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Abstract
Writing parallel programs is hard, especially for inexperi-
enced programmers. Parallel language features are still be-
ing added on a regular basis to most modern object-oriented
languages and this trend is likely to continue. Being able
to support developers with tools for writing and optimizing
parallel programs requires a deep understanding of how pro-
grammers approach and implement parallelism.

We present an empirical study of 135 parallel open-
source projects in Java, C# and C++ ranging from small
(<1000 lines of code) to very large (>2M lines of code)
codebases. We examine the projects to find out how lan-
guage features, synchronization mechanisms, parallel data
structures and libraries are used by developers to express
parallelism. We also determine which common parallel pat-
terns are used and how the implemented solutions compare
to typical textbook advice.

The results show that similar parallel constructs are used
equally often across languages, but usage also heavily de-
pends on how easy to use a certain language feature is. Pat-
terns that do not map well to a language are much rarer
compared to other languages. Bad practices are prevalent in
hobby projects but also occur in larger projects.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel Programming

Keywords study, parallelism, object orientation, languages,
open source

1. Introduction
Modern software needs to make use of parallelism to lever-
age the full computing power of current processors. Parallel
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programming requires considerably more skills than sequen-
tial programming since it introduces an additional layer of
complexity and even new types of errors. [1, 17] The po-
tential for deadlocks and data races makes parallel program-
ming more error prone. Although the demand for parallelism
has been rising in the last few years, most programmers still
lack expertise in parallel software development.[16]

Textbooks offer advice and best practices on how to im-
plement parallelism[3, 6, 12], but popular object-oriented
languages like Java, C# and C++ sometimes do not offer
advanced parallel constructs or synchronization primitives
required to follow the advice. Low-level parallelization and
synchronization primitives have been in object-oriented lan-
guages for some time now, but high level constructs are
still being added bit by bit to mainstream languages (for
example, Java has no simple parallel for loop). High-level
constructs simplify code and make programming less error
prone, while also increasing readability and maintainability.
C++ was lacking native parallel support for a long time and
was heavily reliant on libraries to provide the desired func-
tionality.

With different sets of parallel constructs in different lan-
guages and textbook advice for typical parallel problems,
which is often far from reality, we conducted a study on
how programmers implement parallelism and which lan-
guage features and libraries they use to tackle parallel prob-
lems.

2. Motivation and Research Questions
Lots of legacy code is still strictly sequential. With the in-
evitable advancement of multicore processors some of this
code and much of what gets written from scratch today needs
to be parallel. More and more code already contains some
kind of parallelism, but does not speed up the application to
its full potential. In many cases, these refactoring efforts just
mean simple loop parallelism or a bunch of threads handling
independent tasks.

The research community is trying to support devel-
opers in their struggle to implement (possibly complex)
parallelism[2]. Tools for automated or semi-automated par-
allelization exist [4, 8, 11, 14, 18], but in order to improve



these partially parallelized programs, we want to understand
better how programmers actually implement parallelism.

To correctly detect, recognize and handle parallelism, we
need to have an idea of how developers express parallelism
in their code. Introducing additional parallelism as well as
improving existing parallel regions requires a deep under-
standing of what the programmer intended, i.e. what con-
structs and patterns were implemented. Depending on the
general tendency of programmers to use more low-level syn-
chronisation constructs or high-level parallel patterns, new
tools for parallelization support can be focused on the actual
demand of either high- or low-level constructs. To gain in-
sight into programmers habits of introducing parallelism, we
want to answer the following research questions:

RQ1: Which language features, synchronization mecha-
nisms, parallel data structures and libraries are used by
developers to express parallelism? All three languages
(Java, C#, and C++) have different means of expressing
parallelism. Almost every new version of each language
brought new parallel features and this trend is likely to con-
tinue. While Java and C# had more regular updates and
therefore more parallel constructs added in shorter peri-
ods of time, C++ had parallel support through various ex-
ternal libraries (PThreads[13], OpenMP[5], Boost[7], Intel
TBB[15], ...).

The features, synchronization mechanisms and parallel
data structures available in each language vary wildly. While
simple synchronization mechanisms are based on the same
basic concepts such as locks and condition variables, they
appear in different variants between languages. Because
their interfaces are different, some of them are easier to un-
derstand and use than others.

The same applies to parallel data structures. Thread-safe
containers and atomic basic types are available in different
varieties ranging from generic containers to very specific
ones and even wrappers to synchronize accesses to other non
thread-safe containers.

Libraries also play an important role, especially for C++,
because they can provide functionality that is not (yet) avail-
able in the standard library of a language. C++ probably ben-
efits most from external libraries, as important parallel fea-
tures were not part of the language until recently, but there
are also libraries for C# and Java that provide missing fea-
tures.

Because there is such a complex integration of parallel
features and primitives between languages, we are interested
in which of these features, primitives and possibilities are
actually used by programmers to implement parallelism.

RQ2: Which high- or low-level parallel patterns are used?
Parallel patterns provide solutions to recurring problems in
a parallel programming context. They have been crafted by
experts to make life easier for less experienced parallel pro-
grammers. These patterns come in great variety from generic
ones to very specific ones. Some of them can be applied at

Java C# C++
Cassandra OpenSimulator Thunderbird
Neo4j StockSharp OpenH264
OpenML Azure Power Shell LLVM
Consulo IDE Smuxi Libre Office
JetBrains MPS OpenRA MySQL

Table 1. Application examples for each language

a high level of abstraction (master-worker, pipeline,...) while
others are better suited at the low level (fork/join, parallel
loop, ...).

We would like to know which parallel patterns are used in
practice and how they are distributed among the languages.
Some patterns might be easier to implement in a certain
language and might therefore be used more often.

RQ3: How do programmers’ solutions to common paral-
lel problems compare to textbook solutions? When paral-
lelizing existing software or writing parallel programs from
scratch, programmers face the same problems over and over
again. There are limits to the number of sensible ways of
parallelizing a piece of code. Textbooks cover most of them
and offer advice on transferring sequential code into a paral-
lel version. In reality, sequential problems do not look quite
like the idealized problems in textbooks.

Data dependencies and structural differences sometimes
prevent easy solutions or require non-trivial refactoring. For
non-expert parallel programmers, it often is not obvious
which of these approaches can or cannot be applied to their
code. Less experienced programmers may also not be aware
of these proven approaches and try to come up with their
own solutions. This is why we want to find out how often
these guidelines are used in reality, which ones are used
heavily (if any), and how close real solutions are to their
textbook counterparts.

3. Methodology
Our goal is to find out how programmers implement paral-
lelism in Java, C# and C++.

We studied 135 open source projects, consisting of 46
Java projects, 45 C# projects and 44 C++ projects. The
source code files were obtained from the major open source
code repositories SourceForge and GitHub as well as self-
hosted project pages (e.g.apache.org). We tried to cover
a broad spectrum of projects from small hobby projects
(<1000 lines of code) to large software projects (>2M
lines of code) with several professional full-time develop-
ers. The applications come from different domains including
research, graphics, computer vision, databases, emulators,
compilers, office and games. Table 1 lists some of the more
popular projects for each language.

The criteria a project had to meet to be included in our
corpus were the following: 1) The project had to contain



some kind of parallelism. Since the project repositories give
no indication if a project contains parallel regions, we had
to search the source code for evidence and filter out projects
which did not make use of parallelism. 2) We only wanted
projects that were actively developed, so we ignored projects
without a commit in the last six months. To be able to look
at the current state of open source projects, projects that
were not actively developed would not be helpful and the
chance of them using the latest parallel language features
was minimal.

To gather our data, we first programmatically searched
the code with a set of keywords specific to each language
to find the code locations where parallel instructions might
be found. These keywords included all the language fea-
tures which are used to implement parallelism, as well as
parallel containers and popular parallel libraries. We also
searched code comments to find hints for manual implemen-
tations of parallel patterns or synchronization primitives.
Some projects use wrappers around parallel language fea-
tures, so we also included them in project specific keyword
lists. Once we had our compiled list of code locations, we
manually inspected the code to confirm the findings and look
for possible high- or low-level patterns.

Our corpus consists of 52221 Java, 49087 C# and 20187
C++ source code files. Our search found parallel code loca-
tions in 5483 Java, 4900 C# and 2117 C++ files. So, parallel
regions are included in roughly 10% of all source code files,
which is also true for each of the three languages individu-
ally.

4. Results
We present the results based around our research questions
and focus on the interesting parts of the data we gathered.
We also found some interesting facts not directly related to
the research questions which will be presented at appropriate
locations.

The first thing we noticed while we collected projects for
the corpus was that parallelism was a lot less common in
C++ project than in C# or Java. We had to filter out many
more C++ projects in comparison to the other languages be-
cause they did not match our criterion of containing paral-
lelism. This is probably due to the fact that parallel features
have been introduced much earlier into the standard libraries
of Java and C# than C++. This can also be seen by the fact
that Java and C# projects barely use external libraries to im-
plement parallelism, whereas in C++ libraries are the most
common way of expressing parallelism.

From the raw numbers of classes and features support-
ing parallelism for each language, C# and Java are pretty
much on par, while C++ places a distant third. The recent
additions to the standard and the available libraries helped in
that regard, but the more low-level nature of the language is
clearly visible by the absence of convenient high-level paral-
lel constructs. Concerning thread-safe containers, Java is the

clear winner. It hast three times the number of containers as
C#, while C++ only supports thread-safe containers through
third-party libraries.

4.1 RQ1: Which language features, synchronization
mechanisms, parallel data structures and libraries
are used by developers to express parallelism?

This research question investigates to which extent develop-
ers make use of the available parallel features in each lan-
guage.

4.1.1 High-level Features
Features and language constructs in this work are consid-
ered high-level when they provide a layer of abstraction
and convenience above the low-level work of manually han-
dling threads and synchronization. A typical example would
be the Parallel.For loop in C#, which completely hides
the complexity of thread management and synchronization.
Since Delayed in Java or Task in C# are used by many
of the high-level constructs, they are also regarded relevant
here.

Tables 2 and 3 contain the high-level constructs for Java
and C# with the number of projects in which they appear as
well as the percentage of total projects (for each language)
this corresponds to. The arguably closest counterpart to these
high-level patterns in C++ is OpenMP, which is supported by
most modern compilers, although technically it is a library.
The results can be found in Table 4.

In Java the most frequently used feature is Executors.
Two thirds of all the projects we examined use them to avoid
managing Threads and ThreadPools manually. The next
three in line are ExecutorService, Callable and Future,
which go hand in hand with the Executor. Further down in
the ranking are some more classes related to Executors,
which leads to the conclusion that this is the prevalent
method of implementing task parallelism in Java. Another
heavily used concept is that of BlockingQueue and its vari-
ants, which often gets used to implement producer-consumer
patterns. It is a buffer which blocks take requests when the
queue is empty as well as put requests when the queue is
full to regulate the produce/consume ratio. Features that
are not used are ForkJoinTask, ForkJoinWorkerThread
and RunnableScheduledFuture. Those are specialized
classes and interfaces; it is not surprising that they do not get
used. ForkJoinTask essentially is a lightweight Future,
which has specialized subclasses RecursiveAction and
RecursiveTask, which do get used in some projects.

When it comes to C#, there are fewer classes and pre-
defined specializations available compared to Java. But
they cover the same aspects of task parallelism. Addition-
ally, C# offers a simple way of implementing data paral-
lelism, which is lacking in Java. A Task is a lightweight
version of a thread, but it is considered a high-level con-
struct since it also supports the functionality of a Future.
It is the most frequently used parallel class in our C#



Feature # projects % of total
Executor 31 67.39%
ExecutorService 28 60.87%
Callable 24 52.17%
Future 23 50.00%
BlockingQueue 20 43.48%
ScheduledExecutorService 16 34.78%
ThreadPoolExecutor 15 32.61%
ArrayBlockingQueue 13 28.26%
LinkedBlockingQueue 13 28.26%
ScheduledFuture 11 23.91%
FutureTask 8 17.39%
ScheduledThreadPoolExecutor 8 17.39%
PriorityBlockingQueue 3 6.52%
CompletionService 2 4.35%
AbstractExecutorService 2 4.35%
Delayed 2 4.35%
DelayQueue 2 4.35%
ExecutorCompletionService 2 4.35%
ForkJoinPool 2 4.35%
RecursiveAction 2 4.35%
RunnableFuture 2 4.35%
SynchronousQueue 2 4.35%
BlockingDeque 1 2.17%
LinkedBlockingDeque 1 2.17%
LinkedTransferQueue 1 2.17%
RecursiveTask 1 2.17%
TransferQueue 1 2.17%
ForkJoinTask 0 0.00%
ForkJoinWorkerThread 0 0.00%
RunnableScheduledFuture 0 0.00%

Table 2. Usage of high-level constructs in Java

corpus. ThreadPool takes second place, which is prob-
ably attributable to its variety of convenience features. A
TaskScheduler allows fine control over the scheduling pol-
icy in a ThreadPool. Their usage is roughly consistent with
the usage numbers of their correspondig Java counterparts.
The BlockingCollection however, which is similar to
BlockingQueue in Java, gets much less use with only 6 out of
45 projects. With Parallel.For and Parallel.ForEach

C# also offers data parallelism constructs, which are used in
13.33% of all projects. Parallel.Invoke offers a fork/join
mechanism, which is only used in one project. An interest-
ing concept in C# is the Partitioner class, which simpli-
fies partitioning of arrays, lists and enumerables into chunks
for parallel processing. It can also be used together with
Parallel.ForEach to create application-specific data par-
titioning schemes. Surprisingly, it is never used in our cor-
pus.

C++ only offers a single one of the features discussed
with Java and C#, namely the future. As a fairly new fea-

Feature # projects % of total
Task 33 73.33%
ThreadPool 19 42.22%
TaskScheduler 10 22.22%
Parallel.For 8 17.78%
BlockingCollection 6 13.33%
Parallel.ForEach 6 13.33%
TaskFactory 5 11.11%
Parallel.Invoke 1 2.22%
Partitioner 0 0.00%

Table 3. Usage of high-level constructs in C#

Feature # projects % of total
#pragma omp parallel for 6 13.64%
future/promise 3 6.82%
#pragma omp parallel 2 4.55%
packaged task 0 0.00%
shared future 0 0.00%

Table 4. Usage of high-level constructs in C++

ture introduced in 2011, it is used in only 3 out of 44 projects.
The related shared future as well as packaged task,
which is comparable to Callable in Java (top 3 in the rank-
ings), are nowhere to be found in our corpus. Since OpenMP
is a common substitute for the missing data parallel con-
structs and most compilers support it natively, we take a look
at the usage of these pragmas. The most common feature
is #pragma omp parallel for, which corresponds nicely
to the Parallel.For numbers seen in the C# projects.
#pragma omp parallel is also used in the G’MIC and
OpenCV projects to unconditionally execute code on all
available OpenMP threads. The reduction clause did not
appear in any of the projects.

The use of high-level parallel constructs in each language
obviously depend on the availability of language features.
While Java focuses more on task parallelism and C++ more
on data parallelism through OpenMP, C# offers support for
both. Yet it is interesting to see that the use percentages are
in the same range for the thread pool constructs and blocking
collections between C# and Java as well as the data parallel
constructs between C# and C++.

4.1.2 Synchronization Mechanisms
Regarding the basic building blocks for parallel applications,
we looked at the available synchronization mechanisms for
each language. Again Java and C# are pretty much on par
covering basic primitives as well as some more specialized
and convenient constructs. C++ is only covering the basics.

Starting with Java, synchronized is by far the most
used synchronization mechanism (87%), as can be seen in
Table 5. Although it is a coarse grained mechanism (espe-
cially when used for whole methods, which is the major use



Feature # projects % of total
synchronized 40 86,96%
Lock 19 41.30%
ReadWriteLock 15 32.61%
ReentrantReadWriteLock 14 30.43%
CountDownLatch 12 26.09%
ReentrantLock 11 23.91%
Semaphore 9 19.57%
Condition 5 10.87%
CyclicBarrier 4 8.70%
AbstractQueuedSynchronizer 2 4.35%
LockSupport 2 4.35%
AbstractOwnableSynchronizer 0 0.00%
AbstractQueuedLongSynchronizer 0 0.00%
Exchanger 0 0.00%
Phaser 0 0.00%

Table 5. Usage of synchronization primitives in Java

case in our corpus), it is easy to use and hardly suscepti-
ble to errors. With 41%, the next mutual exclusion feature
is Lock, followed closely by the specialized versions for
single writer, multiple reader problems. CountDownLatch
and CyclicBarrier are moderately used, while their more
complex sibling Phaser is not used at all. Exchanger is
also not in use. LockSupport is a building block for syn-
chronization primitives similar to a semaphore and is in fact
used in Consulo to build a custom version of a concurrent
hashmap. Neo4j als makes use of this class in several places
e.g. to implement a simpler and faster latch or a prefetch-
ing mechanism which synchronizes regularly with the main
thread. AbstractQueuedSynchronizer is a similar case;
it is used in Consulo to implement a semaphore.

Similar to Java, C# has a lock built-in to every class.
The mutual exclusion feature lock() is also the top item
on our list in Table 6. While it is common in Java to lock
methods with the synchronized keyword, the correspond-
ing C# method attribute MethodImplOptions.Synchro-

nized is used in fewer than 5% of the projects. C# of-
fers slim versions of some of their synchronization fea-
tures, which trade functionality for performance . In most
cases the slim version is preferred, which makes us won-
der why developers chose ManualResetEvent three times
more often than ManualResetEventSlim. Mutex provides
the same functionality as lock(), but extends beyond pro-
cess borders. Since this is often not required, Mutex gets
used far less. Busy waiting is generally considered bad
practice, which is why SpinLock gets not used at all by
developers. But sometimes it is the right tool, when wait
times are short and performance is critical, which is ex-
actly what happens in the four projects where SpinWait

gets used. C# also provides an explicit memory barrier
Interlocked.MemoryBarrier, which prevents instruc-
tion reordering across the barrier.

Feature # projects % of total
lock() 42 93.33%
ManualResetEvent 22 48.89%
Monitor 17 37.78%
AutoResetEvent 16 35.56%
ReaderWriterLockSlim 15 33.33%
WaitHandle 13 28.89%
EventWaitHandle 10 22.22%
Mutex 10 22.22%
ManualResetEventSlim 8 17.78%
Barrier 7 15.56%
Semaphore 6 13.33%
SpinWait 4 8.89%
CountdownEvent 3 6.67%
ReaderWriterLock 3 6.67%
SemaphoreSlim 3 6.67%
MethodImplOptions
Synchronized 2 4.44%

Interlocked.MemoryBarrier 1 2,22%
SpinLock 0 0.00%

Table 6. Usage of synchronization primitives in C#

Feature # projects % of total
mutex 39 88.64%
condition variable 28 63.63%
Semaphore 18 40.91%
CriticalSection 17 38.64%
unique lock 16 36.36%
lock guard 12 27.27%
barrier 5 11.36%
#pragma omp critical 3 6.82%

Table 7. Usage of synchronization primitives in C++

Again C++ offers only the most basic synchronization
primitives. Native C++ did not offer any of these constructs
until C++11 and then only added mutexes and condition
variables. Until then these were mostly provided by the boost
and pthread libraries. The numbers in Table 7 contain the li-
brary versions as well. barrier also refers to both the boost
and pthread versions. Semaphore and CriticalSection

are only available on Windows. The OpenMP critical

clause can only be used together with other OpenMP con-
structs, which is why it is only used in 3 projects (half of the
projects using OpenMP). The usage of the mutual exclusion
feature is in line with the numbers of its C# and Java counter-
part. Although mutex and condition variable have only
been available since 2011 it is good to see that they are al-
ready gaining some momentum. Developers use them in 11
out of 39 projects for the mutex and 6 out of 28 for the con-
dition variable.



All three languages have different tools for synchroniz-
ing parallel executions. C++ covers the basics and relies on
the developer to implement more sophisticated synchroniza-
tion schemes tailored to the use case. C# has a much wider
variety of options to handle typical synchronization prob-
lems such as single writer, multiple reader scenarios. Java
additionally offers some basic blocks purpose-built for con-
structing advanced synchronization mechanisms.

4.1.3 Data Structures
Parallel programs typically operate on data stored in thread-
safe containers. Locking state variables is expensive, which
is why atomic variables are preferred. We take a look at the
offerings of our three languages regarding concurrent data
structures and atomic variables.

Java provides developers with various thread-safe map,
list, set and queue implementations. Additionally it offers
wrapper classes to make arbitrary container implementa-
tions thread-safe as long as they implement one of the
generic container interfaces. Table 8 shows that the devel-
opers use both variants, but often do not benefit from the
performance gains of the specialized container when using
synchronizedMap together with HashMap. Of these con-
tainers ConcurrentHashMap is by far the most common,
with over 50% of all projects using it. Java also has atomic
versions for various numeric types, which implement incre-
ment and decrement operations for atomic counters. They
also provide compareAndSet operations to implement non-
blocking algorithms. There are wrappers for volatile vari-
ables, which provide atomic behavior, when this is only oc-
casionally necessary or putting large numbers of variables
in atomic objects is too memory-intensive. Again, program-
mers do not use them often in our corpus.

C# developers only have four thread-safe containers to
choose from, but similar to Java they prefer the key-value
map implementation named ConcurrentDictionary. Queue
and bag/set containers also show similar usage numbers
compared to Java. C# does not provide atomic types. In-
stead it offers methods implementing atomic operations on
standard numeric types. The Interlocked class, which is
used in 22 of the 45 projects, comes with increment, decre-
ment, add as well as compare-and-swap operations. The
Interlocked.read() method is only required on 32-bit
systems when doing a 64-bit read.

With C++11 came atomic data types while concurrent
containers are entirely lacking from the standard library.
Developers are required to explicitly synchronize accesses
to the standard non thread-safe containers. Three of the
projects in our corpus use the concurrent collections pro-
vided in the Intel TBB library. 20 projects use atomic vari-
ables, while both C++ style (std::atomic<int>) and C
style (atomic int) variants are equally present. The C-style
functions for modifying atomic variables are also listed in
Table 10. There are a lot more atomic types in C++, for ex-
ample int least64 t which typically defaults to the small-

Feature # projects % of total
ConcurrentHashMap 26 56.52%
synchronizedMap 15 32.61%
CopyOnWriteArrayList 14 30.43%
ConcurrentLinkedQueue 11 23.91%
synchronizedList 10 21.74%
SynchronizedSet 9 19.57%
CopyOnWriteArraySet 6 13.04%
ConcurrentSkipListSet 3 6.52%
synchronizedCollection 3 6.52%
ConcurrentLinkedDeque 1 2.17%
ConcurrentSkipListMap 1 2.17%
synchronizedSortedMap 1 2.17%
synchronizedSortedSet 1 2.17%
ConcurrentNavigableMap 0 0.00%
AtomicInteger 28 60.87%
AtomicBoolean 17 36.96%
AtomicLong 16 34.78%
AtomicReference 13 28.26%
AtomicReferenceArray 7 15.22%
AtomicIntegerArray 5 10.87%
AtomicLongArray 4 8.70%
AtomicIntegerFieldUpdater 2 4.35%
AtomicReferenceFieldUpdater 2 4.35%
AtomicLongFieldUpdater 1 2.17%
AtomicMarkableReference 1 2.17%
AtomicStampedReference 0 0.00%

Table 8. Usage of concurrent data types and collections in
Java

Feature # projects % of total
ConcurrentDictionary 22 48.89%
ConcurrentQueue 11 24.44%
ConcurrentBag 5 11.11%
ConcurrentStack 0 0.00%
Interlocked.Increment 19 42.22%
Interlocked.Exchange 12 26.67%
Interlocked.CompareExchange 10 22.22%
Interlocked.Decrement 10 22.22%
Interlocked.Add 3 6.67%
Interlocked.Read 3 6.67%

Table 9. Usage of concurrent data types and collections in
C#



Feature # projects % of total
std::atomic<bool> 7 15,91%
atomic int 6 13.64%
atomic fetch 6 13.64%
atomic exchange 6 13.64%
std::atomic<int> 5 11,36%
atomic compare 4 9.09%
atomic load 4 9.09%
atomic store 4 9.09%
atomic bool 3 6.82%
std::atomic<size t> 3 6,82%
atomic uint 2 4.55%
std::atomic<uint32 t> 2 4,55%
std::atomic<uint64 t> 2 4,55%
atomic long 1 2.27%
atomic int fast 1 2.27%
atomic intptr 1 2.27%
atomic size t 1 2.27%

Table 10. Usage of C++11 atomic data types

est type with at least 64 bits or int fast16 t which may
default to a 32 bit type because it provides faster arithmetic
or can be optimized better.

There are two approaches for handling atomic variables
in our three languages. Classes providing atomic methods
for their encapsulated data type and special functions for
atomically modifying volatile variables. C++ and Java sup-
port both, while C# only provides the latter. When it comes
to concurrent data structures, C++ provides none, while C#
and Java supply roughly the same types of structures. While
Java has a wider selection of variants, developers mostly use
thread-safe key-value maps in both languages.

4.1.4 Libraries
Why reinvent the wheel when there is already a library avail-
able that does exactly what you want? While this is true for
many aspects of programming, we focus on the libraries ded-
icated to provide parallel features. From the topics discussed
above, we already know that C++ is a perfect candidate for
parallel libraries, since many desired features are lacking
from the standard library, which is even more true for code
written before C++11. Java and C# have much less demand
for third-party libraries because they natively cover a much
broader spectrum of useful features. In fact, we did not find
any external parallel library used in multiple projects across
our corpus. In C# there are a lot of cases, where develop-
ers implemented features already available in the standard
library. This is due to the fact that the .NET runtime library
comes in variants for desktop PCs, tablets, mobile phones,
embedded devices and gaming consoles which do not always
support all features related to parallelism.

Regarding C++, this was a totally different story. The
most used libraries are listed in Table 11. PThreads and

Library # projects % of total
phtreads 22 50%
Windows-threads 20 45%
Boost-thread 7 16%
OpenMP 6 14%
Intel TBB 3 1%
MPI 2 <1%
Microsoft PPL 1 <1%
Apple GCD 1 <1%

Table 11. Usage of parallel libraries in C++

Windows-threads are used in half of all the projects. Some-
times both are used to enable cross-platform applications.
Boost threads are also popular, followed by OpenMP, In-
tel TBB and MPI. Microsoft PPL and Apple GCD are only
used in one project. We found that developers tend to rely on
a single library and do not try to combine parallel features
from different libraries. In some cases, developers provide
their own implementations of features which would be read-
ily available in one of these common libraries.

A notable exception regarding library use is the OpenCV
project. It supports many platforms and is heavily optimized
for each one of them. Besides supporting an amazing num-
ber of graphics libraries, it can be configured to use many
different parallel libraries. Listing 1 shows a code exam-
ple which demonstrates the use of many different parallel
libraries. Similar patterns are found all over the OpenCV
source code.

# i f n d e f HAVE TBB
# i f d e f i n e d HAVE CSTRIPES

# i n c l u d e ”C= . h ”
# unde f s h a r e d

# e l i f d e f i n e d HAVE OPENMP
# i n c l u d e <omp . h>

# e l i f d e f i n e d HAVE GCD
# i n c l u d e <d i s p a t c h / d i s p a t c h . h>
# i n c l u d e <p t h r e a d . h>

# e l i f d e f i n e d WINRT
# i n c l u d e <p p l t a s k s . h>

# e l i f d e f i n e d HAVE CONCURRENCY
# i n c l u d e <p p l . h>

# e n d i f
# e n d i f

Listing 1. OpenCV parallel.cpp code example

4.2 RQ2: Which high- or low-level parallel patterns
are used?

Parallel patterns provide solutions to recurring parallel prob-
lems, which can be found in various textbooks [9, 10]. We
searched our corpus for popular patterns to find out how
often they are implemented by developers. Table 12 con-



Pattern Java C# C++
Master-worker 29 23 23
Producer-consumer 10 5 5
Pipeline 8 9 8
Parallel Loop 1 8 5
Fork-join 3 1 1

Table 12. Number of projects containing parallel patterns

tains our findings. We consider master-worker, producer-
consumer and pipeline high-level patterns, parallel loop and
fork-join are low-level patterns. Although a parallel loop can
be easily implemented using the master-worker pattern, the
master-worker pattern is much more versatile. We consider
a parallel loop low-level because of its simple data parallel
intent.

The master-worker pattern is by far the most frequent
parallel pattern in our corpus. This is probably due to the fact
that it is the most obvious and simple way of implementing
parallelism. In its basic form this pattern creates a number
of threads that perform work and report back when they
are finished. It is equally popular across languages with a
slight advantage for Java, maybe due to the ease-of-use of
the ExecutorService which appears in almost all master-
worker occurrences in Java.

Next up is the producer-consumer pattern which gets 10
uses for Java and 5 each for C# and C++. Java and C# pro-
vide convenient blocking collections to handle synchroniza-
tion between producers and consumers, while in C++ devel-
opers need to implement this mechanism.

The pipeline pattern gets equal use in all three languages.
In C# and Java developers are mostly using the same block-
ing collections as buffers between pipeline stages as in
the producer-consumer pattern. Although Java offers the
Exchanger class which is designed to be a buffer between
pipeline stages, this feature is never used.

The Parallel loop pattern is a good candidate for showing
that the use of a pattern depends on ease of use. C++ and C#
provide easy ways to implement a data parallel loop through
#pragma omp parallel for and Parallel.For/Each

respectively. In Java there is no such construct and only
one project implements it by means of the aforementioned
master-worker pattern.

Fork-join is the simplest task parallel pattern, but not
used much because of the availability of more convenient
higher-level options. Fork-join is a building block for the
divide-and-conquer pattern, which we do not consider here,
but it can be observed in the Java code that makes use of
RecursiveAction and ForkJoinPool. Fork-join can be
easily realized in C# by calling Parallel.Invoke, while
in C++ developers need to handle the threads explicitly.
The fork() and join() functions by themselves are not
considered to match our patterns.

4.3 RQ3: How do programmers’ solutions to common
parallel problems compare to textbook solutions?

There are many textbooks about parallel patterns and best
practices for parallel programming, but not all developers
seem to be aware of them or at least do not adhere to them.
In our corpus, hobby projects with arguably less experienced
programmers show more violations of best practices com-
pared to larger projects with more developers.

Parallel patterns are inherently problematic because real
world problems often do not exactly match a pattern, so
developers start being creative and come up with their own
solutions instead of trying to reuse existing functionality.
This leads to more error prone code. Smaller projects tend
to reimplement slight variations of existing functionality,
while projects with a larger codebase often reuse existing
functionality and extend these classes via subclassing.

An exception is the master-worker pattern. It seems that
it is such an intuitive pattern, that some developers seem
to implement it by accident. Unexperienced developers just
create threads and distribute their work to them. In larger
projects comments and class naming suggests that they are
aware of the master-worker pattern and implement it on
purpose, which is not the case in most small projects.

Prime examples of bad pratice are the synchronized()
and lock() features in Java and C#. Both language refer-
ences strongly advise against locking on publicly accessible
types or classes. Nevertheless this is what happens in most
instances in both Java and C# regardless of the size of the
project.

5. Threats to Validity
This paper provides a window on the current state of paral-
lelism in open source projects. There might be some cases
where we missed parallel code locations. One such case are
libraries. We included the most popular parallel libraries into
our search, but there are a lot more libraries that offer parallel
functionality. If such a library was used and its methods were
named differently from what the typical names for parallel
constructs are, then we probably missed it. The other case
would be manual implementations of parallel constructs,
which are also not conventionally named and do not contain
hints in the comments. Such an example would be a french
programmer implementing a barrier and naming it barrière.
While it would be easy to account for language differences,
this was not our goal and such cases can be handled by the
techniques described in the following paragraphs. In other
cases we did catch manual implementations of parallel prim-
itives. Here are some examples: The OpenSim C# project
implemented its own EventWaitHandle class, because it
is not natively available on Windows CE devices. Another
project called Enyim Memcached Client implemented its
own CountDownEvent class, which is very close in func-
tionality to the construct contained in the standard library.
In C++ Kythe ships with a custom Mutex implementation,



which internally uses the Windows CriticalSection API
instead of using the pthread, boost, or C++11 counterparts.
There are a few other examples which we also accounted for
in our statistics.

Detecting the use of parallel patterns could benefit from a
dynamic analysis approach. Seeing the real data dependence
and control dependence graphs from an instrumented execu-
tion would allow for a better understanding of the parallel
behavior of these programs.

Static code analysis based on ASTs would also lead to
a better understanding of the code than our regular expres-
sion based approach. Certain ambiguities would be easier to
resolve and comments could be ignored without manual fil-
tering. This would lead to a higher accuracy with less room
for human error.

6. Conclusion
In order to be able to support programmers with tools for
multicore development, we need to understand how develop-
ers approach and implement parallelism. We need to know
which language features and parallel patterns they use and
which errors they make. As a first step we examined object-
oriented software projects to gain some insight.

In this paper we have presented a study of 135 parallel
open-source projects, consisting of 45 C#, 44 C++ and 46
Java programs. Parallel constructs were found in 10% of the
source files, which was consistent across languages. Devel-
opers focus on hotspots and bottlenecks in their applications
and parallelize those first.

We further looked at the use of language features related
to parallelism. While C# and Java provide a great variety of
options, C++ is lacking high-level constructs and even third-
party libraries do not close this gap. Concurrent containers
are dominated by key-value maps, which are easy to use but
hardly the optimal choice in every scenario.

When it comes to synchronization primitives all three
languages cover the basic building blocks, while C# and
Java also offer more sophisticated features. Looking closer
at the use of these primitives reveals that the ease of use
of synchronized blocks far outweighs the performance
benefits of finer locking schemes. Best practices are also
mostly ignored especially with the synchronized feature.

Developers tend to intuitively prefer the master-worker
pattern, because it is simple to understand and easy to im-
plement. The other parallel patterns we examined were much
less common. There are many additional parallel patterns we
did not consider here, but might explore in the future to get a
deeper understanding of how programmers use parallelism.

From the data we gathered, we now have some hints on
where to support developers with tools for implementing
parallelism. With respect to the most frequently used parallel
patterns, we can focus our attention on them instead of
wasting resources on rarely used patterns. Making those that

are heavily used easier to implement and less error-prone
would benefit inexperienced parallel programmers.

Our study gives us a good first insight into how devel-
opers make use of the available language features to create
parallel programs. More sophisticated methods such as static
analysis could gather additional data. This information will
help create better tools for supporting programmers in writ-
ing parallel programs from scratch and improving existing
parallel software.
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