
Text Understanding for Programming in Natural
Language: Control Structures

Mathias Landhäußer
Karlsruhe Institute of Technology

Email: landhaeusser@kit.edu

Ronny Hug
Karlsruhe Institute of Technology
Email: ronny.hug@student.kit.edu

Abstract—We investigate how natural languages such as En-
glish can be used as programming languages. Often, in natural
language (as well as in programming) different actions happen
at the same time or are repeated. In natural language we
just say what is going to happen – in programming we use
control structures. Story lines without equivalent language/phrase
structures are unnatural and programs without control structures
are hard to read. An empirical study showed how users express
control structures in natural language.

We propose a new and automatic text analysis. It leverages
Stanford’s typed dependencies to detect sentence structures that
imply strictly sequential control flows, repetition, and parallelism.

The technique is analyzed in the context of Alice, a 3D
programming environment, and AliceNLP, a system for pro-
gramming Alice in ordinary English. We evaluate our approach
with 52 texts with 795 control-flow-affected elements in total and
show that 82% of these elements can be detected successfully. We
performed a second evaluation with manually corrected input and
find that our approach successfully detects the control structures
97% of the time in the absence of parser errors.

I. INTRODUCTION

We aim at programming in natural language – up to
now, computers have been instructed in specialized synthetic
languages: programming languages. The obvious alternative,
natural language, is not considered because being too complex,
ambiguous, or (too) unconstrained. Programming languages
on the other hand are ”simple”, ”strict”, and ”constrained”.
Even though Sammet already proposed natural language as
an alternative for programming in 1966 [1], there has not
been much progress. However, significant progress has been
made when it comes to language modeling, text mining, and
language understanding. This progress lead to impressive,
usable tools like Watson [2], Apple’s Siri [3], and Google
Translator.

We develop a system that translates plain English into
executable code using available NLP technologies and tool
chains. Our project AliceNLP builds a prototype that can
be seen as a black box that takes English text as input
and produces source code as output. Inside the black box,
AliceNLP analyzes the input text with various NLP tools
and asks the user for clarification if information is missing.
Figure 1 shows the overall architecture of AliceNLP: It uses
the text as information store and every analysis module
can read the results from its predecessors; its own results
are readily available for its successors. Some modules are
proven NLP tools such as Stanford’s CoreNLP [4]. Others

are specialized modules that analyze the input text to identify
programming-specific information. The domain knowledge (i.
e. the knowledge about the target API) is provided to the
analysis modules in an ontology. It contains information about
the available classes, their properties and their methods.

The application domain of AliceNLP is programming 3D
animations in Alice. Alice is a sophisticated 3D animation
tool developed at Carnegie Melon University and is used in
introductory programming classes [5]. Alice provides a rich
set of everyday objects (e.g. vehicles and tools), people and
imaginary characters (fairies etc.). Users can program Alice
animations using these objects. Alice provides a set of basic
functions (for movement etc.) only but users can extend the
objects’ capabilities by programming customized methods.
AliceNLP takes natural language scripts as input and produces
Alice animations.

To evaluate our prototype, we collected scripts from various
authors that describe manually programmed animations. Fol-
lowing this procedure we can compare the results of AliceNLP
with the original animations and the programs that were used
to create them. The scripts form a growing corpus of English
scripts; we have gold solutions (and the manually created
programs) for all scripts in the corpus and use them for
automatic evaluation.

The first animation that we considered was simple: The
code to produce this animation does not contain loops and is
strictly sequential. Then we allowed the authors to rearrange
the actions in their scripts (e.g. “do a, but before, do b”)
and determined the correct sequential order [6]. As the project
matured, we constructed more complex animations with more
actions, parallel actions, loops, and so on. The natural language
scripts for these animations are more complicated and use
many different ways to describe the same flow of actions.

This paper explains how we map the described flow of ac-
tions to classical control structures. We designed an extensible
approach that leverages Stanford’s typed dependencies [7] and
implemented a tool called control structure recognizer (CSR).

Section II reviews related work, Section III presents our
approach in detail. In Section IV we evaluate our approach
with 52 texts for six different animations. Section V concludes
the paper.



AliceNLP
English

Script
Source

Code

Stanford 

Parser

API

Ontology

POS

Tagger

Time Line 

Detector

Entity 

Recognizer

Co-

Reference 

Analyzer

Control 

Structure 

Recognizer

Fig. 1. The AliceNLP Architecture: Natural language analyses are indepen-
dent but can share information; analysis results are annotated in the text.

II. RELATED WORK

Programming in natural language has a long history. Al-
ready in 1979, Ballard and Bierman presented NLC, the
natural language computer [8]. It interprets direct commands
such as “add x1 to y2”, performs matrix calculations, and gives
immediate feedback about the results. After entering a series
of commands, users can let NLC repeat them either a given
number of times (e.g. “repeat the last command 5 times”) or
for a given number of entries in the matrix (e.g. “repeat for
all entries in row 3”) [9].

In 2000, Price et al. presented NaturalJava, a prototypical
user interface based on natural language for creating, modify-
ing, and examining Java programs [10]. Users are expected
to dictate Java and one can use all control structures that
are available in Java. But as users of AliceNLP neither write
nor dictate code, NaturalJava is not directly comparable to
AliceNLP.

Pane and Myers investigated how non-programmers de-
scribe programming solutions to make future programming
languages more user-centered [11]. They report that users tend
not to dictate loops directly: they describe actions set-wise
instead (e.g. “A, B, and C do X”) and rely on the listener’s
interpretative power. The scripts in our corpus support this
finding.

Metafor, an approach described by Liu and Lieberman in
references [12] and [13], creates python classes from English
stories. As only stubs are being generated, Metafor does not
deal with control structures. In reference [14] Mihalcea, Liu,
and Lieberman describe how programming steps (“actions”
in our terms), loops, and comments can be identified in
natural language and how they can be mapped to programming
constructs. They use signal words to identify loops. Words in
plural also trigger the creation of loops.

Knöll and Mezini research an approach to natural language
programming called Pegasus [15]. Pegasus translates natural
language input in an intermediate “idea language”, which is
then compiled into code. Control structures can be expressed
in the idea language but it remains unclear how the transition

Dependencies conj, prep
POS Tags VBG, VBZ
Ignored Words times
Signal Phrases at the same time

TABLE I
AN EXAMPLE FOR A TRACE PROFILE FOR do together.

from natural language to the idea language is performed.
There is a body of research on temporal analysis of texts. It

mainly deals with the identification of events in a text and with
putting them on a time line (e.g. references [16] and [17]).
Some systems tackle temporal notions such as “noon” and
“midnight” and translate them to numeric points (or ranges)
in time [18]. Other systems use statistics to infer relations
between events: E.g. Mani et al. detect simultaneous events
(among other relations) using a maximum entropy learner [19];
Chambers et al. classify the relation between two events
using part-of-speech (POS) tags, lemmas, WordNet synsets
and modal words [20]; Kolya et al. use conditional random
fields to infer the temporal order of a sequence of events [21].
Berglund et al. use decision trees to order events for a car crash
simulation based on witness statements [22]. Lapata and Las-
carides propose a statistical approach for inferring sentence-
internal temporal relations, i.e. relations between events in
main clauses and its sub clauses [23]. Their method exploits
the presence of signal words such as “after” and “before”.

Nemec proposes a rule-based system of automatic analysis
of temporal relations within a Czech discourse [24]. His algo-
rithm predicts relative ordering relations between finite verbs
in a sentence based on the information provided only by the
grammar. It looks at finite verbs, because they bear one of the
three basic tenses – past, present and future.

Also, there is a body of research on temporal reasoning [25].
For example, Russell et al. describe an event calculus [26].
The emphasis in this work is on automated reasoning using
the calculus, not the extraction of event order from texts. In
summary, temporal reasoning is related to the detection of
control structures (e.g. “while A, do B”) but the work focuses
on detecting events and anchoring them on a time line.

III. CONTROL STRUCTURES FROM TEXT

To extract control structures from natural language, we
analyze the text sentence-by-sentence. The first step is to
analyze the text with Stanford’s CoreNLP tool chain which
produces the needed linguistic information [4], namely part-
of-speech tags (POS tags) and typed dependencies. Then CSR
takes over. CSR processes every control structure in isolation
as the linguistic properties differ, but the analyses work the
same. It traverses the dependency graph to identify the actions
and their (temporal) relationships. It visits different edges
in the graph from different starting points depending on the
control structure to be identified.

The configuration for a control structure is called a trace
profile. A trace profile contains a list of dependency types, a
list of POS tags, a list of signal words (such as “meanwhile”),
and a list of words that should not be treated as actions. The



latter is a list of entities (objects from the domain or: class
names) and the list is identical in all configurations. CSR uses
POS tags to identify the words that refer to actions (usually
it recognizes verbs as actions). We use the POS tag list to
mitigate parser errors (sometimes the parser labels nouns as
verbs and vice versa); if the parser gives perfect results, the
list can and should be empty. Also, trace profiles are tunable:
By including more/less dependencies and including more/less
signal words, we can counter some (but not all) parser errors.
Table I shows an excerpt from a trace profile.

After all sentences are processed, a post-processing step
ensures that the nesting of the detected control structures is
correctly recorded. Also, unnecessary control structures are
deleted (e.g. sequential blocks with only one statement). Then
the results are annotated in the text.

We evaluate two different configurations: The default con-
figuration that follows linguistic considerations and a tuned
configuration that additionally makes provisions for parser
errors. The latter performs better when the dependency graphs
contain errors, the former performs better without them.

The following subsection explains the dependency graph
traversal. The second subsection illustrates how CSR works
with an example. The last subsection discusses the control
structures that can be detected with CSR.

A. Control Structure Independent Dependency Graph Traver-
sal

CSR traverses the dependency graph to identify the actions
that belong to a specific control structure. A dependency graph
is a directed graph with the words of a phrase as nodes. The
typed edges express the dependencies between two words:
Figure 2 shows a dependency graph for the phrase “Mathias
and Ronny analyze dependencies.” The node without incoming
edges is called the root of the phrase; as in Figure 2 most
often the main verb of the phrase is the root node, here
“analyze”. subj denotes the subject of the verb: “Mathias”. The
dependencies conj from “Mathias” to “Ronny” and cc to “and”
show that they are connected with the conjunction “and”. And
finally, dobj denotes that “dependencies” is the direct object
of “analyze”. There are ca. 50 different dependencies in total
(c.f. reference [7] for a thorough explanation).

Graph traversal works essentially the same for all control
structures: CSR starts the traversal at a signal word (or phrase)
and follows the edges in the graph to collect the actions; CSR
ignores the direction of the edges. Actions are identified by
their POS tags; the default configuration lists all POS tags
for verbs so that verbs are being considered actions regardless
of their tense. Edges are only visited once and if their type
is allowed by the active trace profile. If CSR encounters
an action, the action is recorded and traversal starts from
this node again. The types of the dependency edges that are
traversed are specific for each control structure. Therefore
CSR’s configuration has several parts: one for each control
structure. Similar control structures such as do together and
do in order share a configuration; the exact type (i.e. together
vs. in order) is determined after the first processing.

Mathias and Ronny analyze dependencies .
NNP CC NNP VBZ NN .

ROOT

CC

conj

nsubj

dobj

Fig. 2. A Stanford Typed Dependency Graph for the Phrase “Mathias and
Ronny analyze dependencies”. POS Tags are Shown Below the Words.

B. Dependency Tracing by Example

In this section we illustrate CSR’s approach with an exam-
ple. It shows how CSR detects do together and how it identifies
the actions that belong together. The trace profile in Table I is
used in this example. Figure 3 shows the dependency graph.

Dependency tracing starts at the signal phrase “at the same
time”. From there all edges are considered: CSR checks
whether an edge is contained in the trace profile. The only
edge in the example is labeled with prep and the trace profile
contains this dependency type and so the edge is traversed.
CSR reaches “nods” which has the POS tag VBZ; the trace
profile defines VBZ as action and thus “nods” is recorded.
Afterwards, the traversal starts again from “nods”. prep has
already been visited and nsubj is ignored because it is not in
the profile. conj is in the trace profile and so CSR traverses this
edge. “hops” has the POS tag VBZ as well and is recorded. As
there are no more edges coming to/from “nods”, the traversal
starts again from the node “hops”. There the traversal stops
because conj has already been visited and neither nsubj nor
cc are in the trace profile. There are no further edges.

The result set contains the actions “nods” and “hops” and
therefore CSR annotates in the document that they happen
simultaneously.

C. Covered Control Structures

Alice – as every programming language – supports various
control structures. In addition to the usual it provides simple
structures for parallelism: do together performs the contained
(action) block in parallel and for all together performs the loop
body with a set of objects in parallel. All control structures
have a body that encompasses a single action or multiple
actions; of course, control structures can be nested. The
following paragraphs describe the available control structures
and give an idea on how CSR identifies the control structure
and its contents.

a) do together and do in order: do control structures
describe the flow of actions in a single sentence. There is a
do together and a do in order; the former expresses that the
actions happen simultaneously and the latter enforces a strictly
sequential order. To detect actions that are within the same do
structure, one has to identify all actions within a sentence that
are linked by words like “simultaneously” and phrases like
“first . . . then”.

b) while: while – as well as do – expresses that two
actions are connected: The actions within the body of while



The bunny hops and at the same time the frog nods
DT NN VBZ CC DT NN VBZ

det nsubj cc

conj

det nsubj

prep

Fig. 3. A Stanford Typed Dependency Graph for the Phrase “The bunny hops and at the same time the frog nods”. POS Tags are Shown Below the Words.

happen in a loop until the condition of the while loop evaluates
to false. CSR identifies the actions that happen within the while
body and within the while condition.

c) for all in order and for all together: for all executes
all actions within its body on (or with) a list of entities. The
list of entities must be inferred by CSR. At the moment, CSR
uses AliceNLP’s ontology to determine which entities of the
current script belong to a group (e.g. “all animals”). Also it
handles exceptions (e.g. “all animals but not the rabbit”) and
enumerations (“the rabbit, the penguin, and the dog do A”).
The actions in the body can either be invoked in order (i.e. the
body of the loop is executed for every entity in the list in full
before the actions start with the second entity) or together (i.e.
all entities start immediately with the execution of the loop).

The analysis for for all control structures uses information
that has been added to the script by a different analyzer of
AliceNLP: The entity analyzer annotates in the text which
token refers to which entity (or instance). Therefore CSR can
check the ontology for further information about the groups.
In short: If there is an action being performed by a group, CSR
creates a for all structure and dereferences the group. If there
is an explicit exception, the excepted actor is removed from
the dereferenced group. If there is an enumeration of actors,
CSR creates a for all structure with the enumerated entities.
If CSR detects a group but fails to dereference it, it asks the
user which objects of the current program should be included
in the group.

d) loop: The last – and maybe the simplest – control
structure covered by CSR is the loop. A loop executes an
action a predefined number of times. CSR searches a sentence
for cardinal numbers connected to “times” (such as “two
times”); it also considers adverbs such as “twice” and “thrice”.
Then it identifies the action that is connected to the repetitive
phrase in the dependency graph; groups of actions are formed
by enumerations and signal words such as “simultaneously”.

e) if/else: if/else is not supported by CSR at the moment;
in our application there is no conditional branching so the
detection of if/else is not needed. But the parse tree contains
the needed information: The conditions are in sub phrases
that start with signal words such as “if”, “when” and so on.
Furthermore, the conditionally executed action is connected
with the verb of the condition with an advcl dependency
(adverbial clause). The condition verb is connected with the
signal word itself with a mark dependency. CSR can easily be
extended to include conditionals using either the parse tree or
the typed dependencies.

Evaluation
∑

C W M WP
A-E-D 43 36 0 7 0
B-E-D 221 151 26 66 4
C-E-D 26 11 4 15 0
F-E-D 308 287 6 20 1
M-E-D 47 27 19 19 1
R-E-D 150 137 22 13 0
Sum 795 649 77 140 6

82% 10% 18% 1%
A-E-T 43 34 4 9 0
B-E-T 221 195 10 17 9
C-E-T 26 16 4 10 0
F-E-T 308 295 9 12 1
M-E-T 47 27 24 19 1
R-E-T 150 138 27 12 0
Sum 795 705 78 79 11

89% 10% 10% 1%
B-F-D 221 215 2 6 0
F-F-D 308 298 3 10 0
Sum 529 513 5 16 0

97% 1% 3% 0%
TABLE III

THE RESULTS OF THE THREE EVALUATION RUNS. THE FIRST LETTER
REPRESENTS THE ANIMATION; THE SECOND LETTER INDICATES WHETHER
THE INPUT CONTAINED NLP ERRORS (E) OR IF THE ERRORS WERE FIXED

(F); THE THIRD LETTER INDICATES THE CONFIGURATION USED
(D=DEFAULT, T=TUNED)

IV. EVALUATION

We use 52 English scripts for six animations and evaluated
whether CSR can correctly identify the control structures and
the actions therein. Therefore we created short animations
and let subjects describe the animations in their own words.
Table II shows the details of the animations and their programs
respectively: They are short and should be easy to describe
and use a relatively low number of different methods. Beach
and Farm make heavy use of control structures. The first two
columns show the name of the animations and their durations.
LOC indicates how many lines of code are needed to produce
the animation. The following two columns show how many
objects were used and how many methods were called in the
code. The sixth column shows how many control structures
have been used for the animation (the numbers in parentheses
give the number of different control structures used). The
last column shows the number of natural language scripts
describing the respective animation.

The subjects are mostly computer science students or staff
from our chair but ten of the 30+ subjects have no pro-
gramming background whatsoever. We asked the subjects to
describe the animation with their own words and we also ex-
plained AliceNLP’s intention. We first showed an animation to



Animation Duration LOC #Objects #Methods #Control Structures #Scripts
Alice 32 sec 31 3 23 7 (3) 4
Beach 20 sec 28 9 11 10 (5) 14
Cheerleader 19 sec 12 2 11 1 (1) 3
Farm 40 sec 39 9 15 10 (7) 14
Moon 38 sec 36 3 25 10 (2) 3
Rabbit 23 sec 21 3 15 0 (0) 14

TABLE II
STATISTICS FOR THE ANIMATIONS USED IN THE EVALUATION.

the subjects and gave them a description written by ourselves
as an example. Then we gave the two animations to the sub-
jects including the names of the objects used and a complete
list of the available methods and control structures. Given this
information they had unlimited time to write the scripts and
were allowed to pause and replay the animation as often as
they wished. Every subject described both animations. Before
the evaluation, we corrected typos and spelling mistakes; no
further modifications were made. For every script we manually
created a gold solution that identifies all control structures that
are contained in the respective script. The gold solution can
be compared to the computed results automatically. CSR, all
texts, gold solutions, and the results produced by CSR can be
downloaded from our website1.

We first ran the evaluation with the default configuration
for CSR that is based on linguistic considerations. During the
manual inspection of the input texts and the output we learned
that many errors stem from parser errors such as incorrectly
recognizing verbs as nouns. Therefore, we tried to improve
CSR’s performance by configuring the dependency tracer more
loosely. We wanted to know whether CSR’s configuration
can be tweaked to remedy some of the parser’s flaws. For
example, we added nouns and noun phrases to the POS tag
lists. CSR then treats nouns as actions and records more
input tokens, which should drastically reduce the miss rate.
On the other hand, CSR then treats nouns (correctly) tagged
as nouns as actions as well, which should increase the error
rate. As we wanted to push CSR to its limits, we ignored the
design rationales behind the configuration options and re-ran
the evaluation and analyzed the results several times to identify
a good configuration. The second block of Table III shows the
best results that we achieved.

Now that we knew the average performance of our approach
we wanted to know how good it possibly can become. There-
fore we manually corrected the input (i.e. we fixed POS tags
and other parser results) in the texts that describe the Beach
and Farm animations. We omitted the other texts because
correcting the parser’s and tagger’s results is very tedious and
we wanted to limit the work necessary. The Beach and Farm
animations contain most of the control structures and therefore
we narrowed our focus to these texts. The evaluation in this
ideal world uses the default configuration for CSR.

Table III summarizes the results of the evaluations. The
first row indicates the evaluation run.

∑
gives the number of

expected annotations; this number differs from text to text as

1https://svn.ipd.kit.edu/trac/AliceNLP/wiki/Papers/LH2015

the texts do not reproduce the respective animation perfectly.
C is the number of correct annotations, W is the number of
incorrect annotations, M is the number of missing annotations
and WP is the number of annotations that were incorrectly
placed. Incorrectly placed annotations are correct in essence,
i.e. they describe the correct control structure but would lead
to a wrong nesting of control structures in the final program.

The numbers in the table summarize all texts per animation.
Usually every element of a control structure needs one anno-
tation: E.g. every action in a loop needs an annotation that
indicates which loop the action belongs to. If a text calls for
a loop with three actions and CSR detects the loop but misses
one action the numbers are as follows: In total one needs three
annotations (one for each action); two count as correct, one
as missing. The number of times the loop should be executed
is encoded as an attribute of the loop annotation and therefore
needs no separate annotation.

For a realistic evaluation one has to include the parsing er-
rors as they would remain in the input during normal operation.
As one can see in the first block of Table III CSR makes few
mistakes if parser errors remain in the input but 18% of the
annotations are missing. The percentage of correct annotations
is 82% and we were able to improve this number up to 89%
with a tuned configuration. Against our assumptions, tuning
increased the number of wrong annotations only by one. The
number of missing annotations can be cut down to 10%.

The performance in the absence of parsing errors is almost
perfect: Only 3% of the annotations are missing and only
five incorrect annotations have been made. As one can see,
the results for the Beach animation improved significantly:
In the respective texts, many parser errors surfaced; after the
manual correction, 97% of the annotations are correct. Only
two incorrect annotations are added to the text and only six
of 221 annotations are missing. In the Beach texts the parser
tagged many verbs as nouns which lead to the lion’s share of
errors. The uncorrected Farm texts contain much less parser
errors; this is why the results can hardly be improved. This
underlines that our approach performs very well under ideal
circumstances but is sensitive when it comes to tagging errors
in the input.

V. CONCLUSION

Control structures are essential for programming and there-
fore have to be available when programming in natural
language. We introduce an analysis that uses key phrases,
POS tags, and Stanford’s typed dependencies to identify
control structures in English texts. Our experience supports



the findings of Pane and Myers. They report that users tend to
describe actions set-wise when programmers would use a loop.
Therefore our analysis recognizes terms that represent a group
and uses an ontology to dereference the group; enumerations
are also supported. Our analyses are implemented in a tool
called Control Structure Analyzer (CSR) and are almost fully
automatic; only if CSR cannot dereference a group (or “set”
to use the terminology of Pane and Myers), it asks the user
which objects of the program should be included in the group.

We evaluated our approach in the domain of Alice, a
programming environment where (usually non-expert) users
can program 3D animations. The evaluation considers 52 texts
written by over 30 subjects. CSR produced correct information
82% of the time. We also created a configuration that is more
robust to parser errors; it improved the performance to 89%.
If the input contains no parer errors, the performance with the
default configuration is as high as 97%.

There is still room for improvement: CSR does not yet
treat if/else constructions; the information needed to derive
if/else from a text is present but an automatic analysis waits
to be implemented in CSR. Also the evaluation leaves room
for improvement: We have a collection of 95 texts that could
be used for the evaluation but as of today only 52 are used.

REFERENCES

[1] J. E. Sammet, “The use of english as a programming language,”
Commun. ACM, vol. 9, no. 3, pp. 228–230, Mar. 1966. [Online].
Available: http://doi.acm.org/10.1145/365230.365274

[2] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A.
Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager, N. Schlaefer,
and C. Welty, “Building watson: An overview of the DeepQA project,”
AI Magazine, vol. 31, no. 3, pp. 59–79, 2010. [Online]. Available:
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303

[3] J. R. Bellegarda, “Spoken language understanding for natural interaction:
The siri experience,” in Natural Interaction with Robots, Knowbots and
Smartphones, J. Mariani, S. Rosset, M. Garnier-Rizet, and L. Devillers,
Eds. Springer New York, 2014, pp. 3–14.

[4] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The stanford CoreNLP natural language processing
toolkit,” in Proceedings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations. Baltimore,
Maryland: Association for Computational Linguistics, Jun. 2014, pp. 55–
60. [Online]. Available: http://www.aclweb.org/anthology/P/P14/P14-
5010

[5] M. Conway, S. Audia, T. Burnette, D. Cosgrove, and K. Christiansen,
“Alice: Lessons learned from building a 3d system for novices,” in
CHI ’00: Proceedings of the SIGCHI conference on Human factors in
computing systems. The Hague, The Netherlands: ACM Press, 2000,
pp. 486–493.

[6] M. Landhäußer, T. Hey, and W. F. Tichy, “Deriving timelines from texts,”
in Proceedings of the 3rd International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering, Jun. 2014, pp. 45–51.

[7] M.-C. de Marneffe and C. D. Manning, “Stanford typed dependencies
manual,” Tech. Rep., Dec. 2013.

[8] B. W. Ballard and A. W. Biermann, “Programming in natural language:
NLC as a prototype,” in Proceedings of the 1979 annual conference,
ser. ACM ’79. New York, NY, USA: ACM, 1979, pp. 228–237.

[9] A. W. Biermann and B. W. Ballard, “Toward natural language
computation,” Comput. Linguist., vol. 6, no. 2, pp. 71–86, Apr. 1980.
[Online]. Available: http://dl.acm.org/citation.cfm?id=972439.972440

[10] D. Price, E. Rilofff, J. Zachary, and B. Harvey, “NaturalJava: A natural
language interface for programming in java,” in Proceedings of the 5th
international conference on Intelligent user interfaces, ser. IUI ’00.
New Orleans, Louisiana, USA: ACM, 2000, pp. 207–211. [Online].
Available: http://doi.acm.org/10.1145/325737.325845

[11] J. F. Pane, C. Ratanamahatana, and B. A. Myers, “Studying
the language and structure in non-programmers’ solutions to
programming problems,” International Journal of Human-Computer
Studies, vol. 54, no. 2, pp. 237–264, 2001. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6WGR-458NDXY-
M/2/e785863fea0552236a5587e1fbe7a57f

[12] H. Liu and H. Lieberman, “Programmatic semantics for natural lan-
guage interfaces,” in CHI ’05 extended abstracts on Human factors in
computing systems, ser. CHI ’05. Portland, OR, USA: ACM, 2005, pp.
1597–1600.

[13] ——, “Metafor: Visualizing stories as code,” in IUI ’05: Proceedings of
the 10th International Conference on Intelligent User Interfaces. San
Diego, California, USA: ACM, 2005, pp. 305–307. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1040830.1040908

[14] R. Mihalcea, H. Liu, and H. Lieberman, “NLP (natural language process-
ing) for NLP (natural language programming),” in Proceedings of the 7th
International Conference, CICLing 2006, Mexico City, Mexico, February
19-25, 2006, ser. Lecture Notes in Computer Science, A. Gelbukh, Ed.,
vol. 3878. Berlin, Heidelberg: Springer, 2006, pp. 319–330.

[15] R. Knöll and M. Mezini, “Pegasus: First steps toward a naturalistic
programming language,” in Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications, ser. OOPSLA ’06. ACM, 2006, pp. 542–559.

[16] J. Pustejovsky, R. Knippen, J. Littman, and R. Saurı́, “Temporal
and event information in natural language text,” Language Resources
and Evaluation, vol. 39, no. 2-3, pp. 123–164, May 2005. [Online].
Available: http://link.springer.com/article/10.1007/s10579-005-7882-7

[17] F. Schilder, “Event extraction and temporal reasoning in legal docu-
ments,” in Annotating, Extracting and Reasoning about Time and Events,
ser. Lecture Notes in Computer Science, F. Schilder, G. Katz, and
J. Pustejovsky, Eds. Springer, Jan. 2007, no. 4795, pp. 59–71.

[18] H. J. Ohlbach, “Computational treatment of temporal notions: The
CTTN–system,” in Annotating, Extracting and Reasoning about Time
and Events, ser. Lecture Notes in Computer Science, F. Schilder,
G. Katz, and J. Pustejovsky, Eds. Springer Berlin Heidelberg, Jan.
2007, no. 4795, pp. 72–87.

[19] I. Mani, M. Verhagen, B. Wellner, C. M. Lee, and
J. Pustejovsky, “Machine learning of temporal relations,” in ACL-44:
Proceedings of the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Association for
Computational Linguistics. Sydney, Australia: Association for
Computational Linguistics, 2006, pp. 753–760. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1220175.1220270

[20] N. Chambers, S. Wang, and D. Jurafsky, “Classifying temporal
relations between events,” in Proceedings of the 45th Annual
Meeting of the ACL on Interactive Poster and Demonstration
Sessions, ser. ACL ’07. Prague, Czech Republic: Association for
Computational Linguistics, 2007, pp. 173–176. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1557769.1557820

[21] A. K. Kolya, A. Ekbal, and S. Bandyopadhyay, “A first step
towards evaluating events, time expressions and temporal relations,”
in Proceedings of the 5th International Workshop on Semantic
Evaluation, ser. SemEval ’10. Los Angeles, California: Association
for Computational Linguistics, 2010, pp. 345–350. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1859664.1859741

[22] A. Berglund, R. Johansson, and P. Nugues, “A machine learning
approach to extract temporal information from texts in swedish and
generate animated 3d scenes,” in Proceedings of EACL-2006, 11th Con-
ference of the European Chapter of the Association for Computational
Linguistics. Trento, Italy: Association for Computational Linguistics,
2006, pp. 385–392.

[23] M. Lapata and A. Lascarides, “Inferring sentence-internal temporal
relations,” in Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for
Computational Linguistics: HLT-NAACL 2004, Jan. 2005, pp. 153–160.
[Online]. Available: http://aclweb.org/anthology/N04-1020

[24] P. Nemec, “Automatic analysis of temporal relations within a discourse,”
in 14th International Symposium on Temporal Representation and Rea-
soning, Jun. 2007, pp. 117–128.

[25] S. K. Sanampudi and G. V. Kumari, “Temporal reasoning in natural
language processing: A survey,” International Journal of Computer
Applications, vol. 1, no. 4, pp. 68–72, Feb. 2010.

[26] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ: Prentice Hall, Dec. 2009.


