
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

IPD Tichy – Lehrstuhl für Programmiersysteme

Predicting and witnessing data races using CSP

Luis M. Carril

Walter F. Tichy

Concurrency & debugging

Concurrency programming is hard

Non-determinism

Multiple control flows

New types of errors: data races, deadlocks, atomicity

violation…

Non-determinism makes debugging a difficult task

Probe effect [Gait86]

Developer cannot reproduce result of analysis tool

2 28.04.2015

Goals

Predict races from a single execution:

infer alternative interleavings from an observed execution

find races in this set of interleavings

Reproduce data race:

produce a history of the race to enable deterministic replay

3 28.04.2015

Data race

A data race occurs when:

two threads access the same memory location concurrently, and

at least one is a write access, and

there is no explicit mechanism ordering the accesses.

Typical approaches:

Lockset [Savage97]

Happens-before [Lamport78]

4 28.04.2015

Approach

Capture:

Execution trace from a single program execution

Trace model:

Memory operations: read and write

Synchronization operations:

fork – start

join – end

lock – unlock

signal – wait

…

5 28.04.2015

PredictorTracer
Program

binary
Replayer

Example – Observed execution

Thread 1 Thread 2

1: write (y)

2: lock (m)

3: write (x)

4: unlock (m)

5: lock (m)

6: write (x)

7: unlock (m)

8: read (y)

6 28.04.2015

Predict

Encode trace as a process in a process algebra (CSP)

Process represent alternative reorderings of the trace

Data race patterns defined as another CSP process

Race detection: is any data race pattern possible in the

trace process?

7 28.04.2015

Communicating Sequential Processes

Description and analysis of concurrent systems [Hoare78]

Processes describe behavior of systems (upper case)

The behavior is observed by the emission of atomic events

(lower case)

Operators for process composition: ||, |||, □ …

e.g.: P = a → b → STOP Q = P □ c → d → STOP

Processes communicate trough synchronous event sharing
8 28.04.2015

Generalizing trace - threads

Map trace events to CSP events

Each thread is encoded as an independent CSP process

THREAD1 = write.t1.y→ lock.t1.m → write.t1.x → unlock.t1.m → SKIP

THREAD2 = lock.t2.m → write.t2.x → unlock.t2.m → read.t2.y → SKIP

Combined using the interleaving operator

INTERLEAVINGS= THREAD1 ||| THREAD2

INTERLAVINGS process contains all reorderings, including

infeasible, e.g.: … lock.t1.m, lock.t2.m…

9 28.04.2015

Generalizing trace - synchronization

Synchronization constructs defined as additional processes

MUTEX(i) = lock.t1.i → unlock.t1.i → MUTEX(i)

□ lock.t2.i → unlock.t2.i → MUTEX(i)

Synchronization processes impose happens-before

orderings between THREAD processes

PROGRAM = INTERLEAVINGS ||{sync_ops} MUTEX(m)

PROGRAM process has a more restricted set of behaviors

Additional processes for: fork-start, end-join, signal-wait…

10 28.04.2015

Example model

THREAD1 = write.t1.y → lock.t1.m → write.t1.x → unlock.t1.m → SKIP

THREAD2 = lock.t2.m → write.t2.x → unlock.t2.m → read.t2.y → SKIP

MUTEX(i) = lock.t1.i → unlock.t1.i → MUTEX(i)

□ lock.t2.i → unlock.t2.i → MUTEX(i)

PROGRAM = (THREAD1 ||| THREAD2) ||{sync_ops} MUTEX(m)

11 28.04.2015

Alternative traces

12 28.04.2015

PROGRAM

Process

write (t1,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

lock (t2,m)

write (t2,x)

unlock (t2,m)

read (t2,y)

write (t1,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

lock (t2,m)

write (t2,x)

unlock (t2,m)

read (t2,y)

write (t1,y)

lock (t2,m)

write (t2,x)

unlock (t2,m)

lock (t1,m)

write (t1,x)

unlock (t1,m)

read (t2,y)

lock (t2,m)

write (t2,x)

unlock (t2,m)

read (t2,y)

write (t1,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

write (t1,y)

lock (t2,m)

write (t2,x)

unlock (t2,m)

read (t2,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

lock (t2,m)

write (t2,x)

unlock (t2,m)

write (t1,y)

read (t2,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

lock (t2,m)

write (t2,x)

unlock (t2,m)

write (t1,y)

lock (t1,m)

write (t1,x)

unlock (t1,m)

read (t2,y)

Data race patterns

Represents all read-write combinations

RACE_ERR(v) = read.t1.v → write.t2.v → race → STOP

□ write.t1.v → read.t2.v → race → STOP

□ write.t1.v → write.t2.v → race → STOP

□ read.t2.v → write.t1.v → race → STOP

□ write.t2.v → read.t1.v → race → STOP

□ write.t2.v → write.t1.v → race → STOP

RACE(v) = RACE_ERR(v) ∆ (□ x:reset_set@x → RACE(v))

13 28.04.2015

Race detection

Enforce process PROGRAM with RACE process, with

interfaced parallel operator ||

PROGRAM ||{} RACE(y)

If the event race is reachable, then we have a data race

Refinement relationship

SPEC ⊑ IMPL ↔ behavior(IMPL) ⊆ behavior(SPEC)

STOP ⊑T (PROGRAM || RACE(y)) \ Σ − {race}

One refinement check per shared variable (not per racy-

pair) => FDR3 refinement checker

14 28.04.2015

Counterexample

Thread 1 Thread 2

1: lock (m)

2: write (x)

3: unlock (m)

4: read (y)

5: write (y)

6: lock (m)

7: write (x)

8: unlock (m)

15 28.04.2015

Race found on y, with counterexample:

lock(t2,m) → unlock(t2,m)

Replay

Enables coarse replay of the program

only enforcement of synchronization operations order

Race confirmation: simultaneous happens-before detector

Debugging does not alter the replay

16 28.04.2015

Preliminary Evaluation

Scenarios Real races Predicted Races x1 Helgrind x10

48 31 31 21

17 28.04.2015

Target: C programs with pthreads

Tracing and replay implemented as Valgrind plugins

Conclusion

18 28.04.2015

Data race prediction

modelled in CSP to observe alternative interleavings

reduced timing effects on detection

Data race witness generation

enables re-execution of data race prefix

reduction on debugging effort

