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Concurrency & debugging

Concurrency programming is hard

Non-determinism

Multiple control flows

New types of errors: data races, deadlocks, atomicity 

violations…

Non-determinism makes debugging a difficult task

Probe effect [Gait86]

Developer cannot reproduce result of analysis tool
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Approach
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Predict errors from a single execution: 

Infer alternative interleavings from an observed execution

Find errors in this set of interleavings

Produce a history of the race to enable deterministic replay



Example – Captured trace

Thread 1 Thread 2

1: write (y)

2: lock (m)

3: write (x)

4: unlock (m)

5: lock (m)

6: write (x)

7: unlock (m)

8: read (y)
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Predict

Encode trace as a process in a process algebra (CSP)

Process represent alternative reorderings of the trace

Define data race patterns in CSP terms

Patterns: read-write / write-write

Is any of the data race patterns possible in the process?
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Example model

THREAD1 = write.t1.y → lock.t1.m → write.t1.x → unlock.t1.m → SKIP

THREAD2 = lock.t2.m → write.t2.x → unlock.t2.m → read.t2.y → SKIP

THREAD_INTERLEAVING = THREAD1 ||| THREAD2 

MUTEX(i) = lock.t1.i → unlock.t1.i → MUTEX(i)

□ lock.t2.i → unlock.t2.i → MUTEX(i)

PROGRAM = THREAD_INTERLEAVING ||{lock,unlock} MUTEX(m) 
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Alternative traces
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PROGRAM 

Process
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Other synchronization constructs

FORK2 = fork.t1.t2 → start.t2 → SKIP

JOIN2 = end.t1.t2 → join.t1.t2 → SKIP

SIGNAL_C = signal.t2.c → wait.t1.c → SKIP

BARRIER_B = barrier_enter.t1.b → barrier enter.t2.b 

→ barrier_exit.t1.b → barrier_exit.t2.b → SKIP
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Race detection

Refinement relationship

SPEC ⊑ IMPL ↔ behavior(IMPL) ⊆ behavior(SPEC)

STOP ⊑T (PROGRAM || RACE(y))  \ (AllEvents − {race})

If the event race is reachable, then we have a data race

One refinement check per shared variable (not per racy-

pair) => FDR3 refinement checker
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Race detection II

Represents all read and write combinations between the 

two threads on shared element v

RACE_ERR(v) = read.t1.v → write.t2.v → race → STOP

□ write.t1.v → read.t2.v → race → STOP

□ write.t1.v → write.t2.v → race → STOP

□ read.t2.v → write.t1.v → race → STOP

□ write.t2.v → read.t1.v → race → STOP

□ write.t2.v → write.t1.v → race → STOP

RACE(v) = RACE_ERR(v) ∆ (□ x:sync_ops@x → RACE(v))
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Counterexample

Thread 1 Thread 2

1: lock (m)

2: write (x)

3: unlock (m)

4: read (y)

5: write (y)

6: lock (m)

7: write (x)

8: unlock (m)
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Race found on y, with counterexample:

lock(t2,m) → unlock(t2,m)



Replay & confirmation

Enables coarse replay of the program

only enforcement of synchronization operations order

other operations still happen in parallel

Deterministic execution until error point, non-deterministic 

afterwards

Simultaneous execution of a happens-before detector

confirms the data race

provides more detailed information: source lines, stack…

Debugging does not alter the replay
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Target & implementation

Target: C programs with pthreads

Tracing and replay in LLVM

Instrumentation of pthread calls and memory accesses

Instrumentation of pthread_wait loops

Trace reduction:

Variable grouping as single shared variables (online and offline)

Filtering using  relaxed happens-before & lockset

Scalability:

Trace windowing -> inter-window false negatives
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Application benchmark

Scenarios Counterexamples Confirmed errors TSan x100

aget 2 2 3

blackscholes 0 0 0

boundedBuffer 0 0 0

ctrace 4 3 2

fft 1 0 0

fmm 190 50 36

lu 0 0 0

lu-non 0 0 0

qsort 2 6 1

streamcluster 1 1 1

water-nsquared 0 0 0
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Conclusion
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Data race prediction

modelled in CSP to observe alternative interleavings

reduced timing effects on detection

Error witness generation

enables re-execution of data race prefix

reduction on debugging effort

Finds more races than multiple re-execution of classical 

approaches


