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Concurrency & debugging

Concurrency programming is hard

Non-determinism

Multiple control flows

New types of errors: data races, deadlocks, atomicity 

violation…

Non-determinism makes debugging a difficult task

Probe effect [Gait86]

Developer cannot reproduce result of analysis tool
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Goals

Predict races from a single execution: 

infer alternative interleavings from an observed execution

find races in this set of interleavings

Reproduce data race:

produce a history of the race to enable deterministic replay
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Data race

A data race occurs when:

two threads access the same memory location concurrently, and

at least one is a write access, and

there is no explicit mechanism ordering the accesses.

Typical approaches:

Lockset [Savage97]

Happens-before [Lamport78]
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Approach

Capture:

Execution trace from a single program execution

Trace model:

Memory operations: read and write

Synchronization operations:

fork – start

join – end

lock – unlock

signal – wait

…
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Example – Observed execution

Thread 1 Thread 2

1: write (y)

2: lock (m)

3: write (x)

4: unlock (m)

5: lock (m)

6: write (x)

7: unlock (m)

8: read (y)
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Predict

Encode trace as a process in a process algebra (CSP)

Process represent alternative reorderings of the trace

Data race patterns defined as another CSP process

Race detection: is any data race pattern possible in the 

trace process?
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Communicating Sequential Processes

Description and analysis of concurrent systems [Hoare78]

Processes describe behavior of systems (upper case)

The behavior is observed by the emission of atomic events 

(lower case)

Operators for process composition: ||, |||, □ …

e.g.:  P = a → b → STOP         Q = P □ c → d → STOP 

Processes communicate trough synchronous event sharing
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Generalizing trace - threads

Map trace events to CSP events 

Each thread is encoded as an independent CSP process

THREAD1 = write.t1.y→ lock.t1.m → write.t1.x → unlock.t1.m → SKIP

THREAD2 = lock.t2.m → write.t2.x → unlock.t2.m → read.t2.y → SKIP

Combined using the interleaving operator

INTERLEAVINGS= THREAD1 ||| THREAD2

INTERLAVINGS process contains all reorderings, including 

infeasible, e.g.: … lock.t1.m, lock.t2.m…
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Generalizing trace - synchronization

Synchronization constructs defined as additional processes

MUTEX(i) = lock.t1.i → unlock.t1.i → MUTEX(i)

□ lock.t2.i → unlock.t2.i → MUTEX(i)

Synchronization processes impose happens-before 

orderings between THREAD processes

PROGRAM = INTERLEAVINGS ||{sync_ops} MUTEX(m) 

PROGRAM process has a more restricted set of behaviors

Additional processes for: fork-start, end-join, signal-wait…
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Example model

THREAD1 = write.t1.y → lock.t1.m → write.t1.x → unlock.t1.m → SKIP

THREAD2 = lock.t2.m → write.t2.x → unlock.t2.m → read.t2.y → SKIP

MUTEX(i) = lock.t1.i → unlock.t1.i → MUTEX(i)

□ lock.t2.i → unlock.t2.i → MUTEX(i)

PROGRAM = (THREAD1 ||| THREAD2 ) ||{sync_ops} MUTEX(m) 
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Alternative traces
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Data race patterns

Represents all read-write combinations

RACE_ERR(v) = read.t1.v → write.t2.v → race → STOP

□ write.t1.v → read.t2.v → race → STOP

□ write.t1.v → write.t2.v → race → STOP

□ read.t2.v → write.t1.v → race → STOP

□ write.t2.v → read.t1.v → race → STOP

□ write.t2.v → write.t1.v → race → STOP

RACE(v) = RACE_ERR(v) ∆ (□ x:reset_set@x → RACE(v))
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Race detection

Enforce process PROGRAM with RACE process, with 

interfaced parallel operator ||

PROGRAM ||{} RACE(y)

If the event race is reachable, then we have a data race

Refinement relationship

SPEC ⊑ IMPL ↔ behavior(IMPL) ⊆ behavior(SPEC)

STOP ⊑T (PROGRAM || RACE(y)) \ Σ − {race}

One refinement check per shared variable (not per racy-

pair) => FDR3 refinement checker
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Counterexample

Thread 1 Thread 2

1: lock (m)

2: write (x)

3: unlock (m)

4: read (y)

5: write (y)

6: lock (m)

7: write (x)

8: unlock (m)

15 28.04.2015

Race found on y, with counterexample:

lock(t2,m) → unlock(t2,m)



Replay

Enables coarse replay of the program

only enforcement of synchronization operations order

Race confirmation: simultaneous happens-before detector

Debugging does not alter the replay
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Preliminary Evaluation

Scenarios Real races Predicted Races x1 Helgrind x10

48 31 31 21
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Target: C programs with pthreads

Tracing and replay implemented as Valgrind plugins



Conclusion
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Data race prediction

modelled in CSP to observe alternative interleavings

reduced timing effects on detection

Data race witness generation

enables re-execution of data race prefix

reduction on debugging effort


