration can be compiled into
the final executable. In comparison, with online tuning, the calls to the tuning system,
the profiling and the execution of the search function have to happen at runtime. On the
other hand, while the offline approach is completely oblivious to changes in the programs
environment after deployment, the online tuner can react to such changes dynamically.
The input data might change in content or size over the lifetime of the program, or the
overall system load might impact the available CPU time. As an example for the latter,
Perpetuum[KP11] is an online autotuner that optimizes multiple applications running on
the same system, at the same time. Additionally, the system that is to be used to run the
program might not be available for testing. In this case the offline tuner would have to
run on an approximated system leading to suboptimal results.

2.3 CUDA

Compute Unified Device Architecture (CUDA) is a technology developed by NVidia which
was first deployed together with their Tesla mircoarchitecture. CUDA is the combination
of a parallel computing platform and an API sitting on top of that. Through this API,
the GPU can be used for general purpose computing, also known as GPGPU. GPUs have
traditionally been used only for graphical computations. However, with the introduction of
GPGPU these processors are applied to solve problems that are usually solved by CPUs.
These problems include computations in fields like machine learning, medical imaging,
cryptography and data mining.[CBM+08]

The remainder of this section introduces a virtual machine specifically for NVidia GPUs
in section 2.3.1 and the thread hierarchy this virtual machine provides in 2.3.2.

2.3.1 PTX

PTX is a virtual machine for parallel thread execution accompanied by its own instruc-
tion set architecture (ISA). The PTX-ISA is specially designed for NVidia GPUs with
capabilities specified by the Tesla and later microarchitectures. The ISA provides a sta-
ble programming interface for multiple generations of GPUs. Programs to be run on the
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GPU can be formulated in higher level languages like C or C++ to later be translated
to PTX. Before the translated code can be executed, it will be compiled a second time,
now targeting specific hardware instruction set in question. This design makes it easier
for developers of higher level compilers as they only have to generate code in the ISA.
They do not have to consider the details of multiple different hardware instruction sets.
Similarly, transformations and optimizations offered by third parties can target or operate
on the ISA and can thus be plugged into the pipeline.

2.3.2 Thread Hierarchy in PTX

A PTX program represents one thread executing a specific task on a single data point.
The concrete data point is variable and is defined by certain parameters of the program.
These parameters describe the thread’s position in relation to the hierarchy it is embedded
in. The smallest conceptual compound structure in this hierarchy is a cooperative thread
array (CTA), also known as a block. Threads in a CTA execute the program concurrently,
but are able to communicate with the help of synchronization. Each thread in a block is
assigned an index called the tid, which is one of the parameters mentioned above. Another
parameter is the number of threads in each CTA, specified by ntid. As a single CTA can
only contain a limited number of threads, multiple CTAs can be joined together to form
a grid. Thus allowing the execution of a kernel on millions of threads. This, however,
comes at the cost of communication between threads in different CTAs. The grid concept
introduces two further parameters called ctaid and nctaid. These define the index of a
CTA in a grid and the total number of CTAs in a grid respectively.



3. Related Work

This section outlines other works that have solved the problems stated in section 1.1 in part
or in different ways. Section 3.1 looks at approaches to managing memory transfer and
mapping of parallel code to the GPU architecture. In section 3.2, we describe different
approaches to distributing the given input over available processing units. Finally, in
section 3.3, we describe solutions to the problem of tuning the program in question at
runtime.

3.1 GPU Code Generation

KernelGen [MLZB14] ports sequential CPU code to run on a CUDA enabled GPU. It
produces two types of kernels (main and computational loops) each with its own purpose.
The main kernel is executed in single thread and is responsible for coordinating the execu-
tion of computational loops kernels. It also offloads to the CPU unportable functions and
code that is not worth being executed on the GPU—code where the overhead of GPU ex-
ecution outweighs its performance improvements. A computational loops kernel contains
computationally intensive loops that are parallelized to take advantage of the massively
parallel GPU. KernelGen is implemented by extending Polly’s OpenMP back-end to gen-
erate PTX code. They take advantage of up to 3 grid dimensions available on the GPU,
by mapping different loops in a loop nest to different grid dimensions. This also allows
them to coalesce memory transactions of threads residing in the same warp. Our tool does
not take advantage of loop nests in such a way, but rather maps the iterations of the outer
most loop to one grid dimension only. However, KernelGen lacks the ability to utilize
both—the GPU and the CPU—concurrently always idles with one device, while the other
is executing.

PPCG [VCJC+13] is a source-to-source compiler offloading data-parallel computations to
CUDA enabled GPUs. It uses the polyhedral model to describe loop nests. This results in
a schedule describing the execution order of contained statements. They then apply affine
transformations to this schedule in order to expose parallelism and tiling opportunities.
To tile a parallel loop, it is split into a tile loop, iterating over the tiles, and a point loop,
which iterates inside the tiles. The tile loops are then mapped to blocks in a grid and
the point loops to the threads in a block. The inner most of the parallel loops is mapped
to the x dimension, to take advantage of coalescing opportunities. Memory accessed by
a parallel loop has to be transferred to and from the GPU. PPCG accomplishes this by
copying the entire content of each accessed array before starting the kernels. After the
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kernels have finished, only the modified arrays are copied back to the CPU. Our tool only
copies a certain part of an array, defined by the iteration bounds of the loop in question.
It does, however, copy all the parts back to the CPU—not just the written ones. PPCG
makes further efforts to allocate parts of the arrays to registers and shared memory, thus
optimizing memory access times. We only allocate to global memory.

3.2 Heterogeneous Code Execution

libHawaii [RDP14] is a framework for writing and optimizing streaming applications for
heterogeneous systems. These are applications that apply a set of filters to a stream
of successive work items. A work item holds input data and represents this data as
it flows through the system. A filter repeatedly receives a work item, processes it in
some way and then pushes it further through the system. The programmer using this
framework expresses the processing steps in their application as filters. These filters must
then be combined into a possibly recursive structure, called a flow. A flow can employ
different heterogeneous computing strategies for different types of parallelism: Data flow
parallelism can be exploited via pipelining, data parallelism via partitioning and task
parallelism via demand-base allocation. The framework dynamically measures the latency
and throughput of every single filter. Based on the computing strategy chosen, a special
heuristic then uses this data to compute the optimal mapping of filters to processors. The
mapping aims for a filter to keep pace with its input while being as energy-efficient as
possible. By applying these heuristics at every level of the recursive structure, a very fine-
grained adaption can be achieved. libHawaii optionally provides specialized support for
CUDA enabled GPUs by overlapping the transfer of data with the computation of results:
Data needed for the next and results from the previous step can be transferred while the
current step is still executing. Summarizing, libHawaii offers multiple different strategies to
structure an application in such a way that it can be executed and dynamically optimized
on heterogeneous system. It is, however, limited to a special type of application, which
forces a programmer to adapt or completely rethink an existing solution, if they want to
apply this framework for heterogeneous execution.

Qilin [LHK09] provides an automatic mapping of computations to CPU and GPU. This
mapping is based on an initial training run and can be adapted to changing input problem
sizes. The first run of a certain program is used to create a projection function predicting
the program’s runtime. This function is parameterized by the input size and produces
estimates for CPU and GPU runtimes. On consequtive runs of a program, Qilin distributes
input over CPU and GPU devices in such a way, that the maximum of both predicted
runtimes is as small as possible. Basing the prediction function on only a single test run
might lead to inaccuracies, when subsequent input sizes vary greatly. It also removes
the ability to react to other changes affecting execution time. An example would be a
significant change in load on one device compared to the other one. Online autotuning, on
the other hand, is able to constantly tune the application without having to rely on training
runs. It does this at runtime and is thus able to dynamically react to these changes. To
take advantage of Qilin, programmers have to manually write code against a specific API.
Not only structures linked to concurrency directly, but also datastructures and operations
have to be expressed in a special API. This forces the programmer to heavily refactor
existing code bases and learn a new API, even if they start from scratch. Our tool, on the
other hand, automatically transforms the sequential program, saving time and resources.

3.3 Autotuning

Sambamba [SHZH13] uses a program dependence graph (PDG) as its internal structure.
Each node in this graph is an instruction, a conditional branch, or a group of nodes. The



3.3. Autotuning 13

edges represent either control flow dependencies or data dependencies. The children of a
group node are all reachable via the same control flow path and might exhibit data de-
pendencies amongst themselves. An integer linear program (ILP) solver then computes an
initial fork/join schedule in each group node with the goal of minimizing critical path exe-
cution time. The inputs of the ILP are data dependencies between the children, estimated
execution times, branch profiles and parallelization overhead. Based on this schedule,
the runtime component then profiles parallelizable function calls and combines the most
promising ones into a parallel section (ParSec). This produces the ParCFG, a CFG an-
notated with fork and join points marking the ParSecs. The code produced from the
ParCFG is further monitored for a significant change in execution time to see whether the
ParCFG has to be reevaluated. This allows Sambamba to dynamically react to changes
in its environment that impact performance. For each parallelized function, it also keeps
the original sequential version. Thus it can dynamically decide which version to execute
depending on different dispatch strategies. This makes it possible to limit the number
of parallel tasks to prevent performance decreases by interference. Sambamba exclusively
works on the CPU and does not make use of additional available accelerators, like a GPU.

BAAR [DP14] accelerates binary programs by offloading certain function calls to the Xeon
Phi. The binary is first translated to LLVM IR and then executed in a just-in-time com-
pilation environment to enable runtime analysis and transformations. To decide when to
offload a certain call, it statically calculates a score for each function based on the number
of integer and floating point operations. It then dynamically computes the combined sizes
of the arguments passed to the function call. If the ratio of argument size over the function
score is smaller than a user-defined constant, the call is executed on the accelerator. Before
a function can run on the accelerator, however, it has to be parallelized, vectorized and
compiled. All of these steps result in a performance hit, especially the compilation step:
The IR code is translated to C code, then compiled on the CPU and finally sent to the
Xeon Phi for execution. Additionally, BAAR either offloads the complete function or none
of it - there is no nuance to utilize both devices (CPU and accelerator) simultaneously.





4. Concept

In this chapter we describe the concept of our tool. We begin with stating the goals we
want to achieve by implementing our tool in section 4.1. In the same section, we give
a short overview of the overall concept which is then explained in further detail in the
following sections:

The remainder of this chapter describes key features of our tool in greater detail: Section
4.2 explains how data dependencies relate to parallelism and what loop carried dependen-
cies are. After this, we introduce the concept of loop partitioning in section 4.3. In section
4.4, we show how we map the iterations of a loop to the cores of the GPU and how we
find the memory regions the loop operates on. Finally, in section 4.5 we demonstrate how
the autotuner is integrated into the program.

4.1 Goals

We aim to increase the performance of sequential programs by automatically transforming
them to run on heterogeneous systems. The work to be done is to be optimally distributed
over available processing units to maximize performance. These distributions are done at
runtime, thus allowing a program to be transformed once and then be optimized for the
concrete system it is executed on. In order to make the tool as universally applicable
as possible, we want to do these things in an automated fashion: Firstly, a programmer
is not required to know about parallel programming in general or GPU programming in
particular to use our tool. Secondly, no annotations or changes to a sequential program
are necessary in order to transform it. Thirdly, no programmer input is needed for the
tool to make optimization decisions.

To achieve these goals, we implement a completely automatic solution whose input is a
sequential program and whose output is an online tuned, parallel program. This paragraph
gives an overview of this solution, which is also depicted in figure 4.1. Our tool operates
on code in LLVM IR form and is thus able to process programs written in any language
for which an LLVM front-end is available. We begin with analyzing the program’s loops
in search of areas that are parallelizable. To make analysis and later transformation easier
we transform these loops into canonical form. A loop will then be marked as parallelizable,
if it does not contain any loop carried dependencies. Next, we divide the loop into two
loops (called partitions) and introduce a parameter P to vary the size of their iteration
ranges. One partition will later execute on the CPU, the other one on the GPU. With
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both partitions in place, we analyze which memory is accessed by the GPU partition. This
information helps us to transfer the needed memory between CPU and GPU memory. We
also translate the GPU partition into a kernel that can be run on a GPU. Then, the
original loop is replaced by the kernel launch and the execution of the CPU partition.
Additionally, measurement calls are inserted to obtain information used by the autotuner.
This information is then used to adjust the parameter P to dynamically minimize the
execution time.

4.2 Detection of Parallelism

The functionality described in this section is already available in AutoCU. Our tool starts
by detecting parallelism in the input program.

It is not generally possible to reorder the instructions of a sequential program without
altering their meaning. As an example, consider the instructions in figure 4.2: If A is
executed before B, the variable x holds the value 13. If, however, the execution order is
changed and B is run before A, the value of x is 16 in the end. Thus, when parallelizing a
program, we have to make sure to parallelize only those instructions that can be reordered
without altering the result of the program.

x = 5

x = x * 2 // (A)

x = x + 3 // (B)

Figure 4.2: Two instructions that cannot be reordered without changing the meaning of
the program.

Parallelizing a computation leads to an inherent overhead. In our case, the tool has to
copy data to and from the GPU and has to properly start and stop kernels running on the
GPU. Thus, in order to improve the overall performance of a program, the performance
increases we obtain by running computations in parallel must outweigh the overhead they
introduce. For this reason, we focus on parallelizing loops as these are usually the com-
putationally intensive parts of a program. Another reason for selecting loops, is that they
often exihibt a high degree of data parallelism, which allows for the efficient use of SIMD
(single instruction, multiple data) processors.

We classify a loop as parallelizable, if it is in canonical form and does not contain any
loop-carried dependencies (LCDs). A loop is said to be canonical, if it has a single entry
point and a single backedge, if each exit block has only one predecessor and if its induction
variables are canonicalized. The canonical form itself and techniques used to transform
non-canonical loops are described in more detail in subsection 2.1.3. The advantage of
canonical loops is that we do not have to deal with many different loop forms when
implementing the later steps of our tool. This way, we have to implement the partitioning
and GPU translation against just one loop form. Additionally, the transformations needed
to canonicalize loops are already available in the LLVM Core. A loop contains a loop-
carried dependency, if the results of one iteration of the loop depend on the results of a
previous iteration. This would lead to problems, as executing the iterations in parallel
could change their order and thus would potentially result in incorrect programs (see the
example in figure 4.2). An example of an LCD is depicted in figure 4.3: The given loop
iterates over an array a and assigns each element the value of the previous element plus
10. Thus, a[1] depends on a[0], a[2] depends on a[1] and so forth.
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for (i from 1 to N)

a[i] = a[i-1] + 10

Figure 4.3: A loop with an LCD: One iteration depends on the results of the previous
iteration.

4.3 Partitioning

We call the process of dividing a loop into two or more loops partitioning. In our case, we
only produce two partitions, as we want to run one on the CPU and one on the GPU. It is,
however, possible to extend our tool to create more partitions that are then run on other
processing units. A partition is essentially a clone of the original loop with its bounds
altered to restrict iteration to a certain range. Our tool does this by introducing a variable
P called the partitioning parameter. P is the upper bound of the first partition and the
lower bound of the second partition. Figure 4.4 shows a loop (A) and the two partitions
(B and C) produced from it by the partitioning process. The parameter can then be used
to control how many iterations are executed on each device.

(A) (B) (C)

for (i from 0 to N) for (i from 0 to P) for (i from P to N)

c[i] = a[i] + b[i] c[i] = a[i] + b[i] c[i] = a[i] + b[i]

Figure 4.4: A loop (A) and the corresponding two partitions (B and C).

4.4 GPU Transformation

The main goal we want to achieve with our tool is to increase performance through par-
allelizing loops. When transforming loops to GPU code, we have to think about how we
map the loop’s iterations to the GPU threads. This is explained in greater detail in section
4.4.1. In addition to that, we need to find a way to determine and transfer data accessed
by the loop. We describe our solution to this in section 4.4.2.

4.4.1 Mapping Iterations to Threads

The functionality described in this section is already available in AutoCU.

By partially executing the loops on a GPU, we want to make use of their highly parallel
nature, having thousands of cores available. In order to be able to do this, we have to
translate the sequential loop in such a way that makes it feasable for it to be executed on
many cores. A GPU usually operates in SIMD mode, which means that a single instruction
is executed by multiple processing cores all operating on a different data point. As has
been outlined in 4.2, we only parallelize loops without LCDs. Thus, we only have to deal
with iterations that are independent of one another. This allows us to map each of the
loop’s iterations to its own thread on the GPU. We usually have a far greater number of
iterations than number of available GPU cores, which necessitates the division of iterations
into smaller groups. Each of these groups contains as many iterations as there are available
threads. The last group may be smaller if the division has a remainder, leading to a portion
of threads being idle. One thread sequentially executes one iteration out of every group,
but does this in parallel to all other threads on the GPU. This reduces the execution time
of the whole iterations to the time it takes to execute one iteration times the number of
groups. If we take the number of iterations to be N , the number of available threads to
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be C and the time it takes to execute one iteration to be t0, we get an overall execution
time of T .

T = (
N

C
+ 1) · t0. (4.1)

4.4.2 Memory Management

The mechanisms explained in this section are taken from [B1̈5].

A loop usually depends on information outside of the loop itself, in order to compute
something meaningful. If we want the loop to function correctly when running on the
GPU, we have to make this information available there. This information is present in the
form of local variables on the stack and as regions of memory on the heap. We do not
have to worry about the values on the stack, as we can pass them as arguments to the
kernel call and the runtime system then makes them available on the GPU. The regions of
memory, on the other hand, have to be explicitly copied to the GPU memory. But before
we are able to either pass arguments or copy memory, we have to determine which stack
variables and memory regions are accessed by the loop. We find all relevant variables by
looking at each instruction in the loop’s body and collecting the variables referenced there.
Each of these variables that is not declared inside the body itself has to be passed to the
kernel call.

The process of determining the memory regions we need to copy is a bit more involved.
To makes things simpler, we restricted the problem by demanding the following points:

1. The induction variable of a loop is counting up.

2. All memory accesses must be expressable as an function of the general form a×x+b.

3. The amount of memory copied is a conservative guess of the actual memory that is
accessed by the loop, i.e. not all of the memory copied is accessed by the loop, but
all accessed memory is copied.

The first restriction makes it straight forward to determine the lower and upper bounds
of the loop’s range. The second one allows us to determine the address range of a certain
pointer inside the loop by using Scalar Evolution analysis (see section 2.1.4 for further
details). The third one protects us from identifying every memory address accessed in
every iteration of the loop. Instead of finding each exact address, we compute only the
minimum and maximum address pointed to by a given pointer. This makes it faster to
compute memory regions, but might also copy a lot of memory that is not accessed. For
example, on the one hand, a loop with a big stride relative to its total range accesses only
a small part of the memory we would copy. On the other hand, a loop with the smallest
possible stride (equal to the size of one element in memory) will access all copied elements.

To determine the regions of memory accessed by a particular loop, we proceed as follows.
At first, we express the pointer associated with the memory access as a Scalar Evolution
expression (SCEV). Thus, gaining insight into its evolution in relation to the loop’s iter-
ations. This SCEV is a function that given a value of the induction variable, produces
the address the pointer points to in that specific iteration. Evaluating the function at
the lower and upper bound of the induction variable’s range, gives us the minimum and
maximum address the pointer points to. The intervals produced by this procedure are
generally not disjoint. Thus, when two or more intervals overlap it is necessary to merge
them preventing redundant copying. The size of memory that has to be copied changes
dynamically as the size of the GPU partition changes. Allocation of memory is a costly
operation, which is why we only allocate memory once for each block of memory. We do
this by allocating the largest partition possible, which is large enough to hold the data
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needed by the unpartitioned loop. When the partition changes, we only copy the memory
needed by that partition.

As an example, we demonstrate this process when applied to the loop in figure 4.5. Said
loop scales a vector v by a factor k, adds the vector w and captures the result in a vector c.
These operations are only applied to the vector elements, that fall into the range between
a lower bound lb and an upper bound ub. The vectors are expressed as pointers to specific
memory regions, allocated to have a size of 100 elements. Their initialisation is not shown,
as the exact content is not relevant here. Starting the analysis, we first examine the loop’s
body to find any references to local variables. In this case, there is only one, the factor
k. In the second part of the memory analysis, we take a look at every memory access
inside the loop and express them as SCEVs. As the SCEVs in this example only differ
in the pointer they reference, we focus on only one memory access, namely v[i]. On
a system where float and size_t have a size of four bytes, the SCEV looks like this:
{(4 · lb + v),+, 4}. Next, we evaluate this expression at the first (i = lb) and last (i =
ub) iteration, to determine the lower and upper bound of the sought memory region. This
gives us 4 · lb+ v and 4 ·ub+ v respectively. In this case, the memory intervals do not have
to be merged as they are disjoint.

size_t lb, ub;

float *v, *w, *c;

v = malloc(sizeof(float) * 100);

w = malloc(sizeof(float) * 100);

c = malloc(sizeof(float) * 100);

float k = 5;

for (size_t i = lb; i < ub; ++i) {

c[i] = k * v[i] + w[i];

}

Figure 4.5: A vector v, expressed as an array, is scaled by a constant factor k and added
to a vector w. The result is stored in vector c.

4.5 Tuning

With partitioning a loop and introducing the partitioning parameter P, we gained the
possibility to adjust the ratio between the number of iterations running on the CPU and
those running on the GPU. We want to use an autotuner to find the ratio that achieves the
highest occupancy rate of both devices and thus results in the highest performance increase.
Using an offline autotuner for this, would not allow us to manipulate P at runtime, which
is why we choose to use the online tuning approach instead. This gives us the possibility
to react to changing inputs or other environmental factors that might have an effect on
the execution of the program. The advantages of online tuning are explained in further
detail in section 2.2.1.

AtuneRT is an online autotuner implemented in a client-server fashion. Our tool is the
client in this relationship and uses the provided client-API to communicate with the actual
autotuner. AtuneRT needs to know about the tuning parameters it tweaks and about the
sections it measures in order to do its work. In our case, each loop is associated with a
single parameter P that is introduced during partitioning and that controls the distribution
of iterations over CPU and GPU. Additionally, we introduce a single section belonging to
said parameter which includes the following actions:

• Copying neccessary data to the GPU’s memory.
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• Initiating the asynchronous execution of the first partition on the GPU.

• Executing the second partition on the CPU.

• Copying data from the GPU back to the CPU’s memory.

It is important to include the memory transfer before and after kernel execution in order
to obtain representative measurements. If we left them out, we would ignore a substantial
part of the overhead inherent in executing on the GPU, which would in turn incorrectly
favour the GPU for smaller inputs.
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Figure 4.1: A flow chart depicting the steps (rectangles) and their input and output (el-
lipses) used in our solution. The grey steps were already present in AutoCU

and the blue one was adapted from [B1̈5].





5. Implementation

We implement our solution by extending the existing tool AutoCU, which offers most of
the functionality we need. In the following, we first give an overview of AutoCU and then
explain how we integrated the partitioning functionalities.

AutoCU makes extensive use of the pass pipeline and thus models its analyses and trans-
formations as passes. The first step is the detection of parallelizable loops, which is imple-
mented in the class KernelElicitationPass. It detects parallel loops by examining their
PDG. The PDG is created by a class called ProgramDependenceGraphPass which depends
on the class SideEffectAnalysis. This analysis determines which arguments and global
variables a function reads from or writes to. The PDG pass depends on further analyses,
which are, however, already provided by LLVM. The kernel elicitation pass works on the
basis of functions: If it finds a function containing a parallelizable loop, it collects the
function’s references to other functions and globals. Afterwards it determines the loop’s
induction variables and it’s lower and upper bounds. Additionally, it records certain trans-
formations that have to be applied to the function once it is extracted into a kernel. The
second step is the actual kernel creation which is done by the class PTXTargetGenerator

that copies the function in question to the target module. It also creates a copy for the
host module. The invocations of the original function are replaced by calls to a so called
dispatch function. This dispatch function calls out to the autotuner, to dynamically decide
which version—either host, or device function—to execute. The third step is the memory
management, which is completely implemented as a runtime component. A pass named
MemoryManagementTaggerPass inserts tracing calls after memory managing function calls
like malloc. The tracing calls record the allocated blocks and their sizes which is then
used before and after the kernel call to know which memory regions have to be transferred
to and from the GPU.

A naive approach would be to implement the partitioning functionality as another trans-
formation that is run on the function candidates before all the other transformations.
The problem with this is, that the partitioning changes certain loops and thus invalidates
parts of the information collected by the KernelElicitationPass. This then neccessi-
tates rerunning the parts of the analysis, which meant a great amount of changes in the
general design of AutoCU. Instead of doing this, we prepended the whole AutoCU pipeline
with an additional pass, called PartitioningPass, that devides loops into partitions. For
each loop, one partition is then passed on to be turned into a kernel. We still had to
make changes to AutoCU, but these did not severly affect its overall design. We moved
the insertion of tuner calls into the partitioning pass, because we want to measure the
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execution time of both of our partitions, not just that of the kernel. Next, we replaced the
dynamic memory management with a mostly static one, that relies on Scalar Evolution
analysis to compute accessed memory. The new memory management has been adopted
from [B1̈5]. Due to the way the Scalar Evolution library is implemented, it was easiest
to put the management into the partitioning pass. Finally, we moved the parts of the
detection of parallelism out of the pass pipeline and into a separate class, allowing for it
to be easily used by several passes. This allowed us to utilize the detection mechanisms
in the partitioning pass to find partitionable functions in the first place. To summarize,
detection of eligible loops, partitioning of those loops, analysing memory and generating
memory managing and autotuning calls is done by the PartitioningPass. The original
AutoCU pipeline is now in charge of transforming chosen functions into kernels.

The rest of this chapter is structured as follows: We start in section 5.1 by outlining other
command line tools used before and after the invocation of our tool to create the final
executable. Section 5.2 then describes how the parallelism detection in AutoCU (and thus
also in our tool) works. Section 5.3 explains the details of creating partitions and inserting
tuner calls, while section 5.4 outlines how the transformation of a certain partition to GPU
code is done.

5.1 Toolchain Overview

The whole process operates on a sequential program as input, that is compiled with clang

to LLVM IR. Then, several LLVM transformations are applied to that code, by running
the opt tool with -mem2reg, -instcombine, -loops, and -sroa as flags. This code is
then passed to AutoCU as input, which produces two LLVM IR modules: The host module
and the target module. The former contains the original program with partitioned loops,
calls to kernels and calls to the auto tuner. The latter holds the kernels that run on the
GPU. These modules are compiled to assembly code by llc. Then they are linked with
the runtime functions of AutoCU and the client code for the autotuner to produce native
code.

5.2 Detection of Parallelism

This section describes the parallelism detection mechanisms used in AutoCU and thus, by
extension, also in our own tool. In subsection 5.2.1 we explain how the PDG is contstructed
and which information AutoCU uses to do so. Subsection 5.2.2 then shows how AutoCU

selects suitable loops based on their form and their loop carried dependencies.

5.2.1 Construction of the PDG

The ProgramDependenceGraphPass makes use of multiple analyses whose results have to
be available before it can run. These four analyses needed are listed below:

• AliasAnalysis

• PostDominatorTree

• DependenceAnalysis

• SideEffectAnalysis

The LLVM project already provides us with the first three of the four needed analyses,
leaving the SideEffectAnalysis (SEA), which was already implemented in AutoCU.

The following paragraph describes how SEA processes a given function. This analysis finds
out which global variables and which of its arguments the function accesses. It finds these
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for each directed edge(x,y) in CFG:

if y is not post dominated by x:

ydom <- y in the post dominator tree

idom <- immediate post dominator of x

while (ydom != idom):

create control edge (ydom,x)

ydom <- immediate post dominator of ydom

Figure 5.1: Pseudo code for the control dependence algorithm presented in [FOW87].

values, by examining the load, store and call instructions of the function: If it encounters
a load instruction, it recursively traverses its operands to eventually find out whether they
depend on an argument or a global variable. This can be done by utilizing the def-use
chain exposed by the llvm::Value API. Such an argument or global variable is then added
to the read set of the function in question. Store instructions are processed analogously,
with the difference of the values being collected in a write set instead. If a call instruction
calling a function G is encountered, the global values of G ’s read and write sets are copied
to F ’s respective sets. Additionally, the arguments passed to the function call are analyzed
in the same way operands of load and store instructions are analyzed.

To build a PDG, AutoCU needs to collect data and control dependencies existing between
the instructions of a particular function. Data dependencies are divided into use, flow,
anti, in and out dependencies. A dependency between two instructions is modeled as an
edge in the PDG labeled with the type of the dependency. We create a use edge from an
instruction I to an instruction I’, if I operates on the value produced by I’, according to the
def-use chain. Edges of other types are created by calling DependenceAnalysis.depends

for all pairs in the cross product of the function’s basic blocks and examining the result
accordingly. If one of the instructions in such a pair is a function (F ) call, this pair has
to be handled specially: First, we use AliasAnalysis.isNoAlias to determine, which of
the arguments passed to F might alias to which of the instruction’s operands. Then, we
use the SEA to collect the arguments that are either read or written when the instruction
is written, or that are written when the instruction is read. These collected arguments
together with the instruction are attached as so called contraints to the edge.

The control dependencies are found with the help of the algorithm presented in [FOW87].
Figure 5.1 shows a pseudocode version that finds the control dependencies between nodes
in a control flow graph. In the LLVM IR, each basic block is a node in a CFG. Thus, the
above algorithm produces dependencies between two basic blocks, which does not quite
fit our purposes. For this reason, if we find a basic block B’ to be control dependent on a
basic block B, we record this in the PDG as multiple edges, where the instructions in B’
are control dependent on the terminator instruction in B.

Taking all the created edges representing data and control dependencies then forms the
program dependence graph of a particular function. This graph can then be used in the
next step, to find loop carried dependencies.

5.2.2 Analyzing Loops

We outlined the criteria we apply to detect parallel loops in 4.2. The loop has to be in
canonical form and must not exhibit any loop-carried dependencies. The first property is
checked by verifying if the loop has a preheader, a single backedge and a single exit block.
The second one is checked by looking at the strongly connected components (SCCs) of
a graph. A graph is strongly connected if every vertex is reachable from every other



26 5. Implementation

vertex. The SCCs of a graph are its maximally strongly connected subgraphs. Maximally
strongly connected means, that no further vertices or edges can be added to the component
without it loosing that property. The PDG as described in section 5.2.1 is expressed using
the BOOST [boo] graph API, which allows us to use the boost::strong_components

function to find all SCCs in our PDG. To determine if a particular SCC describes a loop
carried dependency, we check if any of its nodes (instructions) is a phi instruction. If this
phi can be expressed as an add recurrence and has a step width of one, it is an induction
variable and the corresponding loop will be parallelized. Otherwise, it is a loop carried
dependency and the loop is not touched.

5.3 Partitioning of Loops

Partitioning is the act of dividing the iterations of a loop into two parts in such a way,
that the first part is executed by one loop and the second one by another loop. Both new
loops have identical bodies and differ only in their iteration range. For a start, we focused
on functions containing only one loop, because dealing with parallelizing multiple loops
in the same function increases the complexity. We explain the partitioning by considering
the example of a function F containing a single loop L. We start by determining the lower
and upper bound of the iteration range and by finding the variables the loop depends on.
The lower bound is equal to the value the loop’s phi instruction evaluates to, if the control
flow comes from the loop’s preheader (this is akin to the control flow entering the loop for
the first time). The upper bound is equal to the number of times the backedge is taken,
which is computed by the Scalar Evolution analysis. Collecting the variables is done by
iterating over the operands of each instruction in the loop’s body and retaining those, that
are declared outside the loop.

With this information in place, we copy L into a new partition function Fh. The function
is parameterized by a lower and an upper bound, defining the new iteration range of L.
Further parameters are introduced for every variable used inside, but defined outside of
L. In figure 5.2 the two parameters lower and upper are added to Fh and used as loop
bounds.

void F(int *a, int *b, int *c, void F_h/d(size_t lower, size_t upper,

size_t N) { int *a, int *b, int *c) {

// L // L_h/d

for (size_t i = 0; i < N; i++) for (size_t i = lower; i < upper; i++)

c[i] = a[i] + b[i]; c[i] = a[i] + b[i];

} }

void F(int *a, int *b, int *c, size_t N) {

size_t P = get_partition_parameter("F", 0, N, 1);

start_measurements("F"); // (S1)

F_d(0, P, a, b, c); // (S2)

F_h(P, N, a, b, c);

sync_with_gpu(); // (S3)

copy_memory_to_host(); // (S4)

stop_measurements("F"); // (S5)

}

Figure 5.2: A loop is extracted into a partition function and replaced by measurements,
bounds calculations and calls to said partition function.
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Parameters a, b and c are also added, as they are accessed inside the Lh. The original loop
L in F is then replaced by calls to the autotuner API and calls to the Fh function. The
first call to the autotuner returns the next value for the partitioning parameter P , which
can then be used to determine the bounds for the partitions. The partition function is
called once for each partition, with bounds and referenced variables passed as arguments.
Due to the fact, that the GPU tranformation modifies the function it transforms, we have
to make a copy Fd of Fh which is later transformed. One of the calls to Fh is then replaced
by a call to Fd (the loop in Fd is called Ld). This is statement S2 in figure 5.2. From the
point when Fd has copied memory and launched the kernel and Fh has begun executing,
both loops Lh and Ld run concurrently. This necessitates a synchronization call to the
GPU after Fh has finished, so that the GPU memory can be copied back to the host.
Both of these are runtime calls that are inserted after the call to Fh (statements S3 and
S4 in figure 5.2). Finally, function calls to start and stop measurements for the autotuner
are inserted before the call to Fh and after the call to download the memory respectively
(statements S1 and S5 in figure 5.2).

5.4 Memory Management

The memory management solution described in this section was adopted from [B1̈5].

As described in section 4.4.2, we need to determine the regions of memory accessed by
the loop in question and transfer those to and from the GPU. The implementation of this
algorithm has been taken from citelukas and has been adapted to our code base. It consists
of two parts, a static and a dynamic one. The former is based on the Scalar Evolution
analysis and compiles a list of pointer intervals and inserts calls from dynamic part into
the IR. The latter deduplicates overlapping intervals, allocates and copies memory and
maps between host pointers and device pointers.

The memory management is part of the PartitioningPass, as we have to analyze the
original loop L and the partitioned one Ld. It made sense to integrate these two, as it is
not possible to analyze the same function twice (in our case containing a modified loop
the second time), without loosing the results from the first run. For this reason, firstly we
run the static and the dynamic part on the original loop. Then we change its bounds to
reflect the new iteration range. Secondly the process is repeated on the partitioned loop.

The static part starts by analysing L and creating a SCEV expression for every memory
access in L. These SCEVs are add recursions which can be evaluated at a particular
iteration to get the address the corresponding pointer points to. We evaluate each SCEV
at L’s lower and upper bound respectively, to get an address interval containing all possible
memory accesses of the corresponding pointer. During evaluation, we distinguish between
induction variables that count upwards and those that count downwards—an add recursion
is said to be positive or negative respectively. A positive one is evaluated at the lower bound
to obtain the beginning of the address interval and at the upper bound to obtain the end.
This is reversed for the negative one. The next step is to expand the evaluated SCEV
expressions, which translates them into IR code. We then generate code that collects
these address intervals in an array to be passed to the memory deduplication runtime call.
As mentioned in the previous paragraph, this process is then repeated for the partition
loop Ld. The results from both deduplication calls are then passed to a runtime call that
allocates memory on the GPU and transfers the neccessary data. The generated code is
inserted into the entry block of the device function Fd (the function to be transformed by
the GPU transformation part).

The first function of the dynamic part of memory management deduplicateMemory takes
the previously mentioned intervals and combines the overlapping ones into so called mem-
ory blocks. A block begins at the smallest beginning address of its contained intervals and
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ends at the largest ending address. As mentioned in 4.4.2, we allocate an amount of GPU
memory that can hold all data needed by the unpartitioned loop L, but we only actually
copy the memory needed by the current partition. This is done to prevent reallocation
of memory each time the size of the GPU partition changes. For this reason, a second
function allocateAndCopyMemory takes both sets of blocks–those needed by L and those
needed by Ld. The first set is used to determine the size of memory allocated on the
GPU. It does this only once, the first time it is invoked and then stores the returned de-
vice pointer for later invocations. The second runtime function then copies each partition
block to the allocated device memory and remembers which partition block was copied to
which device pointer. We also store a mapping from each partition interval (the intervals
that are passed to the deduplication) to its corresponding device pointer. This information
is later used by the runtime function getDevicePtr, which maps a given host address to
its corresponding device address. Memory copied to the GPU before the kernel executes
has to be copied back to the host CPU, after the kernel has finished. This is accomplished
by the downloadDeviceMemory function, which—given the name of a kernel—copies all
memory used by that kernel back to the host.

5.5 Mapping Iterations to GPU Threads

The mapping of loop iterations to GPU threads is already implemented in AutoCU. The
transformation of the device partition Fd is implemented in the class PTXTargetGenerator,
which is integrated into the pass pipeline via an immutable wrapper pass PTXTargetWrapper.
Each time a loop has been divided and the partitions have been extracted into a function,
one of them is selected and stored in a list. This list is then used by the generator to limit
the functions it transforms. The generator has two responsibilities: It adapts the loops to
be run in a parallel fashion and then replaces them with the kernel invocation.

As the kernels are compiled by a different LLVM back-end as the host code is, we create a
new module (called the target module) to hold all the kernel functions. After copying such
a function to the target module, its backedge is remove and replaced by an unconditional
branch to the loop’s exit block. This is done, because each thread only executes one
iteration, as outlined in section 4.4.1. Also, the induction variable is now calculated from
the thread’s index instead of the induction variable:

<thread index>+<block index> ∗<block dimension>+<lower bound> (5.1)

The next transformation creates a new function that prepares the kernel arguments and
calls the runtime function launchKernel to start the kernel. The arguments have to be
passed as an array of void* pointers to the CUDA API, which is why we allocate memory
on the stack for each argument passed to the kernel and then collect the pointers to these
arguments in an array. Arguments that are pointers themselves have to be mapped to the
corresponding address they point to on the device. The getDevicePtr runtime function
does this by first looking up the interval this pointer belongs to, which can then be used
to look up the interval’s position relative to the beginnig of its block. This offset is then
added to the device address of the beginning of the block to obtain the device address this
specific pointer points to.

The runtime function launchKernel first loads the required kernel from the ptx module
that has been produced by the GPU transformations. It then calculates the block width
and the grid width by this formular:

block width =

{
block size , if upper bound > block size

upper bound , otherwise
(5.2)

grid width =
upper bound + block width− 1

block width
(5.3)
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Finally, launchKernel starts the kernel via the cuLaunchKernel call, which is part of the
CUDA Driver API. Passed to this call are the computed block and grid widths, and the
void* array.





6. Evaluation

We evaluate our tool by transforming three algorithms implemented in the polybench
benchmark suit [pol]. These algorithms are gemm, gesummv and syrk.

We evaluate the algorithms in different configurations. A configuration is the triple of input
size, input form and ratio. The first one dictates the overall size of the input, e.g. the size
of an n× n matrix is proportional to n2. The input form describes the input dimensions
and their individual sizes. As an example, an n×m matrix has two dimensions of size n
and m respectively. The third element ratio indicates the amount of work that is executed
on the GPU. A configuration with a ratio of 0.8 runs 80% of iterations on the GPU.

We do not use the autotuner during evaluation, but rather set the partitioning ratio (r)
manually. This is done via a command line flag -r passed to our tool. The autotuner is
excluded to make it easier to obtain deterministic results during testing. By looking at
the measuring data, we will still be able to determine whether it would be beneficial to
use an autotuner. If the curve of the speedup over the different values of r lacks any local
maxima, we can assume an autotuner would find the optimal partitioning ratio.

Each algorithm is tested in 24 different configurations. We use two different input datasets
and twelve different values of ratio. We think, one of the datasets is better suited for
execution on the CPU, the other for execution on the GPU. The first eleven ratio values
start from 0 and go up to 1 stepping by 0.1. The twelfth ratio value is also 0, but
the program is compiled only by clang and not processed by our tool in any way. The
execution time of this configuration is used as a base line to later compute the achieved
speedup. Figure 6.1 describes how said speedup S is computed from the execution time
of the sequential version Ts and the partitioned version Tp respectively.

S =
Ts
Tp

(6.1)

Each algorithm is contained in a single file which is compiled with the following polybench
specific compiler flags:

• -DPOLYBENCH_TIME

• -DPOLYBENCH_USE_RESTRICT

• -DPOLYBENCH_USE_SCALAR_LB
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The first flag controls the insertion of time measuring calls into the polybench files to
obtain the execution time of the program. The second flag adds the restrict keyword
to the algorithms’ input data. This is necessary, because the Alias Analysis is not able
to assess that the given pointers point to destinct memory regions. The third flag tells
polybench to use constant loop bounds instead of variables. The partitioning algorithm
is only able to statically detect the loop bounds, if the induction variable is unsigned. As
polybench uses int as the data type for the loop bounds, we replace the variable bounds
by constants.

After compilation, the algorithm under evaluation is analyzed and transformed by our tool
to produce the program used for measurements. We then execute the program ten times,
discarding the fastest and the slowest run. The remaining data points di are averaged
by summing them up and dividing the sum by the number of remaining data points n.
This average is the execution time t for one specific configuration of problem size and
partitioning ratio. Figure 6.2 describes this in mathematical notation.

t =

n∑
i=0

di
n

(6.2)

We also compute the maximum deviation of the individual data points from the computed
average. If a data point from a specific configuration deviates more than 5%, we repeat
the evaluation of this configuration. The maximum deviation δmax is computed as follows:

δmax = max{|d− t|,∀d ∈M} (6.3)

We evaluate on a machine with the Intel Xeon Processor containing 4 cores (8 hardware
threads) clocked at 3.7 GHz. The GPU device is a GeForce GTX TITAN Black with
2880 CUDA cores (distributed over 15 Multiprocessors) with 889 MHz base and 980 MHz
maximum clock rate and a memory bandwidth of 336 GB/s.

6.1 gemm

This algorithm implements general matrix multiplication taking the following parameters
as input:

• α, β ∈ R

• A ∈ Rni×nk

• B ∈ Rnk×nj

• C ∈ Rni×nj

It then computes the output Cout ∈ Rni×nj using the following formular:

C = αAB + βC (6.4)

The source code of the function and loops to be transformed is shown in figure 6.1. We
postulate that the sizes of the three matrices (A, B and C) will have a significant effect
on the execution time of the transformed function. As our tool partitions the outer loop
and leaves the inner ones unchanged, altering the loop bound ni will probably have dif-
ferent effects than altering nk and nj. Iterations in the GPU partition will be executed
concurrently, thus a greater ni should increase the number of parallel computations, while
a smaller one should decrease it. The inner loops, on the other hand, are executed sequen-
tially. This means that their bounds nj and nk define the amount of work for a single
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void kernel gemm (
i n t ni , i n t nj , i n t nk ,
double alpha , double beta ,
double C[ n i ] [ n j ] , double A[ n i ] [ nk ] , double B[ nk ] [ n j ] ) {
f o r ( i n t i = 0 ; i < ni ; i++) { // (1 )

f o r ( i n t j = 0 ; j < nj ; j++)
C[ i ] [ j ] ∗= beta ;

f o r ( i n t k = 0 ; k < nk ; k++) {
f o r ( i n t j = 0 ; j < nj ; j++)

C[ i ] [ j ] += alpha ∗ A[ i ] [ k ] ∗ B[ k ] [ j ] ;
}

}
}

Figure 6.1: Source code of the gemm algorithm.

thread on the GPU. Thus, to take advantage of the GPU’s massively parallel structure, we
believe to see the best results with a high value for ni in comparison to the product of nj
and nk. For this reason we choose two problem sizes: The first one is the extra large config-
uration of the polybench suite, with values of ni = 2 ·103, nj = 2.3 ·103 and nk = 2.6 ·103.
The second one was added by us, allowing for significantly more iterations in the outer
loop, with values of ni = 106, nj = 100 and nk = 100.

6.1.1 Description

The results of evaluating this algorithm are shown in graph form in figure 6.2 and in
tabular form in table 6.1.1. The purple graph (A) starts on a plateau, where we see the
global maximum speedup at r = 0.1 of S ≈ 0.4656 and two slightly smaller values for
r = 0 and r = 0.2. It then falls exponentially between r = 0.2 and r = 0.5 to a value of
S ≈ 0.2024. From there on its maximum deviation from the value at r = 0.5 amounts to
approximately 1.5%, thus it basically stays constant. The second graph (B) in green has
its maximum of S ≈ 0.3760 at r = 0.4 and a slightly smaller value for r = 0.5. From r = 0
to r = 0.4 the graph shows a small exponential increase and from r = 0.5 to r = 1 a small
exponential decrease.

ratio ni = 2 · 103, nj = 2.3 · 103, nk = 2.6 · 103 ni = 106, nj = 100, nk = 100

0.0 1.00000000 1.00000000
0.0 .43670546 .24464347
0.1 .46556106 .25883840
0.2 .44933685 .28877814
0.3 .32420609 .32656198
0.4 .23301539 .37598232
0.5 .20237398 .36451729
0.6 .20541951 .30645426
0.7 .20329812 .26448068
0.8 .20316972 .23222210
0.9 .20425854 .20808944

0.9999 .20123451 .18784057

Table 6.1: The data points for the gemm algorithm.
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Figure 6.2: The speedups of the gemm algorithm for two differently shaped inputs over
the ratios from 0 to 1.

6.1.2 Interpretation

The first thing we notice is that the maximum speedups are still smaller than one, which
means that our tool slows this program down by at least a factor of 2 when compared
to an executable generated by clang. It is nevertheless interesting to inspect the curve
shapes and discuss potential explanations.

The purple graph (A) shows the best performance at around r = 0.1, which means that
only 10% of the loop’s iterations are executed on the GPU, the rest is executed on the CPU.
This result can be explained by looking at the differing clock speeds of CPU and GPU and
the form of the input data. A thread on the CPU has a much higher (by a factor of 3.78)
clock speed than an individual thread on the GPU. Additionally, as our tool only partitions
the outer loop, each thread on the GPU sequentially executes O(nk ·nj) operations. Thus
the GPU operates highly parallel, but each thread is slower than the CPU. Another aspect
to consider is the amount of data that has to be copied to and from GPU memory before
and after execution. The more data we copy the higher the additional speedup contributed
by the GPU has to be in order to achieve an overall performance increase. We see how at
r = 0.1 the speedup is high enough to outweigh the copying cost, but as we increase r, the
copying cost increases and outweighs the speedup from r = 0.3 onwards.

Looking at the green graph (B), we can see that configurations with a different input
shape allow for more GPU participation. The work to be done by any particular thread
has decreased by a factor of 598, compared to earlier configurations. This, in combination
with a high number of outer loop iterations (ni = 106), leads to a 40% GPU participation
to achieve the best speedup.

6.2 gesummv

The gesummv algorithm implements summed matrix-vector multiplications taking the
following parameters as input:
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void kernel gesummv ( i n t n ,
double alpha , double beta ,
double A[ n ] [ n ] , double B[ n ] [ n ] ,
double tmp [ n ] , double x [ n ] , double y [ n ] ) {
f o r ( i n t i = 0 ; i < n ; i++) {

tmp [ i ] = 0 . 0 ;
y [ i ] = 0 . 0 ;
f o r ( i n t j = 0 ; j < n ; j++) {

tmp [ i ] = A[ i ] [ j ] ∗ x [ j ] + tmp [ i ] ;
y [ i ] = B[ i ] [ j ] ∗ x [ j ] + y [ i ] ;

}
y [ i ] = alpha ∗ tmp [ i ] + beta ∗ y [ i ] ;

}
}

Figure 6.3: Source code of the gesummv algorithm.

• α, β ∈ R

• A,B ∈ Rn×n

• x ∈ Rn

It then computes the output y ∈ Rn using the following formular:

y = αAx+ βBx (6.5)

The source code of the function and loops to be transformed is shown in figure 6.2. For the
same reasons, as layed out in section 6.1, we think our tool will perform better the greater
the outer loop bound n is. However, given that the only inner loop is also bounded by
n, the work each individual thread has to do will increase proportionally to the increase
of available threads. We choose two problem sizes: The first one is again the extra large
configuration of the polybench suite with a value of n = 2 · 103, while the second one was
added by us and uses a value of n = 104. Significantly larger values for n are not possible,
as we run out of memory when handling data of size O(n2).

6.2.1 Description

The results of evaluating this algorithm are shown in graph form in figure 6.4 and in tabular
form in table 6.2.1. Both graphs very similar: The maximum speedup of approximately
0.390 is achieved at r = 0, after which the curve drops to approximately 0.014 for the
purple graph (A) and to approximately 0.121 for the green graph (B). From r = 0.1 to
r = 0.999 (B) falls with a slope of 0.9521. (A) falls with a slope of 0.8884 between r = 0.1
and r = 0.7 and then the slope increases to 0.7531 from there to r = 0.999.

6.2.2 Interpretation

The transformed versions of the gesummv algorithm are ten times (with n = 104) and
nearly 100 times (with n = 2 · 103) slower than their equivalent compiled by clang. This
indicates that the performance improvements gained by parallel computing on the GPU
are mitigated by the costs of copying memory between the two devices. The reason for
this is probably the amount of work per GPU thread in comparison to the amount of data
that has to be copied. The inner loop has a complexity of O(n), while the amount of data
to transfer is O(n2). However, following this reasoning, curve (A) should show a greater
speedup than curve (B) because the former displays configurations with a smaller n. As
we can see, this is clearly not the case. The reason for this is probably that the GPU can
only utilize 2 · 103 threads in the case of (A) versus the 104 threads in the case of (B).
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Figure 6.4: The speedups of the gesummv algorithm for two differently shaped inputs over
the ratios from 0 to 1.

6.3 syrk

The syrk algorithm implements a symmetric rank-k update taking the following parameters
as input:

• α, β ∈ R

• A ∈ Rn×m

• B ∈ Rn×n (symmetrix matrix)

It then computes the symmetric matrix Cout ∈ Rn×n as output by using the following
formular:

Cout = αAAT + βC (6.6)

ratio N = 2 · 103 N = 104

0.0 .39007105 .39052280
0.1 .01377109 .12101976
0.2 .01373680 .11858699
0.3 .01370285 .11566120
0.4 .01356957 .11396686
0.5 .01349990 .11179276
0.6 .01331785 .10945476
0.7 .01333627 .10745027
0.8 .01325449 .10164490
0.9 .01318657 .09608380

0.9999 .01311388 .09118687

Table 6.2: The data points for the gesummv algorithm.
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void k e r n e l s y r k ( i n t n , i n t m,
double alpha , double beta ,
double C[ n ] [ n ] , double A[ n ] [m] ) {
f o r ( i n t i = 0 ; i < n ; i++) {

f o r ( i n t j = 0 ; j <= i ; j++)
C[ i ] [ j ] ∗= beta ;

f o r ( i n t k = 0 ; k < m; k++) {
f o r ( i n t j = 0 ; j <= i ; j++)

C[ i ] [ j ] += alpha ∗ A[ i ] [ k ] ∗ A[ j ] [ k ] ;
}

}
}

Figure 6.5: Source code of the syrk algorithm.

ratio n = 2.6 · 103, m = 2 · 103 n = 104, m = 100

0.0 .88734477 .88287985
0.1 .85796596 .83641286
0.2 .86920821 .85634764
0.3 .90889122 .88759596
0.4 .97105412 .94637566
0.5 1.07440160 1.04047315
0.6 1.22742361 1.19415669
0.7 1.03420614 1.45157061
0.8 .78939777 1.57920408
0.9 .78876578 1.26916038

0.9999 .78707533 1.03414331

Table 6.3: The data points for the syrk algorithm.

The source code of this algorithm is shown in figure 6.3. As with the previous evaluations,
a big value of n and a comparatively small value of m will help us to better utilize the
GPU. For this reason, we set n = 104 and n = 102 for one set of configurations. The other
set is the extra large dataset from the polybench suite with values of n = 2.6 · 103 and
m = 2 · 103.

6.3.1 Description

The purple curve (A) and the green curve (B) have a very similar shape in the interval
r = [0, 0.6], with (A) approximately 1.5 to 3.0 percent points above (B). When running
without the GPU, their performance lies slightly below 90% of the perfomance of their
clang compiled counterparts. They drop at r = 0.1 to reach a local minimum for (A) and
a global one for (B). At approximately 30% of GPU participation they reach the same
performance as without the GPU. Another interesting point is at r ≈ 0.45 where they
are as fast as their clang counterparts. (A) increases exponentially for r ∈ [0.1, 0.6] with
a speedup of 1.23 at its maximum. It then drops off dramatically to reach its minimum
of 0.78 at r = 0.8 and stays constant for the remaining ratios. (B), on the other hand,
reaches its maximum of 1.45 at r = 0.8 after increasing exponentially as well over the
interval r = [0.1, 0.7]. It then drops off as dramatically as (A) to reach 1.03 at r = 0.999.

6.3.2 Interpretation

After being transformed by our tool, this algorithm runs up to 1.45 times faster than its
clang compiled counterpart. The maximum of 1.45 is reached with a dataset that requires
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Figure 6.6: The speedups of the syrk algorithm for two differently shaped inputs over the
ratios from 0 to 1.

a lot of iterations of the outer loop and few of the inner loops. As previously discussed,
this shape of the input data is a better suited for the GPU than a data set with a smaller
ratio of n to m. Although the dataset B has such a smaller ratio of n to m, we still reach
a speedup of 23%. The gemm algorithm reached a speedup of only 0.47 with a similarly
shaped input dataset. The explanation for this might be, that the syrk algorithm is able
to exploit the fact that A is a symmetric matrix. It thus only needs half as many iterations
for matrix multiplication as the matrix multiplication in gemm.

6.4 Summary

Evaluating the three algorithms has shown, that the use of an autotuner is possible. An
autotuner will be able to find the optimal ratio between CPU and GPU, for each of the
tested algorithms, because all of them have a global maximum. In the case of gemm and
syrk this maximum is achieved with a GPU participation of 10% or 40% and 60% or 80%
respectively. The former only reaches a speedup of 0.45 because a single GPU thread has to
much work to do and runs at a significantly slower clock speed than the CPU thread. The
latter reaches a speedup of up to 1.45 compared to the clang compiled counterpart. The
gesummv algorithm has the greatest speedup without the GPU. This can be attributed to
the fact that the amount of work to be done is to small to warrant the cost of transferring
data and starting a kernel.



7. Conclusion

This final chapter summarizes this thesis in 7.1 and then proposes further approaches to
solve remaining problems and questions in 7.2.

7.1 Summary

In this thesis we described the conception and implementation of a tool that automatically
partitions loops for heterogeneous systems. This was achieved by extending the AutoCU.
We added the functionality of partitioning a loop into two loops. While doing this we
replaced the memory management system found in [B1̈5]. The new system is based on
Scalar Evolution analysis and able to statically analyze the memory accessed by a given
loop. The previous approach did this at runtime.

We evaluated our implementation by using it to transform three algorithms taken from
the polybench suite [pol]. This showed us, that it is feasible to use an autotuner to find
the optimal partitioning ratio. We also learned, that our tool can achieve a speedup of up
to 45% under circumstances which allow for efficient GPU usage. However, we also saw
that our tool can slow a program down to only 40% of its original performance, even if
the GPU is not utilized at all.

7.2 Future Works

The evaluation has shown, that in some cases the usage of the GPU does not yet increase
the performance of the transformed program. One reason for this is the cost of transferring
data between host memory and GPU memory. An attempt to remedy this, would be the
usage of asynchronous memory transfer. The tool currently uses the synchronous API
to copy memory between devices leading to time slots during which neither device does
any computational work. The application of asynchronous copying APIs will probably
shrink these idle time slots, as the CPU will be able already run computational tasks,
while the GPU is still waiting for its data to arrive. Another solution would be to spawn a
separate thread on the CPU tasked with transferring memory, while the main thread can
immediately execute computational tasks.

Our tool currently executes the CPU partition in a sequential fashion. As CPU are usually
multi-core processors, we could increase performance by parallelizing these partitions as
well. A possible implementation could utilize Polly [GGL12] and its OpenMP back-end.

39
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Another result of the evaluation was the fact that our tool can be detrimental to a pro-
gram’s performance, even if it does not use the GPU and thus should be equivalent to the
original. The reason for this might be the extraction of a partitioned loop into two separate
functions, which then inhibits certain optimizations that would otherwise be possible. A
future work could examine the partitioning process investigate if this is the reason. If this
is the case, one could go on to try and find a solution for this. If this is not the case,
investigation of different aspects of the partitioning process might be appropriate.
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