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Abstract—Multicore hardware is ubiquitous, but billions of
lines of code in performance-critical commodity software are
still sequential. Although parallel libraries, design patterns, and
best practice guidelines are available, thinking parallel is still
a big challenge for many software engineers.

In this paper we present a case study on parallelizing
commodity software using a commercial real-time audio ap-
plication with over 700,000 lines of code. In contrast to best
practice guidelines, our goal is to investigate what paralleliza-
tion strategy can effectively be used in data stream-intensive
applications. Performing an in-depth analysis of the software
architecture and its run-time performance, we locate paral-
lelization potential and propose three different parallelization
strategies. We evaluate them with respect to their parallel
performance impact.

Regarding the application’s intrinsic real-time requirement
and a very short audio cycle turnaround time, a busy-waiting
strategy offers the best audio performance of 327 µs per cycle
on an eight-core machine. With an efficiency of 99% this is
close to the optimal schedule.
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I. INTRODUCTION

The free lunch is over [1]. Performance-critical software
has to be parallel to benefit from the computing power
available in modern multicore processors. Especially real-
time software has to be designed carefully to make efficient
use of the available computing resources in order to satisfy
its real-time requirements. However, billions of lines of
performance-critical software are still sequential.

Parallel libraries such as OpenMP [2], TBB [3], or Cilk
[4], and parallel design pattern guidelines [5] let software
engineers develop parallel software. Yet the studies in [6]
and [7] show that software engineers need assistance with
such complex tasks. Thinking parallel continues to be chal-
lenging for many software engineers.

With this paper we want to approach this problem in three
ways: 1) We select a commercial real-time audio application
with over 700,000 lines of code (LOC) as a typical example
of a performance-critical software. 2) We conduct an accu-
rate study on its parallelizability and propose three different
parallelization strategies. To achieve this, we analyze the
software architecture, run-time performance, and data and

control dependencies. 3) We evaluate these strategies with
respect to their parallel performance impact and describe
their parallel potential. With the three steps we aim at
providing software engineers parallelization guidelines for
parallelizing performance-critical and computing-intensive
commodity software.

This study has been performed under non-disclosure
agreement with the collaborating company. In order to be
able to publish, we anonymized the name of the audio
software.

This paper is organized as follows: In section II we intro-
duce the software we call DJ Star. It is used by DJs to load,
manipulate and mix audio streams (and output the result
via loudspeakers). The first step in our study was to reverse
engineer its software architecture and run-time-intensive data
structures in order to assess the parallelization potential. The
results of this analysis are shown in section III. Section IV
deals with the main hotspot in this application. This hotspot
is a complex data structure called task graph. For this data
structure we propose three different parallelization strategies.
They are shown in section V. In section VI we evaluate them
with respect to the real-time condition. We conclude this
paper with related work in section VII and the conclusion
in section VIII.

II. DJ Star - A REAL-TIME AUDIO APPLICATION

The application we deal with is an example of a real-
time audio software used by disc jockeys. Since this is a
commercial product and we are exposing some of its internal
workings, we will refer to it as DJ Star.

The main purpose of DJ Star is to load, manipulate,
filter, and mix audio data. In contrast to the traditional way
of using vinyl records on turntables, a Disc Jockey (DJ)
nowadays uses a computer to mix multiple digital tracks
stored on a computer to a continuous stream of music.
External hardware devices that imitate turntables are still
frequently used and serve to navigate and adjust the current
playback position within single tracks. A typical DJ setup
is shown in Figure 1.

DJ Star supports up to four audio decks for concurrent
playback of up to four tracks. The program offers a wide



Figure 1. Example DJ Hardware Setup [8]
i

range of audio effects that can be applied to the audio stream
of each track independently before the results are combined
into a single audio stream. The resulting audio is streamed
to the sound hardware and the music plays. The real-time
constraint of DJ Star is: Applying audio effects must not
take longer than it takes the sound hardware to play its
audio buffer, which is 2.9 ms. Otherwise, the audio signal
is distorted.

DJs typically bring their own hardware and computer, so
they mostly use laptops for mobility reasons. Concerning the
aspect of parallel computing under the constraint of real-time
demand, their computing power is limited.

On screen, the disc jockey is supported with a visual
representation of a workbench to help create a seamless
audio experience. The workbench consists of external or
virtual turntables, audio effect control, music library, and
status of the current tracks (e.g. audio waveform, mixer,
applied effects).

III. ANALYZING DJ Star FOR PARALLELIZATION

In this section, we describe the static and dynamic analysis
steps we performed to gain an insight into DJ Star as a
typical example of a data stream intensive application. Our
goal was to identify parallelization potential.

A. Static Analysis

As there was no code documentation available for DJ Star,
we started our analysis by manually inspecting the source
code in order to get an idea of the application’s structure and
important code regions. As DJ Star consists of over 700,000
LOC, we searched the code in a breadth-first manner for the
most relevant pieces.

As a result, we manually identified the software archi-
tecture using reverse engineering techniques. DJ Star uses
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Figure 2. Software Architecture of DJ Star

a 4-layer architecture as described in [9] that consists of
User Interface, Event Middleware, Core, and Hardware
Access. The software architecture and components are shown
in Figure 2. The User Interface layer is responsible for
drawing the graphical user interface (GUI) that visualizes
the audio waveform, the playback representation, and the
control devices. It communicates with the Core subsystems
indirectly via the Event Middleware. Most of the program
logic resides in the Core. It also contains the Audio Engine
subsystem which handles the audio stream processing. The
Hardware Access layer passes through the operating system
and connects directly to the hard disk for efficiently loading
music files. A second task of this layer is to connect to
external control devices via USB.

After reconstructing the application’s architecture, we se-
lected the Audio Engine as target component for our analysis,
because we expected the highest performance demands. In
fact, the Audio Engine plays the most important role in
our analysis, so we concentrated on this subsystem. One
of the basic concepts in real-time audio software is that the
operation cycle is dictated by the sound card: Audio streams



are output at 44.1kHz, so the software needs to deliver audio
samples at that rate. If this timing condition cannot be met
and handing over the audio packet occurs too late, the sound
hardware is forced to either replay the last audio packet or
to output silence. Human hearing is very sensitive to these
errors, so even the tiniest duplicated or silenced audio packet
is annoying. Therefore, the delivery of audio packets at a
constant rate has to be ensured at all cost.

In DJ Star, the audio buffer size is configurable. As disk
jockeys often change effects or mixer parameters during their
live performances, low latency is a key factor. This results in
rather small buffer sizes. At the same time timing constraint
are tightened, because a smaller buffer is processed faster
and has to be filled with new audio data at a higher
frequency. DJ Star uses a standard buffer size BS of 128
samples. With a sampling rate SR of 44.1kHz the sound card
requests packets at a rate of 344.53Hz. This means that the
audio processing cycle (APC) that computes the resulting
audio packet must not take more than 2.9ms.

T (APC) <
BS

SR

B. Dynamic Analysis

With the software architecture and the breadth-first source
code analyses we gained a good understanding of the
static structure of the software and the real-time constraint
enforced by the sound card. In order to further investigate the
parallelization potential, we analyzed the run-time behavior
for locations that consume most of the CPU cycles. We used
the profiler tool in Microsoft Visual Studio and performed
a hotspot analysis.

As it turns out, 88% of the total run-time is consumed
by the APC. Most of the remaining 12% fall in the scope
of the GUI. A further diversification of the APC run-time
reveals that 33% is used for audio stream preprocessing
(time stretching, phase alignment, buffer overhead), 38% for
the execution of the audio effect graph (decks, mixer, effects,
. . . ), and 16% for the timecode decoder which interprets
external control signals.

Although audio stream preprocessing and graph execution
together form 71% of the total run-time, we decided not to
cover audio preprocessing, because it does not carry coarse-
grained parallelization potential. Furthermore, preprocess-
ing makes use of certain common algorithms, for which
parallel equivalents are already available. We could also
have parallelized on the algorithm level because a lot of
the run-time is spent time-stretching or computing audio
effects. Audio effects heavily rely on core algorithms such
as Fourier transformation, for which good parallel solutions
already exist. This makes audio stream preprocessing less
attractive from a research standpoint. Instead, we focus on
parallelizing the main audio graph, which is structured as a
graph of different tasks.

IV. AUDIO GRAPH IN DJ Star: TASK GRAPH

The audio processing cycle (APC) is implemented as a
task graph. The nodes represent different audio computations
and the edges describe the data flow or data dependencies.
The data stream intensive characteristics of DJ Star can
be seen in this graph: Data packets of audio information
continuously originate from the four decks and are being
passed along deck effects, filters, and equalizers to the
master section. Here, they are mixed together and sent to
the sound card. Figure 3 shows a simplified version of
the task graph that we used during our experiments and
evaluation. We assembled it to include the most relevant
compute-intensive tasks and dependencies.

The actual graph contains 67 nodes of which some have
no dependencies and do not modify the audio packets.
Although these nodes only amount to a small portion of
the APC total execution time, we also included them for a
fair average.

For each task graph, it is crucial to find a good schedule
that takes into account the run-time distribution of the nodes
in the task graph and the existing dependencies. It is not
possible to precompute an optimal schedule in advance,
because the run-time distribution of the task graph and each
individual node heavily depends on the number of decks
used, effects, and mixer configurations together with their
parameters. For nodes that alter the audio stream, the run-
time additionally depends on the actual audio stream data.

In order to find an optimal schedule and to assess the
parallel potential for the task graph, we performed a graph
simulation using the simulation tool RESCON [10]. At first,
we measured the average vertex computation time using
10k APC executions. For this, we defined the earliest start
scheduling strategy. This strategy schedules each vertex as
soon as all its dependencies are met, disregarding resource
constraints (i.e. infinite processors). This approach is similar
to a critical path analysis, but in addition it reveals the
maximum concurrency in the graph.

Our results show that an optimal schedule computes the
graph mentioned above in 295 µs and requires 33 processors.
The simulation results are depicted in Figure 4, with the
numbers representing node IDs and the four large blocks
representing the effect nodes for each deck. As it turns out,
these 33 concurrent nodes all have rather short computation
times and no dependencies. This means that they can be
computed in parallel right from the start. After ~25 µs the
concurrency level drops down to four. This seems sensible,
because we use four decks. Once the computation reaches
the master section, even less parallelism is possible. Since
only four cores are required most of the time, we simulated
the graph with a resource constraint of four cores to find an
optimal schedule. Our simulation results show that the task
graph can be computed in 324 µs using only four cores.
This is only 8% slower than the schedule without resource
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Figure 3. Audio graph configuration

constraints. At the same time it is more practical when we
consider the multicore hardware in today’s laptops.

As the simulation can not take into account aspects such
as thread management, scheduling overhead, and depen-
dency checking, the effective run-time numbers will be
higher. Still, the simulation gives us a good estimate of what
to aim for during our parallelization process.

In DJ Star, the task graph is implemented using a simple
queue. Nodes are inserted according to their depth in the
dependency graph. Figure 3 visualizes the insertion: Nodes
are added column by column and from left to right. Nodes
in the same column do not carry dependencies to other
nodes in the same column, so single nodes can simply be
removed from the queue in the same order (FIFO) during
graph execution and processed sequentially.

V. PARALLELIZATION STRATEGIES

In this section we introduce three different paralleliza-
tion strategies for the performance-critical and computing-

Figure 4. Simulated optimal scheduling on four cores

intensive audio application DJ Star. References [5], [11],
[12] provide best practice guidelines for parallel program-
ming that focus on general-purpose use cases, also for audio
stream processing. Examples are software pipelining, data
parallel processing, or task-based parallel processing.

Like other applications from this category, DJ Star im-
poses specific constraints that distinguish it from the general
approach. For DJ Star, the task graph cannot be executed
with a data parallel strategy on different audio packets,
because the packets are not available in advance. As we
explained in section III, one key performance requirements
is low latency on the buffers with respect to changes in
effects or mixer parameters, so only one audio packet at a
time is available. It has to be computed as fast as possible
to prevent an audible glitch from the sound card. The
same argument holds for transforming the task graph into a
pipeline: The stages can be assigned, but the data stream to
pass through the stages and fill the pipeline is not available.
Besides data-parallelism or pipelining, a third approach is
to parallelize on the algorithm level. The effect nodes in the
task graph are the most expensive nodes in terms of run-time
consumption, but their code is strictly sequential. Although
algorithm parallelization would probably work well, here
we decided against it for the reason that many of the effect
algorithms are proprietary and equivalent parallel implemen-
tations already exist. We chose to parallelize the intrinsic
structure and operations of the task graph by executing
multiple nodes in parallel and defining a schedule that is
adequate for the given constraints. We implemented the three
different parallelizations busy-waiting, thread-sleeping, and
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work-stealing.

A. Busy-waiting

As we showed in our analysis in section III, the graph
nodes are already in a sorted queue with respect to their
dependencies in the sequential code. Because of this, they
can be easily assigned to threads in a round-robin manner. In
the parallel case, nodes might be assigned to threads before
their dependent nodes are computed. To avoid this kind of
dependency violation, each node performs a dependency
check. When a node gets scheduled, it first checks its
dependencies and performs busy-waiting until they are met.

Figure 5 shows an example for a busy-waiting loop: Effect
unit 1 and Effect unit 2 depend on TrackPlayer A, and Effect
unit 3 depends on TrackPlayer B. As soon as thread T1 has
finished computing TrackPlayer A, it is assigned to Effect
unit 3. Since the dependencies are not yet fulfilled, T1 goes
into busy-waiting until T2 finishes TrackPlayer B.

Busy-waiting generally consumes CPU time by actively
waiting and not computing, but putting threads to sleep and
waking them up is also an expensive operation. With the run-
time of a single APC being in the order of microseconds
and very short idle times for threads waiting for their
dependencies, busy-waiting is a reasonable strategy in this
scenario. In order to validate this claim, we implemented
a sleep strategy that does not wait actively, but relies on
external wake-up calls.

B. Thread-sleeping

Instead of actively waiting for dependency fulfillment, we
implemented a second strategy which puts threads to sleep
and hence prevents a waste of CPU cycles. The queue is
organized as in the busy-waiting approach, but the threads
are explicitly put to sleep until their dependencies are met.
We implemented the wake-up calls in the computing nodes.
Nodes that are finished computing send a signal to their
successor node which in turn wakes up its assigned thread.
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Figure 6. Thread-sleeping scheduling example

The wake up procedure only occurs when all predecessor
nodes are finished and have sent the notification signal.

The mechanism is depicted in Figure 6. In (a) the thread
T2 just finished the execution of ChannelA and moves on
to Cue Buffer. It check its dependencies and finds the
dependency to ChannelB which is still executing. It therefore
cannot begin the execution. Hence, T2 registers itself as
executor for Cue Buffer and goes to sleep. In (b) T1 has
just finished the execution of ChannelB, and signals Cue
Buffer its termination. As all dependencies have now been
executed, Cue Buffer wakes up its executor thread T2 which
immediately starts the execution.

While this approach prevents active waiting and saves
CPU cycles, the implementation of the sleeping strategy is
not optimal and contains further potential for improvement
regarding a better management of the node queue. Currently,
nodes are assigned to dedicated threads in a round-robin
fashion and when a node cannot be executed, its executor
thread is put to sleep. While this node might be blocked
by open dependencies, there could be other ones available
for computation. Instead of putting the executor thread to
sleep because its node is currently blocked, it could look
for other available nodes and compute them. As available
nodes do not have to wait for their assigned executor thread
but be executed by one thread that has just finished its work,
this strategy potentially has the earliest start times for node
computations. At the same time, this aspect raises the queue
management overhead. As we mentioned, it generally does
not take very long until open dependencies are resolved.
Because of this we intentionally keep the queue structure
simple. In order to assess this, we implemented a third
strategy that trades early node start times for more queue
management overhead and implemented a work-stealing
strategy.

C. Work-stealing

The work stealing strategy addresses the problem that
threads do not look for executable nodes once they finished
their work, but simply go to sleep. With the sleeping strat-
egy, an executable node informs its executor thread. Taken
together, this causes an unnecessary overhead of sleep and
wakeup. We implemented additional logic to let threads look
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for other executable threads in three steps: 1) Each thread
gets its own working queue. 2) This queue only contains
nodes which are executable, i.e. all dependencies are met.
3) Threads can steal nodes from other threads once their
own queue is empty.

Each time an executor thread finishes the computation of
its node, it checks all successors of this node for unresolved
dependencies. If all dependencies are met for one successor
node, it adds this nodes to its own processing queue and
then proceeds as expected.

Since the queues can now be accessed by multiple threads
simultaneously, we have to ensure mutual exclusion to
prevent data races. We implemented the queues as double
ended queues (deque) which can be accessed from both
sides. We implemented the convention that stealing threads
access the queue from the top and local executor threads
access their queue from the bottom (see Fig. 7 (b)). This
convention enables a theft and a local access to happen at the
same time as long as length(deque) ≥ 2 without the need
to use explicit locking. A second advantage is a higher cache
efficiency for two reasons: 1) A thread iterates the successor
nodes recursively and hence prioritizes nodes that have been
added to the queue more recently (LIFO principle). This
maximizes the chance that the related data are still available
in the processor cache. 2) If a thread steals a node, it always
gets the node with the longest waiting time in the queue.
When we project this back onto the underlying graph model,
this means that the stolen node is more likely to produce a
high number of new tasks after its completion. These new
tasks can then be processed locally by the stealing thread.

As the threads now have a local queue, they have to be
filled initially. When a new APC starts, the main thread
fills up the processing queues of all executor threads. It
distributes all nodes without dependencies (source nodes)
to the threads. This situation is depicted in Figure 7 (a). We
categorize the source nodes as Deck A/B/C/D or Master in
order to be able to assign nodes from the same section to
the same thread. This supports data locality as nodes from
the same section work on the same audio data.

VI. EVALUATION

In this paper we designed and implemented three different
scheduling strategies for the audio application DJ Star. We
evaluated them by executing 10K audio processing cycles
(APC) for each parallelization strategy and measured the
execution times. Our test system was an 8-core AMD FX
8120h with 3.1 Ghz each and 8 GB RAM running Windows
7 (64-bit).

The typical average execution times and speedup values
are interesting to get a general idea of how the paralleliza-
tions perform, but they are not very meaningful when it
comes to satisfying the real-time condition. Therefore, we
also measure worst case execution times, missed deadlines,
and the distributions of the execution time between task
graph iterations. After that we compare our measurements
with the optimal schedule that we found in section IV using
simulations. We conclude with a look at typical schedule
realizations.

As our simulations showed, the maximum number of
nodes that can be processed in parallel is four, due to data
dependencies within the task graph, except for a small por-
tion of the graph. In later stages of the graph the parallelism
gradually decreases to one. Our measurements indicated that
increasing the thread count above four does not accelerate
the computations any further, and the increased thread
overhead even lowers the speedup slightly. Therefore, we
limited the thread count in the experiments to four. This is
also an appropriate number for modern laptops used by DJs.

To fully understand the measurements with respect to the
real-time constraint we need to differentiate further between
APC and task graph execution: While every APC includes
a task graph execution Graph it also has the additional
components timecode processing TP, graph preprocessing
GP, and various calculations1 VC. So the total APC run-
time calculates as:

T (APC) = T (TP ) + T (GP ) + T (Graph) + T (V C)

The average execution times of TP, GP, and VC add up
to 0.8 ms. Delivering 128 audio packets per seconds to
the sound card means one packet every 2.9 ms. To satisfy
the real-time constraint, this leaves us with the following
requirement for our task graph:

T (Graph) ≤ 2.1ms

The following measurements therefore relate to task graph
execution times, not APC times.

Table I shows the average execution times and Figure
8 the corresponding speedup. Comparing the busy-waiting
(BUSY), thread-sleeping (SLEEP), and work-stealing (WS)
scheduling strategies shows that they all perform very sim-
ilar in terms of average execution times. The speedup in
comparison to the sequential execution increases to 2.4 on

1Accounting calculations, for example updating the master tempo



Table I
TASK GRAPH AVERAGE RESPONSE TIMES (MS)

Threads 1 2 3 4

BUSY 1.0785 0.6371 0.5683 0.4516
SLEEP 1.1130 0.6447 0.6444 0.4657
WS 1.1111 0.6394 0.5844 0.4690

Figure 8. Speedup comparison of the scheduling strategies

four cores. Linear speedup is not to be expected due to the
inherent data dependencies between nodes.

About five out of 10K APC executions exceed the dead-
line of 2.9 ms, although the average task graph execution
time of ~0.45 ms on four cores is far below the threshold.
In this case the audio gets distorted and unfortunately there
is nothing we can do about it. This emphasizes why we
also need to look at the worst case situations and run-
time distributions. The goal is to execute as many audio
packets as possible and considerably before the deadline,
so headroom is created for such situations. The only way
to guarantee no missed deadlines would be to use a real-
time operating system, but the software is required to run
on standard operating systems.

The execution time of a task graph iteration heavily
depends on the audio data, so the average execution times
are not significant to determine what the best scheduling
strategy is. The histogram of task graph execution times for
10K iterations is depicted in Figure 9. It also shows the three
different scheduling strategies. All three diagrams show two
peaks, which mirror the run-time distribution of the nodes
with varying input data. The BUSY strategy has a strong
peak of early finishing nodes, while the SLEEP strategy
clearly uses some time to wake up the threads (no graph
executions below 0.4ms). It can be observed that the work-
stealing approach has a rather even distribution schema, but
it also has some unwanted high execution times near the 0.8
ms mark.

A cumulative histogram of the same data is presented in
Figure 10. It also reveals the strong early start of the busy-
waiting strategy. SLEEP starts very late but accomplishes
to finish 80% of the iterations under 0.5 ms. The work-
stealing approach averages the start times and has quite some
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instances finish very late.
To understand how each scheduling strategy actually

schedules nodes in the task graph, we visualized some
typical schedule realizations in Figure 11. It shows how the
strategies assign nodes to threads and in what order. The
numbers on the bars indicate node IDs and they have been
omitted on nodes with very short execution times to increase
readability. The gray boxes in the BUSY schedule represent
active waiting and white areas indicate sleeping threads. The
small space between node executions is the time it takes for
a thread to determine what the next executable node is and
to check its dependencies.

Although the different schedules look very similar at first
glance, the differences in their scheduling characteristics
can be seen clearly: While the busy-waiting schedule has
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Figure 11. Typical schedule realizations with four threads

many active waiting boxes, the sleeping strategy has its
threads sleeping while they wait for the resolution of their
dependencies. Apart from that they look very similar because
they use the same round-robin node prioritization scheme.
The sleeping schedule has a longer total execution time
because of the thread wake-up overhead.

In contrast to that, the WS strategy shows a totally
different behavior: Instead of waiting for dependencies of the
next node in the queue, it actively looks for other executable
nodes and therefore executes many of the small nodes early.
Sleeping in fact only occurs, when there are solely nodes
available with unfinished dependencies. As can be seen, this
is towards the end of the task graph execution.

The three schedules do not represent runs with the same
audio packet but instead typical realizations of the schedules
with execution times close to their respective average.

In section IV we computed an optimal schedule for four
threads which predicted a task graph execution time of 327
µs. Our measurements came up with an average execution
time of 452 µs, which is far from the optimal schedule.
The inaccuracy of the simulation comes from the fact that it
cannot take into account node assignment, thread manage-
ment and dependency checking. Since these times are hard to
measure, we chose the opposite approach and implemented
our BUSY strategy in the RESCON simulation tool and
compared the simulation result with our measurement. The
results are shown in Figure 12. With 327 µs for the busy-
waiting schedule, this is within 8% of the optimal schedule.
With varying (and in advance unknown) execution times of
individual nodes, computing an optimal schedule for every
task graph iteration is not feasible. With minimal overhead,

our BUSY scheduling with heuristic coarse screening of
nodes by dependencies performs well.

Comparing the three scheduling strategies from average
execution times alone is not sufficient, but with additional
information from the histograms a winner can be selected.
The busy-waiting approach not only has the lowest average
execution times, it also makes sure that many nodes finish
early, which is desirable. It comes at the cost of active
waiting, but as the penalty is bearable in this case, it is
clearly the best strategy. If wasting resources on waiting is
not an option, work-stealing is a solid alternative.

VII. RELATED WORK

In this paper, our research focuses on parallelizing a real-
time audio application which uses a task graph as its main
data structure. Related works address the parallel execution
of graph structures, or the parallelization of existing appli-
cation using tool support. In our approach, we used static
analysis techniques in combination with a run-time profiler.
Especially recent tool-assisted approaches also make use
of a combination of static and dynamic analyses. For the
generation of parallel source code they use parallel libraries
such as OpenMP or the java.util.concurrent library
in Java.

Parallel task graphs: There are several ways to paral-
lelize a task graph, [13] uses a middleware approach while
[14] is a real-time operating system that supports graph
execution.

MCFlow [13] is a real-time, multicore-aware middleware
for dependent task graphs. It uses a directed acyclic graph
structure similar to the one used in DJ Star. The scheduling



Figure 12. Simulation of the BUSY schedule

decision in MCFlow is taken offline while we use an online
scheduling which enables us to dynamically load-balance
the work items. In our case this makes much more sense,
because the work is very imbalanced and a static procedure
cannot take this into account.

Tesselation OS [14] is an experimental operating system
that provides quality of service guarantees. This is very
valuable for a real-time audio application, since missing a
deadline leads to distortion of the audio signal. Programs
running on Tesselation OS are characterized by a directed
acyclic graph with plug-ins as nodes. In contrast to our
application, the user is able to rearrange and exchange the
nodes during run-time as needed.

But the main difference is that DJ Star has to run on
general purpose hardware on broad scale, which currently
binds it to Mac OS, Windows or Linux and makes the use
of Tesselation OS impractical. For the future it would be
interesting to migrate DJ Star to an operating system that
provides real-time capabilities and test the miss rate for
deadlines.

Parallelization support: Similar to our approach, differ-
ent recent works use static and dynamic analyses to identify
parallel potential in sequential programs. Embla 2 [15] is
a tool which identifies task parallelism through a dynamic
analysis. It provides information to the user about possible
fork and join locations in the code. Furthermore, it highlights
critical paths to assist in transforming the program into a
parallel version.

Both [16] and [17] try to find pipeline parallelism in
sequential programs. While Rul et al. [16] consider control
flow and data dependencies to identify pipeline structures,
Tournavitis et al. [17] additionally incorporate run-time pro-
filing information in an attempt to obtain balanced pipeline
stages. In contrast to our work, these works operate on

general-purpose applications without real-time constraints
and identify fork/join or pipeline parallelism.

VIII. CONCLUSION

In this paper, we analyzed a real-time compute-intensive
audio application with over 700,000 lines of code for parallel
potential. We manually analyzed it, identified three different
parallelization strategies and evaluated them on realistic
input data (four decks with different audio tracks).

The application we call DJ Star is a commercial DJ
application that is used to load, manipulate, filter, and mix
audio data. DJ Star serves as a good example for many other
stream-intensive applications such as signal, audio, video, or
image processing software. It contains the specific timing
constraint that the computation of a single audio packet
must not exceed 2.9ms. This makes obvious parallelization
approaches impractical, and general guidelines and best-
practice parallel patterns are not applicable without further
investigation. With the analysis in this paper, we provide
guidelines for stream-intensive applications that also contain
rather complex software architectures in combination with
timing constraints.

At first we manually reverse engineered the application’s
software architecture and manually located parallelization
potential in a complex task graph structure. The computation
of this task graph consumed 38% of the total run-time. From
our analysis we designed the three different parallelization
strategies busy-waiting, thread-sleeping, and work-stealing.
We evaluated them composing a benchmark of 67 different
filters and audio effects that imitate a typical use case for
a DJ performance. Furthermore, we simulated the software
architecture using the simulation tool RESCON [10] to
determine a theoretical optimal schedule and used this in
our evaluation as reference value for each strategy.



The key finding in our evaluation is that the busy-waiting
strategy provided the best performance with the lowest
average graph execution times of 327 µs and an average
speedup of 2.40 with four threads on an 8-core machine. At
the same time it produced the fewest timeouts with 5 out
of 10,000 executions. This is remarkable, because in best-
practice guidelines this strategy is seen as unfavorable, as it
actively uses CPU cycles waiting for a certain condition. In
our case, the processing cycles of DJ Star are rather short
and reoccur at a high frequency, so the time it takes to pause
a thread and wake it up as in the thread-sleeping strategy
costs too much time. The work-stealing approach prevents
certain sleeps and wake ups so it performs better than the
sleeping strategy but it produces more timeouts than busy-
waiting.
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