
Comparison of Parallelization
Strategies for a Real-time Audio

Application

Diploma Thesis of

Jochen Bieler

At the Department of Informatics
Institute for Program Structures

and Data Organization (IPD)

Reviewer: Prof. Dr. Walter F. Tichy
Advisor: M.Sc. Marc Aurel Kiefer
Second advisor: Dr. Frank Padberg

Duration: February 10, 2014 – August 9, 2014

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, August 8, 2014

. .
(Jochen Bieler)

Kurzfassung

Da mittlerweile in den allermeisten Computer mehrere Prozessoren verbaut werden, muss
Software parallelisiert werden, um die maximale Leistung herausholen zu können. Diese
Arbeit beschreibt eine Fallstudie über eine Echtzeit-Audio-Anwendung, die durch einen
Task-Graphen strukturiert ist. Nach einer tiefgreifenden Analyse der Softwarestruktur
und Performance werden zwei alternative Parallelisierungen für die Ausführung des Task-
Graphen implementiert und ihre Leistungsdaten vermessen. Die neuen Parallelisierungen
werden mit der original Parallelisierung verglichen und in Bezug gesetzt zum theoreti-
schen Maximum, welches durch die Echtzeitbedingung gegeben ist. Außerdem werden
Möglichkeiten zur weiteren Parallelisierung und Beschleunigung beleuchtet.

Abstract

Since nowadays almost all computers carry multiple processors, software has to be par-
allelized in order to maximize the performance. This thesis describes a case study on
a real-time audio application, which is structured using a task-graph. After an in-depth
analysis of the software’s architecture and performance, two alternative parallelizations for
the execution of the task-graph are presented and their performance is measured. The new
parallelization strategies are evaluated against the original strategy and set in relation to
the theoretical maximum, given by a real-time constraint. Finally, additional possibilities
for parallelization are presented.

Danksagung

Ich möchte mich bei allen bedanken, die mich beim Anfertigen dieser Diplomarbeit unter-
stützt haben!

Das sind zuerst meine Eltern Cornelia und Harald. Vielen Dank für eure Unterstützung!
Ebenso danke ich meiner Freundin Julia für die Unterstützung, du warst mir eine große
Hilfe. Desweiteren gilt mein Dank, Marc, dem Betreuer der Arbeit auf Seiten des KIT. Auf
Seiten der Firma danke ich meinen Arbeitskollegen, insbesondere Simon, Serkan, André
und Joachim für die Unterstützung. Zuletzt möchte ich mich bei Patryk, Daniel und Jamil
für das Korrekturlesen und viele hilfreiche Tipps bedanken.

Contents

1. Introduction 1

2. Background and Related Work 3
2.1. Background . 3

2.1.1. DJing . 3
2.1.2. Scheduling Model . 4
2.1.3. Master/Worker Pattern . 5

2.2. Related Work . 5
2.2.1. Super Collider . 5
2.2.2. Mixxx . 7
2.2.3. MCFlow . 7
2.2.4. Tesselation OS . 7

3. Software Description 9
3.1. Main Features . 9
3.2. Complementary Features . 11
3.3. Experiment Setup . 13

4. Reverse Engineering 17
4.1. Architecture As Seen By The Company . 17
4.2. Refined Architecture . 18

4.2.1. User Interface . 18
4.2.2. Event Middleware . 18
4.2.3. Core . 20
4.2.4. Operating System and Hardware Access 20

4.3. Devices Representation and Hardware . 20
4.4. GUI and Waveform . 20
4.5. Track Preprocessing . 22
4.6. Audio Data Collection . 22
4.7. Timecode Decoder . 22
4.8. Settings . 22
4.9. Application Facade . 22
4.10. Audio Engine . 23

4.10.1. Time Criticality . 23
4.10.2. Mixer . 24
4.10.3. Decks . 24
4.10.4. Effects . 24
4.10.5. Audio Data . 24
4.10.6. Time Stretching . 24

4.11. Audio Graph . 25
4.12. Audio Engine Update . 25
4.13. Parallel Audio Engine Update . 28

xi

xii Contents

4.14. Synchronization In Parallel Audio Engine Update 32

5. Performance Analysis 35
5.1. Audio Processing Cycle . 35
5.2. Update Audio Engine . 35
5.3. Active Waiting In Parallel Graph Execution 36
5.4. Actual Audio Graph Configuration . 36
5.5. Profiling The Audio Graph Execution . 40
5.6. Vertex Execution Times In Experiment Setup 40
5.7. Vertex Execution Times In General . 42
5.8. Limitations Through The Real-Time Constraint 42
5.9. Summary . 43

6. Improved Scheduling Strategies 45
6.1. Identified Scheduling Problem . 45
6.2. Current Scheduling Strategy (ORIG) . 45
6.3. Lower Bound . 46
6.4. Lower Bound With Resource Constraints 46
6.5. Sleep Scheduling (SLEEP) . 48
6.6. Work Stealing Scheduling (WS) . 48

7. Evaluation 51
7.1. Response Time . 51
7.2. Real-Time Constraint . 51
7.3. CPU Core Assignment . 54
7.4. Typical Scheduling Realizations . 55
7.5. ORIG Simulation . 56
7.6. Summary . 56

8. Conclusion and Outlook 59
8.1. Conclusion . 59
8.2. Outlook . 59

Appendix 61
A. Average Vertex Execution Times (ms) . 61
B. Mapping Of Vertex IDs To Names . 63
C. Screenshots Of The Sample Applications . 65

Bibliography 69

xii

1. Introduction

Problem Statement

Though almost all computer systems nowadays use multiple processors, software has to be
parallelized to work at maximum performance. Especially performance-intensive real-time
software should make wise use of the available computing resources to satisfy its real-time
condition. Furthermore, the software in this study is usually running on mobile computers,
where computing resources are scarce and should be utilized efficiently.

The word cloud in figure 1.1 shows the most common words in this thesis to give the reader
an initial idea and picture of the contents.

Figure 1.1.: Word cloud showing the most common words in this thesis by size.

1

2 1. Introduction

Analysis and documentation of the software architecture

Analysis and documentation of the runtime behaviour
to identify computing-intensive parts

Development of solutions for an improved parallelization
by introducing two alternative scheduling strategies

Evaluation of the improved scheduling strategies

Figure 1.2.: Approach of this thesis.

Idea and Goal

This thesis is a case study on a commercial real-time audio application. The software
features more than 700.000 lines of code, and evolved over more than ten years, making
the parallelization a complex undertaking, and providing a challenging scenario for the
application of scholarly procedures in a commercial world.

The goal of this thesis is to compare different parallelizations of the application, and to
compare them against the original parallel version.

Approach

The approach of this thesis is presented in figure 1.2. The first step is to analyze the appli-
cation’s architecture and document the results. Next, the application’s runtime behavior
is analyzed, and the results are again documented. The analysis reveals two potentials,
where the parallelization could be improved, for which two enhanced scheduling strategies
are developed. Finally, the evaluation compares the enhanced scheduling strategies against
the original strategy in terms of performance.

Non-Disclosure Agreement

Because of a non-disclosure agreement with the collaborating company, we can neither
reveal the name of the company nor the name of the actual application. To ensure this
agreement, we use screenshots of various DJ applications in chapter 3. Furthermore, we
anonymized all code symbols that could reveal the connection to a specific DJ application
throughout the whole thesis. To refer to the software, we renamed it to DJ-Star.

2

2. Background and Related Work

This chapter establishes the background for the thesis by introducing the art form of
DJing, giving an introduction to scheduling, and illustrating the parallel master/worker
design pattern. It then concludes with an overview of related work.

2.1. Background

This section explains the background and concepts used in this thesis.

2.1.1. DJing

A disc jockey (DJ) is defined as “a person who mixes recorded music for an audience”
by Wikipedia1 [Wik]. Likewise DJing is the art form of mixing recorded music for an
audience.

Traditional Equipment

In the beginning of DJing in the 20th century, recorded music was only available on
vinyl records. These vinyl records were played back on turntables, like TT1 and TT2 in
figure 2.1. The two turntables are connected with a mixer MX, allowing to blend the music
from TT1 and TT2 together in continuously adjustable mixing ratios. The mixed audio
signal is then sent to the speakers SP.

DJing Procedure

The DJ starts by playing a record on TT1. While the record is playing, he prepares the
next record by placing it on TT2. Near the end of the playback of the record on TT1, he
then starts the playback of TT2 and blends both records together with the help of MX,
without having any silence appearing between the two tracks.

1Wikipedia was chosen over the encyclopedias Brockhaus and Duden because their definition were found
to be outdated.

3

4 2. Background and Related Work

Figure 2.1.: Traditional DJ setup based on [Ran].

Digital Equipment

Digital DJing aims at delivering the same workflow as by using traditional analog equip-
ment, but the vinyl records are replaced by digital audio tracks stored on a hard disk drive.
This makes the carrying of tens or hundreds of vinyl records to the venue unnecessary.
Additionally the digital collection is easier to maintain, and searching individual audio
tracks is much more efficient.

For digital DJing, a multi-channel audio interface is added to the traditional equipment, so
that all audio signals are looped through the computer. The audio signal of the turntables
is sent to the computer, and the audio signal for the speakers is sent by the computer.
The vinyl records are replaced with purpose-made control vinyl records providing a control
signal to enable the control of the digital audio tracks with regular turntables.

2.1.2. Scheduling Model

The scheduling model in this thesis is based on [Pin12]. The author Pinedo defines schedul-
ing as“the allocation of resources to tasks over given time periods and its goal is to optimize
one or more objectives”.

Scheduling Problem Classification

Scheduling problems are usually classified using a three field scheme α | β | γ to distinguish
between the vast amount of different scheduling problems, with α denoting the machine
environment, β expressing a variety of problem characteristics, e.g., dependencies among
tasks and γ representing the objective function.

Formal Scheduling Definition

A scheduling problem consists of n jobs Ji(i = 1, ..., n) that have to be processed on a
parallel machine P with m processors Mj(j = 1, ...,m). A schedule is a mapping of each
job onto a processor and a start time. A job Ji has a release time ri, a deadline di and a
finishing time Ci. A job has precedence relations prec to other jobs. This is represented

4

2.2. Related Work 5

by a directed acylic graph G = (V,A), where the set V = 1, ..., n corresponds with the
jobs, and a precedence constraint (i, k) ∈ A means that job Ji has to be completed before
job Jk can start.

The objective function in this thesis is the makespan Cmax = maxi∈JCi, or in other
words: the completion time of the graph. Accordingly, the scheduling problem is classified
as Pm | prec; di | Cmax.

Deterministic scheduling

In deterministic scheduling, all problem data is known in advance. This includes especially
the processing time pi of a job Ji. The resulting schedule can then be calculated upfront
in an offline manner.

Online Scheduling

Online Scheduling is an extension to the offline characteristic of the deterministic schedul-
ing. It is applied if the processing times p are not known beforehand. With online schedul-
ing, the decision maker decides at every completion of a job which job to process next.

2.1.3. Master/Worker Pattern

The Master/Worker Pattern (based on [MSM04, 143-152]) is a pattern to effectively load
balance tasks between multiple processors when the runtime of the individual tasks is
not known in advance. The pattern, summarized in figure 2.2, involves two actors, one
master and one or more worker(s). “The master initiates the computation and sets up the
problem. It then creates the bag of tasks” and launches the workers. In this variation the
master subsequently turns into a worker, whereas in the classic version he would sleep until
all computation is done (fig. 5.14 in [MSM04]). The master then waits until all workers
are finished with their computations, collects the results and terminates the computation.

The workers start to compute the results in a loop by fetching a new task, computing the
results and checking for more available tasks in each iteration. If more work is available,
he continues the loop by fetching a task, computing the results and so on. Finally, when
the bag of tasks is empty, he stops the computations and exits, which is again recognized
by the master.

The bag of tasks is implemented with a single shared queue, filled by the master with all
tasks before launching the workers. This way, he can efficiently determine the completion
of the computations.

2.2. Related Work

This section provides an overview of other work related to this thesis.

2.2.1. Super Collider

Super Collider is a real-time audio synthesis engine that consists of a client and a server.
The server is responsible for synthesizing the audio. It uses a graph structure with nodes
and directed connections to express transformations on the audio signal and the flow of the
audio data. The synthesis server is not capable of using multiple processors. Supernova
[Ble11] is a replacement for the original synthesis server, capable of using more than one
processor. The parallelization however is exposed to the user. The author claims that the
parallelization can not be done automatically.

In our scenario, we do not want the parallelism to be exposed to the user. This is possible
because the user is not able to directly manipulate the audio synthesis tree.

5

6 2. Background and Related Work

master (1)

initiate computation

set up problem

create bag of tasks

launch workers

workers (1 to n)

initialize

compute results

Done?

exit

No

Yes

compute results

Done?

wait until work is done

No

Yes

collect results

terminate computation

Figure 2.2.: Master/Worker pattern based on [MSM04]

6

2.2. Related Work 7

Mixxx DJ-Star

2 Decks 4 Decks
Limited sampler deck support Full sampler deck Support
Effects not chainable Effects are chainable
Basic tempo adjustment algorithm High-quality tempo adjustment algorithm

Table 2.1.: Main differences in the feature set of Mixxx and DJ-Star

2.2.2. Mixxx

Mixxx [Mix] is an open source DJing application, similar to the application DJ-Star in this
case study. Table 2.1 shows the differences between the features of the two applications.
Mixxx does not use a directed acyclic graph for audio representation but a hardcoded
audio data flow, and the audio related computations are not processed concurrently. This
limitation is not a problem for Mixxx, because it does not need that much computational
power due to the more limited feature set.

2.2.3. MCFlow

MCFlow is a real-time, multi-core-aware middleware for dependent task graphs [HGL12].
It uses a directed acyclic graph structure similar to the one used in DJ-Star but MCFlow’s
scheduling is done offline, in contrast to our work, where we use online scheduling to
dynamically load-balance the work.

2.2.4. Tesselation OS

Tesselation OS [CSB+11] is an experimental operating system that supports quality of
service guarantees. This is very valuable for a real-time audio application, since if you
miss a deadline, the audio signal will be distorted. Programs running on Tesselation OS
are characterized by a directed acyclic graph with plug-ins for nodes. In contrast to our
application, the user is able to rearrange and exchange them as needed. But the main
difference is that we have to run our application on general purpose operating systems
such as mac os, windows and linux. If we want to ensure quality of service guarantees, we
cannot rely on the operating system, but have to take care of them ourselves.

7

3. Software Description

This chapter illustrates all features of the application DJ-Star, whose purpose it is to
load, manipulate, filter and mix audio data. For anonymization purposes, the screenshots
are mixed between different applications. This chapter works with partial screenshots to
focus on the particular feature, whereas appendix C provides screenshots of all sample
applications used. To get a sense of how the various user interface elements are placed
together, see appendix C.

3.1. Main Features

/F10/ Audio Sources

DJ-Star supports a maximum of four audio sources to be played back at the same time.
An audio source can be either a single audio track, called audio deck, or a group of audio
tracks, known as sample deck. Figures 3.1 and 3.2 show the graphical representations for
a track deck and a sample deck, the main difference being that the sample deck has four
buttons for playback (.), while the audio deck only has one (/) .

Figure 3.1.: The audio deck controls in Mixxx [Mix]

Figure 3.2.: The sample deck controls in Traktor Pro 2 by Native Instruments [Nat]

/F11/ Mixing

The audio sources will be mixed together with individual volumes to form a combined
audio signal. The combined audio signal will then be played back on the speakers. The
graphical representation for the mixing controls is shown in figure 3.3, where each audio
source has a set of controls, arranged a as vertical stripe, indicated by the colored boxes.

9

10 3. Software Description

Figure 3.3.: The mixer in Virtual DJ by Atomix Productions [Ato]

/F12/ Tempo Adjustment

The tempo of an audio track can be changed with the tempo control shown in figure 3.4.
The middle position is equivalent to no tempo adjustment, moving the control towards the
top increases the tempo, whereas moving it towards the bottom reduces the tempo. This
is known as time stretching, the technique of “contraction or expansion of the duration of
an audio signal” [ZA11, p. 205].

The time stretching algorithm in use is able to change the tempo of an audio track without
changing its pitch. This was not possible with analog turntables, where a change in tempo
was inextricably bound to a change in pitch. An effect usually witnessed when speeding
up a vinyl record, where the singer gets a high pitched ”mickey mouse” voice.

Figure 3.4.: The tempo control in Mixxx [Mix]

10

3.2. Complementary Features 11

/F13/ Effects

The audio tracks can be filtered with effects. DJ-Star supports more than 20 effects, the
most well known being

• echo,

• reverb,

• high-pass-, and

• low-pass-filter.

Figure 3.5 shows an effects section’s graphical representation. Currently, the reverb effect
is selected. The leftmost button, ON, activates respectively deactivates the effect section.
The remainder of controls handles properties that are specific to the effect reverb.

Figure 3.5.: An effect section in Serato DJ by Serato [Ser]

3.2. Complementary Features

The complementary features offer easier control over the audio manipulation with external
control devices, a graphical representation of the audio tracks and the ability to organize
the audio sources.

/F14/ Use of External Control Devices

Although DJ-Star is usable with just a regular keyboard and computer mouse, it is much
more powerful and convenient to use a dedicated external control device. This external
control device is usually connected via USB and communicates with the application in
both ways. It can for example send a command to start the playback of an audio deck,
but it can also receive commands to trigger a visual feedback, e.g., to signalize whether
a track deck is loaded with an audio track or not (this depends highly on the model of
the external control device). Figure 3.6 shows an example for an external control device,
exhibiting both of the features just mentioned.

/F15/ Visual Audio Representation

DJ-Star preprocesses the audio tracks (/F16/), and generates a visual representation from
the results.

This visual representation of a track deck (fig. 3.7) displays the tracks name, current
position and duration, BPM1, as well as two waveforms. The upper waveform visualizes
the surrounding sounds at the current playing position indicated by the green line in the
middle, looking three seconds in either direction, while the lower waveform visualizes the
structure of the whole audio track. So the upper waveform is a magnified version of the
lower waveform.

The visual representation of a sample deck (fig. 3.8) is similar, but since audio samples
are usually very short compared to audio tracks, only the lower of the two waveforms of
the track deck is displayed.

1Beats per minute – the tempo of a musical piece

11

12 3. Software Description

Figure 3.6.: Example for an external control device

Figure 3.7.: An entire track deck in Mixxx [Mix]

Figure 3.8.: An entire sample deck in Traktor Pro 2 by Native Instruments [Nat]

12

3.3. Experiment Setup 13

/F16/ Audio Track Preprocessing

The audio tracks are analyzed to extract the following meta-information:

• Tempo; the speed of an audio track.

• Gain; the loudness of an audio track.

• Key; a group of notes on which a track is built upon.

• Visual audio representation featured in /F15/.

/F17/ Audio Recording

The mixed audio signal can be recorded and saved to the hard disk drive. This recording
is a regular audio file playable in any audio application. Figure 3.9 shows the graphical
representation of the audio recorder, featuring a red button to start and stop the recording.

Figure 3.9.: The audio recorder in Traktor Pro 2 by Native Instruments [Nat]

/F18/ Audio Track Organization

In DJ-Star, all audio tracks have to be imported before usage, so all available audio tracks
are referenced inside the application. The audio track browser shown in figure 3.10 is split
into two sections. The left section shows the user-created playlists, while the right section
displays the individual audio tracks in the selected playlist including additional details
such as track length, key or BPM. The audio tracks can be loaded from the browser into
the individual decks for playback.

3.3. Experiment Setup

For our experiments, we used a typical DJ audio interface, which has multiple inputs and
outputs and low latency, as well as two turntables (see fig. 3.11).

DJ-Star is configured to have four sample decks playing at the same time. Each of the
decks is routed to all of the four effect sections. The effect sections are configured to use
the reverb effect. This is the primary use case to perform music, while maximizing the
computing power needed by the application.

13

14 3. Software Description

Figure 3.10.: Audio track organization in Serato DJ by Serato [Ser]

14

3.3. Experiment Setup 15

Figure 3.11.: Hardware setup for Serato DJ. [Ran]

15

4. Reverse Engineering

Hard disk
drive

Control
device

DJ-Star

audio
sources

control
commands

Speaker

Computer
Display

audio
stream

visual representation
of audio sources and
control commands

Figure 4.1.: Data flow for DJ-Stars main functions.

To be able to parallelize DJ-Star, first the current state of the application is examined.
This chapter presents a comprehensive look at the architecture, the structure and function
of the subsystems and their relationships.

Figure 4.1 shows the main data flow of DJ-Star. The audio data is read from the hard
disk drive and is manipulated by commands sent from a control device. This control
device is usually dedicated hardware with customized controls (like the one in figure 3.2),
but can also be a regular computer keyboard and mouse. The manipulated audio data
is being streamed to the speakers. In addition, the computer display shows a graphical
representation of both the audio input data and the commands that manipulate it.

4.1. Architecture As Seen By The Company

Because the DJ-Star program code evolved historically, there is not a lot of programming
documentation available. Figure 4.2 is taken from a presentation about the DJ-Star ar-
chitecture and visualizes the application’s subsystems and their dependencies. Each circle
represents one subsystem. The arrows denote dependencies between subsystems. The
subsystem in the middle does not have a name but a number of classes and subsystems
that it consists of. AppModule is the main module of DJ-Star while AudioEngine, Control
System and Settings are all subsystems. The GUI and Browser are tightly coupled, which
is denoted with overlapping circles in the diagram.

17

18 4. Reverse Engineering

Figure 4.2.: DJ-Star architecture documentation diagram.

Since this is not enough to get a comprehensive understanding of the architecture, we
recreated the documentation by reverse engineering the source code. The following sections
document the result of this analysis.

4.2. Refined Architecture

The refined architecture diagram in figure 4.3 reveals a comprehensive view on the DJ-
Star architecture. It consists of several layers (the layer pattern is based on [Bus98]), all
of which are described in detail in the following subsections 4.2.1 – 4.2.4.

The communication between the User Interface and Core layers is handled through the
Event Middleware layer. In contrary, the communication inside the Core layer, is realized
by hardwired calls to the other subsystems. Application Facade is the central subsystem
that coordinates the interaction of the subsystems.

All subsystems use a facade module for interaction with other subsystems in the appli-
cation core. This facade encapsulates the control logic and is responsible for keeping the
subsystems state.

4.2.1. User Interface

The User Interface layer hosts all subsystems that are responsible for the interaction with
the user. Namely these are Devices Representation, GUI and Waveform. Devices Rep-
resentation manages the displaying of the application’s state on external control devices.
GUI is responsible for displaying the application state on the computer display. Lastly,
the Waveform subsystem maintains graphical representations of the audio sources, which
are displayed by the GUI subsystem.

4.2.2. Event Middleware

The subsystem Event Middleware handles the communication between the User Interface
and Core layer by using Controls. Each GUI element has one or more Controls. Upon a
value change, the Control executes its handler function, which implements the functional-
ity.

18

4.2. Refined Architecture 19

Hardware Access

User Interface

 Event Middleware

Core

Audio Data
Collection

Devices
Representation

Audio Engine

Effects

Decks

Track
Preprocessing

Waveform

Timecode
Decoder

GUI

Operating System

Devices
Hardware

Settings

Application Facade

Audio Data

Mixer

Audio Graph

Event Middleware

Time
Stretching

Audio Engine
Facade

Figure 4.3.: Layers and corresponding subsystems.

19

20 4. Reverse Engineering

-updateObservers()
+setValue(newValue: float)
+getValue():float

-value: float
-handler: Function
-observer: List<Function>

Control

+setValue(controlID: int, newValue: float)
+getValue(controlID: int):float

<<Singleton>>
ControlFacade

Figure 4.4.: Structural view of the Event Middleware.

Additionally, the subsystem realizes the observer pattern. The value of a Control is being
changed or retrieved by the respective functions in the ControlFacade singleton. After the
value changed, the observers are notified. Figure 4.4 depicts the ControlFacade, Control
and their dependency.

4.2.3. Core

The Core layer hosts DJ-Star’s main functionalities including the important Control Logic
and audio subsystems. The following sections 4.3 – 4.10.5 give a detailed explanation of
all subsystems in the Core layer.

4.2.4. Operating System and Hardware Access

The two lowest layers access hardware functions through the operating system to enable
DJ-Star access to the hard disk drive and to establish USB connections. The hard disk
drive is used to load audio data into the application and the USB connectivity is used to
establish connections to the external control devices.

4.3. Devices Representation and Hardware

The subsystems Devices Representation and Devices Hardware offer connectivity for ex-
ternal control devices. They directly realize feature /F14/.

Services include managing connections and disconnections, sending and receiving messages
in form of MIDI, HID and a company-developed protocol. In addition, multiple control
devices can be connected at the same time, where a routing between control device and
software function determines the assignment.

4.4. GUI and Waveform

To display the program state on a computer display, DJ-Star features the subsystems GUI
and Waveform. Together, they realize feature /F15/, whereby Waveform serves GUI for
generating and maintaining graphical representations of audio data.

20

4.4. GUI and Waveform 21

Preprocess
audio source

Detect BPM on
sample frame

Done

Analyze gain on
sample frame

Generate stripe for
sample frame

Detect transients for
sample frame

Detect key on sample
frame

Generate track ID for
sample frame

Load next sample
frame into buffer

Are there
more sample

frames?

[Yes]

Finalize Stripe
generation

[No]

Figure 4.5.: Preprocessing of audio data.

21

22 4. Reverse Engineering

4.5. Track Preprocessing

The subsystem Track Preprocessing (realizing feature /F16/) offers support for the pre-
processing of audio data to extract metadata such as the speed and structure of an audio
track. This functionality is used in Audio Data Collection to provide the user with audio
metadata such as the musical key1. In addition, the subsystem Waveform uses Track
Preprocessing to create the metadata for the visual audio representation.

Figure 4.5 shows the procedure for one audio track. The audio track is analyzed in chunks
of frames, computing a variety of metadata on each chunk. These metadata is gain anal-
ysis2, stripe generation, generation of a track identifier, detection of transients3, key and
BPM 4 detection. After the preprocessing of all sample frames is completed, the stripe is
finalized, thus completing the preprocessing of the audio track.

4.6. Audio Data Collection

In DJ-Star, all audio tracks have to be imported into the Audio Data Collection and
referenced inside the application before they can be used. The user is then able to organize
the audio tracks into groups and to annotate them. This is essentially a library aiding the
user in finding the right audio track effortlessly.

The Audio Data Collection stores a track’s metadata composed of the title, artist, file path,
musical genre and comments (much like other applications that organize audio tracks) and
the musical key and BPM generated in the track preprocessing. All this information is
managed and stored by the subsystem Audio Data Collection, realizing feature /F18/.

4.7. Timecode Decoder

The subsystem Timecode Decoder realizes feature/F14/ in section 3.2, enabling the use of
special vinyl records to control DJ-Star’s audio playback. The vinyl records encode the
current speed, playback direction and needle position in an audio signal. This audio signal
is sent through a low latency audio interface into the computer, where it is being processed
by DJ-Star. After determining the speed, playback direction and needle position, DJ-Star
plays back the corresponding part of the audio track loaded.

4.8. Settings

The subsystem Settings provides access to the global application settings.

4.9. Application Facade

The subsystem Application Facade is responsible for coordinating the interaction of all
subsystems in the Core layer.

Figure 4.6 shows the procedure for the audio processing cycle (APC), which is central to
DJ-Star. The audio interface requests new audio data from the Application Facade by
sending signals at a fixed rate. One APC consists of updating the state of the timecode
decoder (if enabled) and requesting a new frame of audio data from the Audio Engine,
described in the next section 4.10.

1The musical key is a group of notes on which a musical piece is built upon.
2Gain is a metric for the loudness of an audio track.
3A transient is a high volume, short duration peak in an audio track.
4BPM (beats per minute) determines the speed of an audio track.

22

4.10. Audio Engine 23

Quit?
[No]

[Yes]

Process
audio
cycle

Timecode
Decoder
enabled?

[Yes]

[No]

Update Timecode
Decoder

Update Audio
Engine

Done

Process Audio Cycle

fixed arrival rate
(344.53 hz in
this thesis)

Figure 4.6.: One audio processing cycle (APC).

4.10. Audio Engine

The subsystem Audio Engine is central to the application. It provides DJ-Star with all
the main features /F10/ – /F13/ by handling the audio data processing and processing
of low-latency audio-related controls. The cyclic audio data processing is triggered by a
signal, which arrives at a rate of 344.53 hz (see the next section 4.10.1 for details).

The Audio Engine consists of different subsystem components. The Mixer uses the Audio
Graph to build a graph representation of the audio manipulations in DJ-Star, including
Time Stretching and Effects.

4.10.1. Time Criticality

The work of the Audio Engine subsystem is time-critical. It delivers audio data in small
packets to the audio interface to achieve low latency and a fast audio response upon user
input. If it misses to respond in a given time, the audio will be distorted.

According to

PL ∗ C = SR, (4.1)

the number of packets C the audio engine has to compute depends on the packet length
PL and the sample rate SR. So the audio engine has to process C packets per second,
limiting the run-time T of one APC to

T (APC) <
1s

C
. (4.2)

Combining the equations 4.1 and 4.2 defines the real-time constraint:

23

24 4. Reverse Engineering

+mix(other: AudioData)
+gain(gain: float)

-dataLeft: float[]
-dataRight: float[]

AudioData

Figure 4.7.: Audio data format.

Inequation 4.1 (Real-time Constraint (RTC))

T (APC) <
PL

SR

In this thesis, PL = 128 samples and SR = 44100 samples per second is used. According
to definition 4.1, the maximum run-time of one APC is then 2.9 ms, and the arrival rate
of the APC signal is 344.53 hz. Though this works in practice, the RTC is not proven to
be satisfied with the current implementation.

4.10.2. Mixer

The Mixer is a vital part of the Audio Engine, realizing feature /F11/. It is responsible for
mixing and manipulations of the audio tracks by using a graph representation, explained in
detail in section 4.11. All audio related computations happen in this subsystem component.

4.10.3. Decks

The subsystem component Decks encapsulates the behavior and the audio processing char-
acteristics of the deck types track deck and sample deck. Therefore, it is responsible for
realizing feature/F10/.

4.10.4. Effects

The subsystem Effects offers audio effects for the audio tracks, e.g., reverb and echo. It
realizes feature /F13/.

4.10.5. Audio Data

The Audio Data subsystem features the audio data type used in the whole application.
An Audio Data object is characterized by two float arrays (figure 4.7), each characterizing
one of the two stereo channels. The length of the audio data is a preference, chosen by the
user, and can vary between 64–2304 samples. It allows mixing with another Audio Data
object and setting the gain, which results in setting its volume.

4.10.6. Time Stretching

The subsystem component Time Stretching offers support for adjusting the tempo of the
audio tracks, therefore realizing feature/F12/.

24

4.11. Audio Graph 25

Track Player A
Effect Unit 1

Effect Unit 2
Channel A

Mixer Audio Out

Track Player B Effect Unit 3 Channel B

Figure 4.8.: Example audio graph.

4.11. Audio Graph

The subsystem Audio Graph includes an directed acyclic graph (DAG) for the represen-
tation of the audio flow. The vertices in the DAG represent tasks where the audio data
is transformed, whereas edges represent the audio data flow. A simple audio graph is de-
picted in figure 4.8, where for example Track Player B is a task and its edge to Effect Unit
3 indicates that the audio data is processed by Effect Unit 3 afterwards. Track Player B
is followed by two separate effect units Effect Unit 1 and Effect Unit 2, so the audio is
split first, processed by each effect unit and finally mixed together upon reaching Channel
A.

Audio Graph Vertices

Figure 4.9 depicts the structure of the AudioGraph consisting of vertices. Each vertex is
represented by one module.

Concrete Vertices are of type BufferedVertex or WrappedVertex. The BufferedVertex

manages the buffer by itself, whereas with the WrappedVertex the buffer is set externally.
Each vertex can have any number of effects and has the following functions:

preprocess, execute, postprocess Processing of the vertex, explained in detail in sec-
tion 4.12.

enableRendering, finishRendering, waitForInputsDone For parallel audio graph exe-
cution, explained in detail in section 4.13.

Audio Graph Edges

Each abstract vertex has any number of input edges (composite pattern), characterized
by the tuple (sourceVertex, weightFunc). weightFunc is a function returning a float
∈ [0, 1], expressing the volume at which the sourceVertex audio should be mixed in.

The edges represent the data flow between vertices, and therefore mark the dependencies
between them.

4.12. Audio Engine Update

Updating the audio engine works in three phases: preprocess, execute and postprocess (fig
4.10). Only the execution phase is the same for all vertices, in preprocess and postprocess,
some vertices have special functions, which are discussed in the following sections.

For the processing of the audio engine, the vertices of the audio graph are put in a list and
sorted by depth. The sorted order for the example audio graph in figure 4.8 is: TrackPlayer
A, TrackPlayer B, Effect Unit 1, Effect Unit 2, Effect Unit 3, Channel A, Channel B, Mixer,
Audio Out.

25

26 4. Reverse Engineering

AudioGraph

+preprocess()
+execute()
+postprocess()
+enableRendering():boolean
+finishRendering()
+waitForInputsDone()

-renderState: eRenderState
Vertex

-sourceVertex: Vertex
-weightFunc: Function

InputEdge

Effect

inputEdges*

*
graphnodeCollection

*
effects

BufferedVertex
+setBuffer(buffer: AudioData)

WrappedVertex

AudioData

1buffer

Figure 4.9.: Audio graph structure.

26

4.12. Audio Engine Update 27

:Vertex:Vertex:AudioGraph

loop (foreach vertex)

:AudioMixer

preprocess()

:Vertex

vertexCollection

getSortedVertices()

preprocess()

loop (foreach vertex)

execute()

vertexCollection

getSortedVertices()

execute()

loop (foreach vertex)

postprocess()

vertexCollection

getSortedVertices()

postprocess()

updateAudioEngine()

Figure 4.10.: Audio engine processing in one APC.

27

28 4. Reverse Engineering

Preprocess
Vertex

Empty audio buffer

Done Copy next audio
data into buffer

Timestretch audio

Preprocess
TrackPlayer

Empty audio buffer

Done

Figure 4.11.: Preprocessing of an audio graph vertex and the TrackPlayer vertex.

Preprocess

The phase preprocess is used to prepare the vertices for execution. All vertices empty
their audio buffer and reset their render state. The TrackPlayer vertex additionally copies
audio data into its buffer, time stretches the audio and sets the phase as depicted in figure
4.11.

Execute

The phase execute is the actual audio graph execution. The sorting ensures that all de-
pendent vertices are already executed upon starting the execution of a vertex.

The execution (fig 4.12) is the same for all vertices and is composed of mixing the input
connections and applying the effects associated with a vertex.

Figure 4.13 shows the steps for mixing the input connections. For each input connec-
tion, the weight function is applied to the connections audio data and the audio data is
subsequently mixed into the vertex audio buffer.

Applying the effects is shown in figure 4.14, where the effects are applied one after another
to the vertex audio buffer.

Postprocess

In postprocessing, only TrackPlayer and AudioRecorder vertices implement any logic (fig.
4.15), while all other vertices don’t. The TrackPlayer vertex updates the track position
and loads audio data for hot cues5. An AudioRecorder vertex copies the content of the
audio buffer into an audio save buffer, where it will be written to the hard disk drive later.

4.13. Parallel Audio Engine Update

The audio engine update already supports parallel processing. Multiple vertices can be
processed task-parallel if all of their input connections are processed. The number of

5A hot cue is a saved position in an audio track.

28

4.13. Parallel Audio Engine Update 29

Execute
vertex

Done

Apply
effects

Mix input
connections

Figure 4.12.: Execution of one vertex.

number of
input_connecti

ons > 0?

[Yes]

[No]

set current_input to
first input_connection

Apply weight function
to current_input audio

data

Mix input audio data
into buffer

more input
connections?

[Yes]

set current_input to
next input_connection

[No]

mix input
connections

Done

Figure 4.13.: Mixing input connections of one vertex

29

30 4. Reverse Engineering

number of
effects > 0

[Yes]

set current_effect to
first effect

apply current_effect

more effects
attached?

[Yes]

[No]

[No]

set current_effect to
next effect

apply
effects

Done

Figure 4.14.: Applying effects of one vertex.

Load audio data
for hot cues

postprocess
AudioRecorder

Copy audio buffer data
into audio save buffer

Done

postprocess
TrackPlayer

Update track
position

Done

Figure 4.15.: Postprocessing of a TrackPlayer and AudioRecorder vertex.

30

4.13. Parallel Audio Engine Update 31

:Vertex:Vertex

vertexCollection

:AudioGraph

loop (for each vertex)

alt
[should_process == true]

enableRendering()

should_process

:WorkerThread

preprocess()

:Vertex

preprocess()

preprocess()

getSortedVertices()

Figure 4.16.: Multithreaded graph preprocessing.

threads t for the concurrent processing is limited to t = min(p − 1, 8) where p is the
amount of processors of the machine.

Parallel processing uses the master/worker pattern (see section 2.1.3), where the work
items are in a queue (the vertexCollection) and the thread handling the audio engine
update becomes the master thread. The master thread signals the worker threads to
start processing as shown in figure 4.18 for the graph execution. The preprocessing of the
graph is identical, the only difference being that it runs the preprocess() function. After
signaling all the worker threads, the master thread itself becomes a worker thread.

All worker threads preprocess (fig. 4.16) or execute (fig. 4.17) all vertices, respectively,
in the vertexCollection. Upon reaching the end of vertexCollection, the master
thread waits until all vertices are processed, which acts as a barrier.

Preprocess

The preprocess phase is identical to the serial audio engine update, except that multiple
threads process the vertices. Because the vertices do not have any dependencies on each
other, the worker threads can process all the vertices they can get, as shown in figure 4.16.

31

32 4. Reverse Engineering

:Vertex:Vertex

vertexCollection

:AudioGraph :Vertex

loop (for each vertex)

alt
[should_process == true]

:WorkerThread

execute()

execute()

waitFor
Dependencies()

execute()

enableRendering()

should_process

getSortedVertices()

Figure 4.17.: Multithreaded graph execution.

Execute

The execute phase in the audio engine update works similar to the preprocess phase,
except that since the graph is executed, the dependencies in the audio graph have to be
considered. This is done by waitForDependencies(), which is explained in section 4.14
since it is a synchronization mechanism.

Postprocess

The postprocess phase is done exactly as in the serial audio engine update, there is no
concurrency exploited here.

4.14. Synchronization In Parallel Audio Engine Update

DJ-Star uses two mechanisms to prevent data races from happening in parallel audio engine
update. The following sections will illustrate them.

enableRendering()

Access to the vertexCollection is shared among multiple threads. Therefore, access
must be regulated to prevent data races.

32

4.14. Synchronization In Parallel Audio Engine Update 33

MasterThread WorkerThread

send signal
receive

signal

execute

execute

wait until all
vertices are
processed

WorkerThread

receive
signal

execute

Figure 4.18.: Communication in parallel graph execution with two worker threads.

Before any thread starts preprocessing/executing a vertex, it must check with enableRen-

dering() to identify whether the vertex needs processing (fig 4.16/4.17). The function
uses an atomic variable to keep its status. The first thread calling enableRendering() on
a vertex will be given permission to process this vertex by returning true. All subsequent
threads in the same audio engine update will not get permission to process the vertex,
therefore receiving false.

waitForDependencies()

When updating the audio engine with one thread only, the sorted vertexCollection

prevents any violation of the data dependencies between the vertices. However, in the
multithreaded audio graph execution, race conditions can arise when using the same strat-
egy. Therefore, a synchronization mechanism must be implemented to ensure the correct
processing order.

In the multithreaded graph execution shown in figure 4.17 the worker thread has to call
waitForDependencies() before executing a vertex. waitForDependencies() waits ac-
tively until all data dependencies have finished their execution.

Figure 4.19 shows the situation with four worker threads T1 − T4. T1 just finished exe-
cuting TrackPlayer A and moved on to the next unprocessed vertex, which is Effect Unit
3. This vertex, however, depends on TrackPlayer B which is not executed yet. In this
situation, T1 waits actively until T2 finishes executing TrackPlayer B.

33

34 4. Reverse Engineering

TrackPlayer A

TrackPlayer B

Effect Unit 1

Effect Unit 2

Effect Unit 3

Channel A

Channel B

Mixer

Audio Out

Thread T1

Thread T2

Thread T3

Thread T4

Unprocessed vertex

Processing vertex

Processed vertex

vertexCollection

Figure 4.19.: Example for active waiting in the execution of the audio graph from figure 4.8.

34

5. Performance Analysis

In order to gain a first insight on where DJ-Star’s computing power is consumed, the
profiler of Microsoft’s Visual Studio 2010 Ultimate is used with its sampling profiling
method. Its documentation [Mic] states that the sampling profiling method is useful for
“initial explorations of the performance of your application”. It “interrupts the computer
processor at set intervals and collects the function call stack” and reports the count of the
executing functions by having “little effect on the execution of the application methods.”
These function counts are used to show the absolute rate (indicated by !) of computing
power for the respective program part.

Since the resolution of this profiling method is not good enough for the second part of
this chapter, where the performance of the individual audio graph vertices is examined, a
customized profiler is introduced in section 5.5 and used subsequently.

5.1. Audio Processing Cycle

The sampling profiling reveals that 88% of the computing power in DJ-Star is spent inside
the audio processing cycle (the remaining 12% are spent for drawing the waveforms and
updating the event middleware). Figure 5.1 shows the flow diagram for the APC annotated
with the profiling results. Update Timecode Decoder accounts for 16% and Update Audio
Engine accounts for 72% of the computing power. The following section provides a more
thorough examination of Update Audio Engine.

5.2. Update Audio Engine

Updating the audio engine accounts for 72% of DJ-Stars computing power. This is divided
by the audio graph’s methods preprocess(), execute() and postprocess(), whereby postpro-
cess() with under 1% is negligible. The main computing power in the runtime of the audio
engine update is shared by preprocess(), with 33%, and execute(), with 38%.

T (UpdateAudioEngine) = T (preprocess) + T (execute) + T (postprocess) (5.1)

Figure 5.3 shows the preprocessing of TrackPlayer vertices, in which the time stretching
of the audio data accounts for almost all of the computing power by having 32%.

When executing the vertices, the majority of the computing power is consumed by Apply
Effects with 32% (fig. 5.4). Mix input connections is almost effortless with less than 1%
computing power.

35

36 5. Performance Analysis

Quit?
[No]

[Yes]

Process
audio
cycle

Timecode
Decoder
enabled?

[Yes]

[No]

Update Timecode
Decoder

Update Audio
Engine

Done

Process Audio Cycle

fixed arrivalrate
(344.53 hz in
this thesis)

616%

672%

Figure 5.1.: Computing power for one APC.

5.3. Active Waiting In Parallel Graph Execution

The active waiting (fig 5.5), happening before the execution of a vertex, is responsible for
13% of DJ-Star’s computing power, when executing the graph with four threads on an
eight-core machine (introduced in chapter 7).

This is a waste of computing power. On one hand, threads waiting for their dependencies
burn processor cycles without making any progress, on the other hand these threads could
possibly execute another vertex while waiting, offering potential for improvement.

Potential for Improvement 5.1 (Active Waiting)
Threads should sleep while waiting to not waste processor cycles. When they can start with
their computation, they should be woken up.

Potential for Improvement 5.2 (Idle Threads when Work Is Ready)
Threads should not wait for vertices that are not yet executable, but look for a different
vertex that is executable already.

5.4. Actual Audio Graph Configuration

All the computing power in the above sections, such as Apply Effects (section 5.2), is used
by a combination of vertices. For the further analysis, it is necessary to switch views and
look at the computing requirements of the individual vertices. Therefore, another profiling
method, discussed in section 5.5, was required.

36

5.4. Actual Audio Graph Configuration 37

:Vertex:Vertex:AudioGraph

loop (foreach vertex)

:AudioMixer

preprocess()

:Vertex

vertexCollection

getSortedVertices()

preprocess()

loop (foreach vertex)

execute()

vertexCollection

getSortedVertices()

execute()

loop (foreach vertex)

postprocess()

vertexCollection

getSortedVertices()

postprocess()

updateAudioEngine()

633%

638%

6<1%

Figure 5.2.: Computing power for the serial audio engine update.

37

38 5. Performance Analysis

632%

Copy next audio
data into buffer

Timestretch audio

Preprocess
TrackPlayer

Empty audio buffer

Done

Figure 5.3.: Computing power for the TrackPlayer vertices in the preprocess phase of the
audio engine update.

6<1%

632%

Execute
vertex

Done

Apply
effects

Mix input
connections

Figure 5.4.: Computation power for the vertices in audio graph execution.

38

5.4. Actual Audio Graph Configuration 39

:Vertex:Vertex

vertexCollection

:AudioGraph :Vertex

loop (for each vertex)

alt
[should_process == true]

:WorkerThread

execute()

execute()

waitFor
Dependencies()

execute()

enableRendering()

should_process

getSortedVertices()

613%

Figure 5.5.: Computation power for the active waiting in parallel audio engine update.

39

40 5. Performance Analysis

Vertex name Avg. exec. time ↓

EffectsD 0.2062
EffectsA 0.2042
EffectsB 0.2037
EffectsC 0.2037
ChannelC 0.0229
ChannelB 0.0227
ChannelA 0.0192
RecordBuffer 0.0187
AudioOut1 0.0185
ChannelD 0.0185

Table 5.1.: Average execution time of the ten most time-consuming vertices (msec).

Figure 5.6 shows the actual configuration of the audio graph in our experiment setup,
leaving out all vertices that do not change the audio data (identity function) in this setup.
Each vertex is denoted as a box, with the name in regular and the effects used in italic font.
The names of the leftmost vertices SPA1 .. SPD4 are short versions. The written-out
version for SPA1 is SamplePlayer A-1 and so forth.

Easily noticeable is the partitioning of the graph in sections Deck A–D and Master Section.
Also, all vertices except for Cue Buffer and Mixer process at least one effect.

5.5. Profiling The Audio Graph Execution

The details on the computing power requirements of the individual vertices could not be
found in the sampling profiling method introduced in the beginning of this chapter. The
application had to be instrumented by hand in order to obtain this information. This
profiler, which is used throughout the rest of this chapter, logs the beginning and end of
the execution of each vertex.

5.6. Vertex Execution Times In Experiment Setup

For the profiling of the execution times of the vertices, a recording with 10K audio graph
executions was made. The following two sections compare the execution time of the vertices
by using averages and histograms as metrics.

Average Execution Times

The data (table 5.1) shows that the Effect vertices are the most computing-intensive
vertices, taking around 0.2 msec each for execution. The Channel vertices are the runner-
up, taking about ten times less execution time.

Execution Time Histograms

The execution time histograms reveal that the execution time of the vertices are neither
stable nor all similar to each other. Figure 5.7 shows the logarithmic histograms for the
MasterBuffer in purple and EffectsB vertex. The former executing in average in 0.002
msec indicated by the amplitude at around 0 msec in the histogram. Sometimes though,
it executes a lot slower, with individual measurements taking more than fifty times longer.
The latter’s execution time is more stable. The longest measured execution time is about
three times larger than the average.

40

5.6. Vertex Execution Times In Experiment Setup 41

D
ec

k
A

S
PA

3
Fl

tr

S
PA

2
Fl

tr

S
PA

1
Fl

tr

S
PA

4
Fl

tr

E
ffe

ct
sA

FX
1,

 F
X

2,

FX
3,

 F
X

4

C
ha

nn
el

A
Fi

lte
r,

E
Q

C
ue

 B
uf

fe
r

M
ix

er

A
ud

io
S

am
pl

er

M
as

te
rB

uf
fe

r
M

on
o

M
on

ito
rB

uf
fe

r
M

on
o

A
ud

io
O

ut
1

Li
m

ite
r,

C
lip

R
ec

or
dB

uf
fe

r
Li

m
ite

r,
C

lip

S
P

B
3

Fl
tr

S
P

B
2

Fl
tr

S
P

B
1

Fl
tr

S
P

B
4

Fl
tr

E
ffe

ct
sB

FX
1,

 F
X

2,

FX
3,

 F
X

4

C
ha

nn
el

B
Fi

lte
r,

E
Q

S
P

C
3

Fl
tr

S
P

C
2

Fl
tr

S
P

C
1

Fl
tr

S
P

C
4

Fl
tr

E
ffe

ct
sC

FX
1,

 F
X

2,

FX
3,

 F
X

4

C
ha

nn
el

C
Fi

lte
r,

E
Q

S
P

D
3

Fl
tr

S
P

D
2

Fl
tr

S
P

D
1

Fl
tr

S
P

D
4

Fl
tr

E
ffe

ct
sD

FX
1,

 F
X

2,

FX
3,

 F
X

4

C
ha

nn
el

D
Fi

lte
r,

E
Q

D
ec

k
B

D
ec

k
C

D
ec

k
D

M
as

te
r S

ec
tio

n

Figure 5.6.: Actual Audio Graph configuration in the experiment setup.

41

42 5. Performance Analysis

Figure 5.7.: Logarithmic execution time distribution exemplary for MasterBuffer (purple)
and an Effects vertex (blue).

5.7. Vertex Execution Times In General

Though the structure of the graph is fixed, it can be configured in a lot of ways. Changing
the configuration changes the execution times of the graph vertices.

The length of the execution time of the graph vertices depends on 14 individual configu-
ration parameters. Each of them can have two or more states. The following list shows
examples of configuration parameters.

Mixing is internal or external,

Number of audio sources is 2 or 4,

Time stretching is on or off,

Effect can be any of the effects introduced in /F13/,

Filter is a real number between 0 and 1, indicating the amount of filter to apply,

Audio source tempo is a percentage value between 0 and 200, with 100% being normal
playback and 200% playback at double speed.

All of these configuration parameter states can be mixed with each other, resulting in
hundreds of different states of the audio graph.

5.8. Limitations Through The Real-Time Constraint

Because of the application’s real-time behavior (inequation 4.1), the audio data and ma-
nipulation parameter become visible at defined intervals, the signal that starts the APC.
It is not possible to use speculative forecasting because the parameters have continuous
value ranges, and the calculation cannot be interpolated without being noticeable in the
audio signal. Therefore, the intuitive approach of using a pipeline architecture for the
audio engine is not applicable, because the parallel and replicable pipeline stages cannot
be filled.

42

5.9. Summary 43

5.9. Summary

This chapter presented DJ-Star’s runtime behavior. It was found that no single algorithm
makes up for the computing power but a combination of algorithms that are all run in
the Audio Engine subsystem. The scheduling of these algorithms, which are heavily data-
dependent on each other, is crucial for a good performance of the system.

43

6. Improved Scheduling Strategies

This chapter first interprets the execution of the audio graph as a scheduling problem, and
explains the scheduling characteristics of the current graph execution algorithm. Next, it
gives theoretical speed-up bounds induced by the structure of the graph, concluding with
two improved strategies that address the potentials for improvement from the performance
analysis.

6.1. Identified Scheduling Problem

The execution of the audio graph is interpreted from now on as a scheduling problem.
Section 2.1.2 introduces the background of the used scheduling model. Table 6.1 maps the
scheduling model to this specific form.

6.2. Current Scheduling Strategy (ORIG)

DJ-Star’s current scheduling strategy is a non-preemptive static list policy defined by
Pinedo as follows. “Under a non-preemptive static list policy the decision maker orders
the jobs at time zero according to a priority list. This priority list does not change during
the evolution of the process and every time a machine is freed the next job on the list is
selected for processing” [Pin12]. The priority list is called vertexCollection in DJ-Star.

The static list is ordered by the level of the vertex in the graph.

Scheduling model identifier DJ-Star

Parallel machine p with m
processors

One parallel machine p with m processors.

N jobs N vertices in the audio graph
Release time ri Release time is 0 for all jobs: ∀ji ∈ J : ri = 0.
Precedence relations Dependencies between tasks in the audio graph. For ex-

ample: (EffectsA, ChannelA) in figure 5.6.
Deadline di The deadline is the same for all jobs: ∀ji : di = X.
Processing time pj The processing time pj for a vertex is not known in ad-

vance, and will only become known upon completion.

Table 6.1.: Mapping of scheduling model identifiers to DJ-Star.

45

46 6. Improved Scheduling Strategies

Level 3 Level 2 Level 1Level 4Level 5

Track Player A
Effect Unit 1

Effect Unit 2
Channel A

Mixer Audio Out

Track Player B Effect Unit 3 Channel B

Figure 6.1.: Example audio graph with corresponding levels.

Given the example audio graph (fig 6.1), vertices on the left side have the highest level,
while vertices to the right have the lowest level. For example, Track Player A has a higher
level than Effect Unit 1 and is therefore ranked before Effect Unit 1 in the priority list.
The ordering policy, however, does not specify the order of Track Player A and Track
Player B since they lie on the same level.

6.3. Lower Bound

This and the following section introduce two lower bounds for the execution time of the
audio graph. The scheduling is done offline with average vertex execution times simu-
lated in RESCON [DDH11]. Table B in the appendix matches the vertex IDs and the
corresponding names.

The first bound is known as an earliest start scheduling strategy (ES). It schedules each
vertex as soon as all its dependencies have finished executing, disregarding resource con-
straints. The earliest start scheduling is similar to the critical path analysis, but in addition
it reveals the maximum concurrency in the respective graph.

Figure 6.2 visualizes the maximum concurrency possible with the current audio graph. The
graph execution can be divided into three stages St1, St2 and St3. In the beginning of the
graph execution in St1, up to 33 vertices are executed in parallel. But the execution time
of those vertices is relatively short compared to the whole graph execution time. Next,
in St2, the execution time of the vertices is much longer, but the number of concurrent
executing vertices dropped to four (with the exception of vertex 1). Stage St2 has the
biggest influence on the execution time of the graph, with the execution of the vertices 8,
51, 34 and 33 calculating the effects of the four audio sources. Finally, in St3, the number
of concurrent vertices is even less than in St2. The last two vertices, 15 and 6, have to be
executed serially, because 6 depends on 15.

Since the ES scheduling starts each task as soon as possible, the scheduling results in figure
6.2 show that the maximum possible concurrency is bound by approximately four because
of most time consuming stage St2 being limited to four concurrent vertices.

6.4. Lower Bound With Resource Constraints

The second lower bound is even more precise because it takes the resource constraint of
processors into account. Figure 6.3 shows the scheduling result calculated by the tabu
search heuristic in RESCON, which “relies on list scheduling and includes a simple di-
versification scheme” [DDH11]. The tabu search option was used because the scheduling
problem is NP-hard and RESCON is not able to calculate an exact solution for this graph

46

6.4. Lower Bound With Resource Constraints 47

St1 St2 St3

Graph execution response time (µs)

Figure 6.2.: Earliest start scheduling revealing the lower bound of graph execution time.

47

48 6. Improved Scheduling Strategies

Figure 6.3.: Scheduling on four cores.

instance. The tabu search was allowed to run for twelve hours to retrieve a good solu-
tion. The makespan of the calculated scheduling is 9% bigger than the makespan of the
ES-strategy, because the vertices in St1 are being scheduled on four processors.

6.5. Sleep Scheduling (SLEEP)

The performance analysis showed that active waiting is used as a synchronization mech-
anism for the dependencies in the audio graph. This active waiting wastes 13% of the
computing power of DJ-Star. This scheduling strategy aims at improving the active wait-
ing (potential for improvement 5.1) by sending threads to sleep. The sleeping thread will
then be woken up again, when the execution of the vertex can begin.

The mechanism is depicted in figure 6.4. In (a) thread T2 just finished execution of
ChannelA and moves on to Cue Buffer. When checking the dependencies, it finds out
that it cannot start the execution because of the dependency to ChannelB which is still
executing. T2 then registers itself with Cue Buffer as executor and goes to sleep. As soon
as T1 finishes the execution of ChannelB (b), it signals Cue Buffer that all dependencies
are executed and subsequently Cue Buffer wakes up T2 which immediately starts the
execution.

The SLEEP strategy enhances the design flaw of active waiting introduced in potential for
improvement 5.1 by not wasting any processor power. However, while a thread is sleeping
there could be another vertex ready for execution. This potential for improvement is
introduced in 5.2 and will be addressed with the second scheduling strategy WS in the
following section.

6.6. Work Stealing Scheduling (WS)

The work stealing strategy addresses the problem that threads do not look for other
executable vertices but go to sleep when they find a vertex that needs to be executed but
has unfinished dependencies (potential for improvement 5.2).

48

6.6. Work Stealing Scheduling (WS) 49

ChannelA

Cue BufferChannelB

Thread T2
(sleeping)

Thread T1
(working)

ChannelA

Cue BufferChannelB

Thread T2
(waking up)

Thread T1
(signalling)

(a) (b)
Not executed vertex

Executing vertex

Executed vertex

Figure 6.4.: Thread T2 goes to sleep (a) and is woken up by T1 after after it finished
ChannelB (b).

Changing The Waiting List

First, the waiting queue is changed to only contain vertices that do not have unfinished
dependencies. This new waiting list will now also be write-accessed, making mutual ex-
clusion necessary to prevent data races. This regulated access becomes a bottleneck for
access of multiple threads simultaneously, therefore the waiting list is split in a way that
each worker thread has its own waiting list.

Subsequent Vertex Queueing

Each time a worker thread finishes the execution of a vertex v, it checks all successors of
v for being ready for execution. It then adds these successors to its waiting list.

Initialization

In the beginning of an audio engine update the waiting lists have to be initialized. This
is done by the master thread before it wakes up the worker threads. In this initialization,
all vertices that do not depend on other vertices (i.e. input vertices) are added to the lists
(fig. 6.5 (a)).

The input vertices are categorized as Deck A-, Deck B-, Deck C-, Deck D- or Master
Section- related (see fig. 5.6 for the assignment) before they are added to the waiting list.
The categories are then distributed over the waiting lists. This aims at cache efficiency
because vertices in one category work on related audio data, which should be avoided to
move between processors.

Load Balancing

The multiple waiting lists introduce a load balancing problem. One worker thread can run
out of work quickly while another worker thread still has a lot of executable vertices in
his waiting list. Therefore, a work stealing approach is introduced, where a worker thread
that finds its list empty, will try to steal work from the waiting list of one of the other
worker threads, as depicted in figure 6.5 (b). If all other lists are also empty, it goes to
sleep.

49

50 6. Improved Scheduling Strategies

(a) initialization (b) load balancing
Master thread

steal

local
work

DequeDequeDeque DequeDequeDeque

local
work

Worker
thread T1

Worker
thread T2

Worker
thread T3

Worker
thread T1

Worker
thread T2

Worker
thread T3

Figure 6.5.: Work stealing with 3 threads.

Waiting List Implementation

The waiting list is implemented as a double ended queue (deque) that (as the name sug-
gests) can be accessed from both sides. Stealing threads access the queue at the top and
local working threads access the queue at the bottom (fig. 6.5). This makes it possible
for a steal and a local access to happen at the same time (if length(deque) ≥ 2). Another
advantage is the cache efficiency: A thread prioritizes nodes that it put in last (LIFO prin-
ciple), maximizing the chance of the related data being already in the processors cache.
On the other hand, if a thread steals a node n, it always gets the node with the longest
waiting time in the queue. Transferred to the underlying graph model, this means n will
be leftmost in the graph and will therefore produce a maximum number of new tasks after
its completion. These new tasks can then be processed locally by the stealing thread.

50

7. Evaluation

This chapter analyzes the behaviour of the improved scheduling strategies by measuring
the response time of the graph execution with the improved scheduling strategies and
comparing the results against the original strategy. The measurements were recorded
using a machine with the following specifications:

Processor 8 cores, 3.1 GHz clock speed (AMDFX8120h)

Memory 8 GB in dual channel mode (PC3-10700)

Hard Disk Drive 128 GB Solid State Disk (SamsungSSD830)

Operating System Windows 7 64-Bit Premium

7.1. Response Time

The response time specifies the time span from the beginning to the completion of the
graph execution. It was measured for the original scheduling strategy ORIG and the
improved strategies SLEEP (which sends threads to sleep instead of actively awaiting)
and WS (which does not send threads to sleep while work is available).

The averaged runtimes of 10K graph executions are shown in table 7.1, using up to four
threads since the maximum concurrency of the audio graph is bound by four (found in
section 6.3). These results indicate that the difference in the average runtime of the
scheduling strategies is rather small compared to the runtime itself. Though the SLEEP
strategy with three threads appears to be an unfavorable configuration.

Figure 7.1 shows a comparison of the speed-up, confirming the results from the average
graph response times, visualizing the very similar response times, with the exception of
the SLEEP strategy utilizing three threads.

7.2. Real-Time Constraint

If the audio graph execution takes too long, the sound on the speakers will be distorted.
Therefore, not only the average response time of the audio graph execution is important
but also worst case execution times should be as low as possible.

51

52 7. Evaluation

Threads 1 2 3 4

ORIG 1.0785 0.6371 0.5683 0.4516
SLEEP 1.1130 0.6447 0.6444 0.4657
WS 1.1111 0.6394 0.5844 0.4690

Table 7.1.: Average response times for the graph execution of the scheduling strategies
(ms).

Figure 7.1.: Speed-up of the scheduling strategies.

Upper Bound For The Runtime Of The Graph Execution

The runtime of the graph execution T (Exec) is bound by the maximum runtime of one
APC minus the runtime of the other calculations Timecode Processing TP , Graph Prepro-
cessing Pre and Various Calculations1 V C (see chapter 4):

T (APC) = T (TP) + T (Pre) + T (Exec) + T (V C).

T (APC) has to be smaller than 2.9 ms (according to the real-time constraint 4.1), and the
runtimes of the APC components where empirically averaged by measuring 10K APC’s to
be

T (TP) = 0.28ms,

T (Pre) = 0.43ms,

T (V C) = 0.09ms.

In conclusion, the graph execution needs to be faster than 2.1 ms in order to satisfy the
real-time constraint:

T (Exec) ≤ 2.1ms. (7.1)

1Accounting calculations, for example updating the master tempo.

52

7.2. Real-Time Constraint 53

0
200
400
600
800

1000
1200
1400

C
o
u
n
t

ORIG

0
200
400
600
800

1000
1200
1400

C
o
u
n
t

SLEEP

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Graph execution response time (msec)

0
100
200
300
400
500
600
700
800
900

C
o
u
n
t

WS

Figure 7.2.: Graph execution response time distributions of the scheduling strategies with
four threads.

53

54 7. Evaluation

RTC satisfied RTC violated

Figure 7.3.: APC response time distribution for ORIG.

Distributions Of The Graph Execution Length

To satisfy the real-time constraint, the distribution of the runtimes should spread as little
as possible. The scheduling strategies all show a similar distribution (fig 7.2) by having
two peaks.

The ORIG strategy features a very high left peak, the second peak being about half as big
and a flat tail from 0.6 ms up to 0.73 ms.

The SLEEP strategy’s distribution shows similar peaks compared to ORIG, but they
shifted to the right by about 0.4 ms because of the added overhead for the context changes
of the threads. In contrast to ORIG, it does not have a tail at the right end of the
distribution.

The WS strategy’s distribution again features two peaks, the left one being at the same
position as ORIG at about 0.36 ms, but the amplitude is just about two-thirds the height
of ORIG’s left peak. The right peak is about the same height as with the original strategy
ORIG. WS shows some occasional runtimes between 0.75 ms and 0.8 ms.

In conclusion, the original scheduling strategy ORIG indicates the best distribution be-
cause of the strong peak at around 0.36 ms. The tail at the right end could be improved,
but does not cause any problems for the real-time condition. Likewise, the SLEEP and
WS strategies satisfy the real-time constraint of a runtime smaller than 2.1 ms easily.

Distributions Of The APC Length

The last view on the real-time shows the combined runtime of all the partial calculations,
or in other words the runtime of the APC itself. As stated in inequation 4.1, one APC can
not take longer than 2.9 ms without violating the real-time constraint. The logarithmic
distribution of the joint APC’s runtimes are shown in figure 7.3 for the ORIG strategy
using four threads, the red line indicating the realtime boundary. Though all of the graph
executions by themselves are sufficiently fast, some of the measured APC’s miss the real-
time boundary because of an unfavorable combination of the runtime of the APC’s parts.
This violation occurred five times in the measured 10K APC’s.

7.3. CPU Core Assignment

Figure 7.4 visualizes the number of threads involved in the execution of one hundred
consecutive graphs, revealing that not all of the four threads contribute to the execution

54

7.4. Typical Scheduling Realizations 55

n n+10 n+20 n+30 n+40 n+50 n+60 n+70 n+80 n+90
Graph execution iteration

0

1

2

3

4

#
 t

h
re

a
d
s

Figure 7.4.: Excerpt showing the actual number of threads per graph execution for ORIG
which should be executed by four threads.

all the time. In about 20% of the graph executions, the actual number of contributing
threads is just three. Even in those cases the threads are proven to get the wake-up signal,
but as they are ready to participate, the graph execution is already completed.

The fraction of graph executions with less than four contributing threads is 18% for ORIG
and 21% for the WS strategy. This yields in average 3.81 threads for ORIG, and 3.78
threads for WS of the desired four threads (table 7.2). With the SLEEP strategy, only 2%
of the graph executions are completed with less than four threads, resulting in 3.98 thread
in average per graph execution.

Scheduling Strategy ORIG SLEEP WS

Average threads per graph execution 3.81 3.98 3.78
Fraction of graph executions using less than four threads 18% 2% 21%

Table 7.2.: Avg. threads per graph execution with four threads.

For another comparison of the scheduling strategies performances, the average response
time was calculated only on graph executions where four threads participated (table 7.3).
The results of the SLEEP strategy does not change a lot, due to the average threads of
3.98 per graph execution. However, WS outperforms ORIG by 19 µs because WS has
slightly less average threads per graph execution, which does not have an impact anymore.

Scheduling Strategy ORIG SLEEP WS

Avg. response time of graph executions with four threads 0.4379 0.4614 0.4353

Table 7.3.: Average response times of graph executions utilizing four threads (ms).

7.4. Typical Scheduling Realizations

Typically measured realizations of the scheduling strategies are shown in figure 7.5. The
threads on the y-axis are colored differently each and the number of vertices with very short
execution times have been omitted to increase the visibility. Table B gives a mapping of
the numbers to the vertex names.

The similar response times already indicated that the actual scheduling might look similar
and it turned out to be true. ORIG’s small gaps are based on overhead of traversing

55

56 7. Evaluation

the vertexCollection to find executable vertices. In contrast to the other scheduling
strategies, it does not show any big gaps because it waits actively when it can not execute
a vertex. Active waiting is indicated by the grey boxes inside the colored boxes, the length
of the grey box indicating the length of the active waiting period. The main difference
between WS and ORIG is that WS already schedules a lot of the small jobs before executing
the effect jobs 34, 9, 51 and 35, while ORIG starts earlier with the effect jobs and executes
the small jobs afterwards.

The SLEEP strategies scheduling looks very similar to ORIG, due to the fact that they
utilize the same prioritization of the vertices. Since SLEEP has a slower response time
than ORIG, the scheduling looks stretched. The big gaps arise from the situation where
the threads go to sleep instead of waiting actively. The grey colored boxes indicating active
waiting are not present any more in the scheduling of the SLEEP strategy.

The typical scheduling realization of the WS strategy reveals a response time in between
the ORIG and SLEEP strategies response time. Since WS does not allow for active waiting,
no grey boxes are visible. Just as seen with the SLEEP strategy, when no vertices are
ready for execution, the the threads go to sleep (indicated by the big gaps).

7.5. ORIG Simulation

The evaluation showed, that the WS scheduling strategy yields about the same response
time than the ORIG strategy, though the theoretical lower bound with resource constraints
(section 6.4) indicated that a performance gain is possible. Hence, the ORIG strategy was
implemented in RESCON to directly compare the results of the two strategies simulations.

The resulting scheduling (fig. 7.6) yields a response time of 327 µs which is near-optimal
compared to the 324 µs response time of the lower bound with resource constraints. The
difference in response time between the simulated lower bound with resource constraints
and the average measurements (452 µs) is most likely based on the varying execution times
of the vertices, negatively influencing the overall response time.

7.6. Summary

The evaluation showed that the response time of the scheduling strategies is similar, SLEEP
not being much slower and WS not being much faster than the original strategy ORIG.

The SLEEP strategy almost reached the same response time as the ORIG strategy, but
with the benefit that the threads did not waste processor cycles by waiting actively.

Then again, the WS strategy, which does not send threads to sleep as long as vertices are
ready for execution, was a little bit slower when calculating the average response time on
all measurements, but a little bit faster when calculating the average response time only
on graph executions where four threads participated.

In conclusion, the ORIG strategy is already a near-optimal scheduling strategy for the
audio graph instance in DJ-Star.

56

7.6. Summary 57

Figure 7.5.: Comparison of typical realizations of the scheduling strategies with four
threads.

57

58 7. Evaluation

Figure 7.6.: Scheduling results for the simulation of ORIG.

58

8. Conclusion and Outlook

8.1. Conclusion

In this thesis, different parallelization strategies for a real-time audio application were
tested against each other. Initially, the application’s structure and run-time behavior
had to be analyzed in depth. The result of this analysis was that no single algorithm,
but a series of transformations on the audio signal in the central audio-engine subsystem
accounts for most consumption of computing power. Due to the real-time behavior of the
application, the intuitive approach of using a pipeline architecture for parallelization of a
multimedia application was not feasible.

Instead, the series of transformations was interpreted as a scheduling problem, and two po-
tentials for performance improvements were identified. The improvements were addressed
by two enhanced scheduling strategies, which were then tested against the original strategy.

The evaluation showed that the first new scheduling strategy, SLEEP, is not much slower,
but stops the application from waiting actively, freeing 13% of the computing power for
other applications. The second improved scheduling strategy, WS, did not wait actively,
but in addition never put any threads to sleep as long as there was work available. WS
proved to be as fast as the original scheduling strategy, while being slightly slower using
one measurement and slightly faster using another one.

The next section provides additional ideas, which could allow the enhanced WS strategy
to outperform the original strategy.

8.2. Outlook

With the current series of transformations, the enhanced WS strategy is not able to outper-
form the original strategy. Some of the ideas in this section might enable the WS strategy
to perform at its full potential and to outperform the original strategy, while others were
not implemented because they were considered to be embarrassingly parallel. The ideas
for future work are:

Splitting Audio Channels: The audio data in the application is two-channel stereo. Cur-
rently, the transformation is calculated for both channels. If the transformation, however,
would be calculated independently for the two channels, the current speed-up limit of
around four could be doubled up to about eight.

59

60 8. Conclusion and Outlook

Parallelizing The Audio Transformations: The individual audio transformations are not
making use of concurrent execution so far. Especially, the effect transformations proved
to be very computing-expensive compared to other transformations, and should therefore
be parallelized to allow for a faster manipulation of the audio signal, and increase the
maximum speed-up.

Joining Small Transformations: Many of the transformations on the audio signal take
very little time to calculate. These could be joined to reduce the overhead of assigning
and tracking these transformations.

Parallel Track Preprocessing: The tracks have to be preprocessed before they can be
played back inside the application. This preprocessing is not done in parallel yet. In the
common use case, tens or hundreds of audio tracks are preprocessed in batch, so a naive
parallelization, which preprocesses multiple audio tracks concurrently, could speed up the
preprocessing drastically. But because this was considered to be embarrassingly parallel,
it is not part of this thesis.

Parallel Timecode Processing: The processing of the timecode signal accounts for a sig-
nificant amount of computing time. The timecode signal for different audio decks is not
processed concurrently yet. This, again, embarrassingly parallel optimization could im-
prove the runtime of the application severely.

60

Appendix

A. Average Vertex Execution Times (ms)

Vertex name ↑ Avg. exec. time

.Audio Out 1 0.0185

.Audio Out 2 0.0149

.Audio Out 3 0.0168

.Audio Out 4 0.0144

.Audio Out 5 0.0015

.Audio Out 6 0.0018

.Aux In 0.0009

.Send Effects In 0.0047
ChannelA.Audio In 1 0.0018
ChannelA.ChannelA 0.0192
ChannelA.Click 0.0011
ChannelA.External Mixer Out 0.0013
ChannelA.Effects 0.2042
ChannelA.Effects Bypass 0.0182
ChannelA.Post Fader Effects 0.0021
ChannelA.SamplePlayer0 0.0027
ChannelA.SamplePlayer1 0.0025
ChannelA.SamplePlayer2 0.0025
ChannelA.SamplePlayer3 0.0024
ChannelA.TrackPlayer 0.0015
ChannelB.Audio In 2 0.0019
ChannelB.ChannelB 0.0227
ChannelB.Click 0.0008
ChannelB.External Mixer Out 0.0011
ChannelB.Effects 0.2037
ChannelB.Effects Bypass 0.0185
ChannelB.Post Fader Effects 0.0024
ChannelB.SamplePlayer0 0.0031
ChannelB.SamplePlayer1 0.0029
ChannelB.SamplePlayer2 0.0026
ChannelB.SamplePlayer3 0.0030
ChannelB.TrackPlayer 0.0015
ChannelC.Audio In 3 0.0010

61

62 Appendix

Vertex name ↑ Avg. exec. time

ChannelC.ChannelC 0.0229
ChannelC.Click 0.0009
ChannelC.External Mixer Out 0.0010
ChannelC.Effects 0.2037
ChannelC.Effects Bypass 0.0183
ChannelC.Post Fader Effects 0.0019
ChannelC.SamplePlayer0 0.0027
ChannelC.SamplePlayer1 0.0028
ChannelC.SamplePlayer2 0.0030
ChannelC.SamplePlayer3 0.0027
ChannelC.TrackPlayer 0.0013
ChannelD.Audio In 4 0.0017
ChannelD.ChannelD 0.0185
ChannelD.Click 0.0011
ChannelD.External Mixer Out 0.0009
ChannelD.Effects 0.2062
ChannelD.Effects Bypass 0.0183
ChannelD.Post Fader Effects 0.0019
ChannelD.SamplePlayer0 0.0026
ChannelD.SamplePlayer1 0.0025
ChannelD.SamplePlayer2 0.0030
ChannelD.SamplePlayer3 0.0026
ChannelD.TrackPlayer 0.0018
Master Section.Cue Buffer 0.0122
Master Section.Master Buffer 0.0020
Master Section.Master Click 0.0007
Master Section.Master PreSampler 0.0060
Master Section.Microphone In 0.0031
Master Section.Monitor Buffer 0.0020
Master Section.Record Buffer 0.0187
Preview.Preview 0.0014
Preview.TrackPlayer 0.0008
Sampler.Audio Sampler 0.0027
Sampler.Audio Player 0.0006

62

B. Mapping Of Vertex IDs To Names 63

B. Mapping Of Vertex IDs To Names

ID ↑ Vertex name ID ↑ Vertex name

1 ChannelB.External Mixer Out 35 ChannelB.SamplePlayer0
2 Master Section.Cue Buffer 36 ChannelB.SamplePlayer1
3 ChannelC.Post Fader Effects 37 ChannelB.SamplePlayer2
4 ChannelD.ChannelD 38 ChannelB.SamplePlayer3
5 ChannelA.Audio In 1 39 .Send Effects In
6 .Audio Out 3 40 ChannelB.Click
7 Sampler.Audio Player 41 ChannelA.Click
8 ChannelA.Effects 42 ChannelB.TrackPlayer
9 ChannelD.TrackPlayer 43 Preview.TrackPlayer
10 ChannelA.SamplePlayer1 44 Sampler.Audio Sampler
11 ChannelA.SamplePlayer0 45 Master Section.Master Buffer
12 ChannelA.SamplePlayer3 46 .Aux In
13 ChannelA.SamplePlayer2 47 ChannelC.External Mixer Out
14 .Audio Out 4 48 Master Section.Microphone In
15 Master Section.Record Buffer 49 ChannelC.Audio In 3
16 ChannelD.Post Fader Effects 50 .Audio Out 6
17 ChannelB.Post Fader Effects 51 ChannelB.Effects
18 ChannelA.Effects Bypass 52 ChannelA.External Mixer Out
19 ChannelD.Effects Bypass 53 ChannelC.TrackPlayer
20 .Audio Out 1 54 Master Section.Monitor Buffer
21 Master Section.Master Click 55 ChannelD.Audio In 4
22 Master Section.Master PreSampler 56 ChannelB.Audio In 2
23 ChannelC.Click 57 Preview.Preview
24 .Audio Out 5 58 ChannelA.Post Fader Effects
25 ChannelB.Effects Bypass 59 ChannelA.ChannelA
26 ChannelD.External Mixer Out 60 ChannelD.SamplePlayer2
27 .Audio Out 2 61 ChannelD.SamplePlayer3
28 ChannelC.SamplePlayer3 62 ChannelD.SamplePlayer0
29 ChannelC.SamplePlayer2 63 ChannelD.SamplePlayer1
30 ChannelC.SamplePlayer1 64 ChannelA.TrackPlayer
31 ChannelC.SamplePlayer0 65 ChannelC.ChannelC
32 ChannelB.ChannelB 66 ChannelD.Click
33 ChannelD.Effects 67 ChannelC.Effects Bypass
34 ChannelC.Effects

63

C. Screenshots Of The Sample Applications 65

C. Screenshots Of The Sample Applications

Figure C.1.: Mixxx [Mix]

65

66 Appendix

Figure C.2.: Virtual DJ by Atomix Productions [Ato]

66

C. Screenshots Of The Sample Applications 67

Figure C.3.: Serato DJ by Serato [Ser]

67

68 Appendix

Figure C.4.: Traktor Pro 2 by Native Instruments [Nat]

68

Bibliography

[Ato] Atomix Productions, “Virtual DJ Product Website.” [Online]. Available:
http://www.virtualdj.com

[Ble11] T. Blechmann, “Supernova - A Multiprocessor Aware Real-Time Audio Synthe-
sis Engine For SuperCollider,” Ph.D. dissertation, 2011.

[Bus98] F. Buschmann, Pattern-orientierte Software-Architektur: ein Pattern-
System, ser. Professionelle Softwareentwicklung. Bonn: Addison-Wesley,
1998.

[CSB+11] J. A. Colmenares, I. Saxton, E. Battenberg, R. Avizienis, N. Peters, K. Asanovi,
J. D. Kubiatowicz, and D. Wessel, “Real-time musical applications on an exper-
imental operating system for multi-core processors,” in Proceedings of the
International Computer Music Conference 2011, no. August, 2011, pp.
216–223.

[DDH11] F. Deblaere, E. Demeulemeester, and W. Herroelen, “RESCON: Educational
project scheduling software,” Computer Applications in Engineering Ed-
ucation, vol. 19, no. 2, pp. 327–336, Jun. 2011.

[HGL12] H.-M. Huang, C. Gill, and C. Lu, “MCFlow: A Real-Time Multi-core Aware
Middleware for Dependent Task Graphs,” 2012 IEEE International Con-
ference on Embedded and Real-Time Computing Systems and Ap-
plications, no. 3, pp. 104–113, Aug. 2012.

[Mic] Microsoft Corporation, “Understanding Profiling Methods (in Visual Stu-
dio 2010).” [Online]. Available: http://msdn.microsoft.com/en-us/library/
dd264994(v=vs.100).aspx

[Mix] Mixxx Development Team, “Mixxx Product Website.” [Online]. Available:
http://www.mixxx.org/

[MSM04] T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for Parallel
Programming, ser. Software Patterns Series. Munich: Addison-Wesley, 2004.

[Nat] Native Instruments, “Traktor Pro 2 Product Website.” [Online]. Available:
http://www.native-instruments.com/products/traktor/

[Pin12] M. L. Pinedo, Scheduling : theory, algorithms, and systems, 4th ed.
New York: Springer, 2012.

[Ran] Rane Corporation, “Rane TTM56S Mixer Product Page.” [Online]. Available:
http://dj.rane.com/products/ttm56s-mixer/

[Ser] Serato, “Serato DJ Product Website.” [Online]. Available: http://serato.com/dj

[Wik] Wikipedia, “Disk Jockey.” [Online]. Available: http://en.wikipedia.org/wiki/
Disc jockey

[ZA11] U. Zölzer and X. Amatriain, DAFX: digital audio effects, 2nd ed. Chich-
ester: John Wiley & Sons, Ltd, 2011, vol. 4.

69

http://www.virtualdj.com
http://msdn.microsoft.com/en-us/library/dd264994(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/dd264994(v=vs.100).aspx
http://www.mixxx.org/
http://www.native-instruments.com/products/traktor/
http://dj.rane.com/products/ttm56s-mixer/
http://serato.com/dj
http://en.wikipedia.org/wiki/Disc_jockey
http://en.wikipedia.org/wiki/Disc_jockey

	Contents
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.1.1 DJing
	2.1.2 Scheduling Model
	2.1.3 Master/Worker Pattern

	2.2 Related Work
	2.2.1 Super Collider
	2.2.2 Mixxx
	2.2.3 MCFlow
	2.2.4 Tesselation OS

	3 Software Description
	3.1 Main Features
	3.2 Complementary Features
	3.3 Experiment Setup

	4 Reverse Engineering
	4.1 Architecture As Seen By The Company
	4.2 Refined Architecture
	4.2.1 User Interface
	4.2.2 Event Middleware
	4.2.3 Core
	4.2.4 Operating System and Hardware Access

	4.3 Devices Representation and Hardware
	4.4 GUI and Waveform
	4.5 Track Preprocessing
	4.6 Audio Data Collection
	4.7 Timecode Decoder
	4.8 Settings
	4.9 Application Facade
	4.10 Audio Engine
	4.10.1 Time Criticality
	4.10.2 Mixer
	4.10.3 Decks
	4.10.4 Effects
	4.10.5 Audio Data
	4.10.6 Time Stretching

	4.11 Audio Graph
	4.12 Audio Engine Update
	4.13 Parallel Audio Engine Update
	4.14 Synchronization In Parallel Audio Engine Update

	5 Performance Analysis
	5.1 Audio Processing Cycle
	5.2 Update Audio Engine
	5.3 Active Waiting In Parallel Graph Execution
	5.4 Actual Audio Graph Configuration
	5.5 Profiling The Audio Graph Execution
	5.6 Vertex Execution Times In Experiment Setup
	5.7 Vertex Execution Times In General
	5.8 Limitations Through The Real-Time Constraint
	5.9 Summary

	6 Improved Scheduling Strategies
	6.1 Identified Scheduling Problem
	6.2 Current Scheduling Strategy (ORIG)
	6.3 Lower Bound
	6.4 Lower Bound With Resource Constraints
	6.5 Sleep Scheduling (SLEEP)
	6.6 Work Stealing Scheduling (WS)

	7 Evaluation
	7.1 Response Time
	7.2 Real-Time Constraint
	7.3 CPU Core Assignment
	7.4 Typical Scheduling Realizations
	7.5 ORIG Simulation
	7.6 Summary

	8 Conclusion and Outlook
	8.1 Conclusion
	8.2 Outlook

	Appendix
	A Average Vertex Execution Times (ms)
	B Mapping Of Vertex IDs To Names
	C Screenshots Of The Sample Applications

	Bibliography

