
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

IPD Tichy – Lehrstuhl für Programmiersysteme

Predicting Data Races from Program Traces

Luis M. Carril

Concurrency & debugging

Concurrency programming is hard

Non-determinism

Multiple control flows

New types of errors: data races, deadlocks, atomicity

violations…

Non-determinism makes debugging a difficult task

Probe effect [Gait86]

Developer cannot reproduce result of analysis tool

2 24.02.2016

Approach

3 24.02.2016

PredictorTrace

Instrumented

Program

Replayer
Counter

example
Report

Predict errors from a single execution:

Infer alternative interleavings from an observed execution

Find errors in this set of interleavings

Produce a history of the race to enable deterministic replay

Example – Captured trace

Thread 1 Thread 2

1: write (y)

2: lock (m)

3: write (x)

4: unlock (m)

5: lock (m)

6: write (x)

7: unlock (m)

8: read (y)

4 24.02.2016

Predict

Encode trace as a process in a process algebra (CSP)

Process represent alternative reorderings of the trace

Define data race patterns in CSP terms

Patterns: read-write / write-write

Is any of the data race patterns possible in the process?

5 24.02.2016

Example model

THREAD1 = write.t1.y → lock.t1.m → write.t1.x → unlock.t1.m → SKIP

THREAD2 = lock.t2.m → write.t2.x → unlock.t2.m → read.t2.y → SKIP

THREAD_INTERLEAVING = THREAD1 ||| THREAD2

MUTEX(i) = lock.t1.i → unlock.t1.i → MUTEX(i)

□ lock.t2.i → unlock.t2.i → MUTEX(i)

PROGRAM = THREAD_INTERLEAVING ||{lock,unlock} MUTEX(m)

6 24.02.2016

Alternative traces

7 24.02.2016

PROGRAM

Process

write (t1,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

lock (t2,m)

write (t2,x)

unlock (t2,m)

read (t2,y)

write (t1,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

lock (t2,m)

write (t2,x)

unlock (t2,m)

read (t2,y)

write (t1,y)

lock (t2,m)

write (t2,x)

unlock (t2,m)

lock (t1,m)

write (t1,x)

unlock (t1,m)

read (t2,y)

lock (t2,m)

write (t2,x)

unlock (t2,m)

read (t2,y)

write (t1,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

write (t1,y)

lock (t2,m)

write (t2,x)

unlock (t2,m)

read (t2,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

lock (t2,m)

write (t2,x)

unlock (t2,m)

write (t1,y)

read (t2,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

lock (t2,m)

write (t2,x)

unlock (t2,m)

write (t1,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

read (t2,y)

Other synchronization constructs

FORK2 = fork.t1.t2 → start.t2 → SKIP

JOIN2 = end.t1.t2 → join.t1.t2 → SKIP

SIGNAL_C = signal.t2.c → wait.t1.c → SKIP

BARRIER_B = barrier_enter.t1.b → barrier enter.t2.b

→ barrier_exit.t1.b → barrier_exit.t2.b → SKIP

8 24.02.2016

Race detection

Refinement relationship

SPEC ⊑ IMPL ↔ behavior(IMPL) ⊆ behavior(SPEC)

STOP ⊑T (PROGRAM || RACE(y)) \ (AllEvents − {race})

If the event race is reachable, then we have a data race

One refinement check per shared variable (not per racy-

pair) => FDR3 refinement checker

9 24.02.2016

Race detection II

Represents all read and write combinations between the

two threads on shared element v

RACE_ERR(v) = read.t1.v → write.t2.v → race → STOP

□ write.t1.v → read.t2.v → race → STOP

□ write.t1.v → write.t2.v → race → STOP

□ read.t2.v → write.t1.v → race → STOP

□ write.t2.v → read.t1.v → race → STOP

□ write.t2.v → write.t1.v → race → STOP

RACE(v) = RACE_ERR(v) ∆ (□ x:sync_ops@x → RACE(v))

10 24.02.2016

Counterexample

Thread 1 Thread 2

1: lock (m)

2: write (x)

3: unlock (m)

4: read (y)

5: write (y)

6: lock (m)

7: write (x)

8: unlock (m)

11 24.02.2016

Race found on y, with counterexample:

lock(t2,m) → unlock(t2,m)

Replay & confirmation

Enables coarse replay of the program

only enforcement of synchronization operations order

other operations still happen in parallel

Deterministic execution until error point, non-deterministic

afterwards

Simultaneous execution of a happens-before detector

confirms the data race

provides more detailed information: source lines, stack…

Debugging does not alter the replay

12 24.02.2016

Target & implementation

Target: C programs with pthreads

Tracing and replay in LLVM

Instrumentation of pthread calls and memory accesses

Instrumentation of pthread_wait loops

Trace reduction:

Variable grouping as single shared variables (online and offline)

Filtering using relaxed happens-before & lockset

Scalability:

Trace windowing -> inter-window false negatives

13 24.02.2016

Application benchmark

Scenarios Counterexamples Confirmed errors TSan x100

aget 2 2 3

blackscholes 0 0 0

boundedBuffer 0 0 0

ctrace 4 3 2

fft 1 0 0

fmm 190 50 36

lu 0 0 0

lu-non 0 0 0

qsort 2 6 1

streamcluster 1 1 1

water-nsquared 0 0 0

14 24.02.2016

Conclusion

15 24.02.2016

Data race prediction

modelled in CSP to observe alternative interleavings

reduced timing effects on detection

Error witness generation

enables re-execution of data race prefix

reduction on debugging effort

Finds more races than multiple re-execution of classical

approaches

