
Locating Parallelization Potential in Object-Oriented Data Structures

Korbinian Molitorisz, Thomas Karcher, Alexander Bieleš, Walter F. Tichy

Institute for Program Structures and Data Organization (IPD)
Karlsruhe Institute of Technology (KIT)

Am Fasanengarten 5, 767131 Karlsruhe, Germany
Email: molitorisz, thomas.karcher, walter.tichy@kit.edu, alexander.bieles@student.kit.edu

Abstract—The free lunch of ever increasing single-processor
performance is over. Software engineers have to parallelize
software to gain performance improvements. But not every
software engineer is a parallel expert and with millions of lines
of code that have not been developed with multicore in mind,
we have to find ways to assist in identifying parallelization
potential.

This paper makes three contributions: 1) An empirical study
of more than 900,000 lines of code reveals five use cases in
the runtime profile of object-oriented data structures that
carry parallelization potential. 2) The study also points out
frequently used data structures in realistic software in which
these use cases can be found. 3) We developed DSspy, an
automatic dynamic profiler that locates these use cases and
makes recommendations on how to parallelize them. Our
evaluation shows that DSspy reduces the search space for
parallelization by up to 77% and engineers only need to
consider 23% of all data structure instances for parallelization.

Keywords-Parallelization; Detection; Dynamic Analysis; Tool

I. INTRODUCTION

The multicore era promises growing computing power for

those software engineers familiar with parallel programming.

But currently the majority of software engineers are not

parallel programming experts. Parallelization should neither

be seen as a book of seven seals nor as a Pandora’s Box.

As Vandierendock et al. state in [1] we have to find ways to

assist software engineers in parallelization to avert the next

software crisis.
In this paper we present an approach that has the potential

to lower the burden for many software engineers that have to

deal with parallelizing legacy software. Today’s automated

parallelization techniques have several weaknesses: They are

1) not trusted, 2) not generally applicable and 3) produce re-

sults not comparable to an engineer [2]. This paper addresses

all three aspects in the following way:
1) Trust: As Tournavitis et al. state in [3], it is necessary

to let engineers participate in the parallelization process in

order to gain their trust. It must be clear what happens

and why. Our approach involves engineers and supports

program understanding in four ways: DSspy detects relevant

locations, provides reasons, gives parallelization recommen-

dations, and visualizes the runtime profiles.
2) General Applicability: Many parallelization tech-

niques address very specific use cases. Examples are au-

tomatic parallelization without data dependencies or with

predefined numbers of iterations ([4], [5], [6]). We focus on

coarse structures of object-oriented programs.

3) Quality: A parallelization tool should perform well in

reducing the search space for the engineer and have high

precision and recall rates. We show that we cut down the

search space for parallelization by up to 76.92% within sev-

eral minutes and our recommendations achieve a precision

rate of 66.67%. Following them yields an average speedup

of 2.13 on an 8-core machine.

II. DATA STRUCTURE OCCURRENCE AND BEHAVIOR

We started this research by conducting an empirical study

with which we explored whether general parallelization

potential can be found in the runtime profile of object-

oriented data structures.

Before we looked at the parallel potential we first an-

swered the following two questions and address the aspects

general applicability and program understanding: 1) What

data structures are frequently used by software engineers?

2) How can we visualize data structure usage?

In object-oriented programs a data structure not only

consists of data containers but also provides operations to

manipulate them. Data structures provides these operations,

such as read, insert, or delete via a defined interface.

We composed a benchmark of 37 realistic programs from the

two open source platforms SourceForge [7] and CodePlex

[8]. Each program belongs to one of eleven different ap-

Application Domain #Instances LOC

File and text search (Srch) 11 1,046
Source code optimization (Opt) 16 2,048
Compression (Comp) 2 4,342
Program visualization (Vis) 57 10,712
Parser 51 17,836
Image algorithm library (Img lib) 60 41,456
Game 315 45,512
Simulation 150 63,548
Graph algorithms library (Graph lib) 184 69,472
Office software 396 151,220
Data structures & algorithms library (DS lib) 718 529,164
∑

1,960 936,356

Table I
EMPIRICAL STUDY. DISTRIBUTION OF BENCHMARK PROGRAMS ACROSS

DOMAINS

2014 IEEE 28th International Parallel & Distributed Processing Symposium

1530-2075/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPS.2014.106

1005

0

20

40

60

80

100

120

140

160

180

200
7z

ip
 (∑

:2
)

‚d
sa

‘ (
∑:

)1
0)

co
m

pg
eo

 (∑
:1

3)

or
az

io
1

(∑
:3

2)

do
ts

pa
tia

l (
∑:

66
3)

Co
nt

en
tf

in
de

r (
∑:

11
)

rr
rs

ro
gu

el
ik

e
(∑

:5
)

itt
yc

oo
n.

ne
t (

∑:
27

)

th
eA

irl
in

e
(∑

:1
30

)

M
an

ic
D

ig
ge

r2
01

1
(∑

:1
53

)

ze
dg

ra
ph

 (∑
:2

)

Tr
ee

La
yo

ut
He

lp
er

 (∑
:2

2)

gr
ap

hs
ha

rp
 (∑

:1
60

)

co
gn

iti
on

m
as

te
r (

∑:
60

)

Pr
oc

es
sH

ac
ke

r (
∑:

4)

Be
Ha

pp
y

(∑
:7

)

Te
rr

aB
IB

 (∑
:1

3)

m
et

ac
lip

 (∑
:1

4)

cl
ip

pe
r (

∑:
20

)

w
av

el
et

st
ud

io
 (∑

:2
8)

ne
tin

fo
tr

ac
e

(∑
:3

0)

dd
dp

ds
 (S

m
ar

tC
A)

 (∑
:3

4)

gr
ea

tm
ap

s (
∑:

77
)

O
sm

Ex
pl

or
er

 (∑
:1

69
)

cs
pa

rs
er

 (∑
:5

1)

Se
qu

en
ce

Vi
z (

∑:
57

)

sh
ar

pe
ne

r (
∑:

16
)

N
et

_W
ith

_U
I (

∑:
1)

st
ar

sy
st

em
si

m
ul

at
or

 (∑
:1

)

Ar
ca

nu
m

 (∑
:2

)

tw
od

sp
hs

im
 (∑

:8
)

fir
e

(∑
:8

)

ru
sh

H
ou

r (
∑:

8)

bo
ry

s-
M

es
hR

ou
tin

g
(∑

:1
9)

ev
o

(∑
: 3

1)

do
tq

cf
 (∑

:3
5)

gp
do

tn
et

 (∑
:3

7)

Comp DS lib Srch Game Graph lib Img
lib

Office software Parser Vis Opt Simulation

List (∑: 1.275) Dictionary (∑: 324) ArrayList (∑: 192) Stack (∑: 49) Queue (∑: 41) Rest (∑: 79)

Figure 1. Data structure occurrence. X-axis: Programs with their domains. Y-axis: Number of occurrences by data structure.

plication domains and ranges from 300 to 460,000 lines of

code (LOC) written in C#. We observed all data structures

in the .NET standard class library and counted the number

of data structure instances. Table I outlines all application

domains, the number of data structure instances from the

standard class library and the number of LOC.

A. What data structures are frequently used by software
engineers?

We used regular expressions to gather the number of

data structure instances, their locations, and their types from

the Common Type System (CTS, standard class library of

.NET). We covered all dynamic data structures from the

CTS and arrays. One central finding in our study was

that list was by far the most frequently used dynamic

data structure. 1,275 of 1,960 dynamic data structure in-

stances we found were list objects (65.05%), followed by

dictionary with 324 occurrences (16.53%). Additionally

to the 1,960 dynamic data structures we found 785 arrays.

We further looked at the number of list instances declared

within other data structures and found that every third class

contained at least one list instance as member. This

is seven times more often than dictionary. We also

found that this ratio is independent of program size but not

of application domain. Figure 1 shows the occurrence of

dynamic data structures in all 37 benchmark programs. Each

application domain is sorted by the absolute number of data

structure instances in ascending order. Data structures with

a frequency of less than 2% are not shown. These were:

hashSet (1.94%), sortedList (1.02%), sortedSet
(0.51%), sortedDictionary (0.41%), linkedList
(0.15%) and hashtable (0.00%).

During manual code inspections we observed improper

data structure usage in several cases: On the one hand we

found that lists were used although other data structures

List<int> list = new List<int>(10);
for (int i=0; i<10; i++) list.Add(i);
for (int i=9; i>=0; i--) Debug.Write(list[i]);

0

9 9
8 8

7
6

5

7
6

5
4

3
2

1

4
3

2
1

Figure 2. Runtime profile for the data structure list for the source code
above: Each bar on the chronological x-axis represents an access event.
The y-axis on the colored bars specifies the index, the grey bars indicate
the overall size of the data structure.

like trees or heaps would have been better suited for the the

intended purpose. On the other hand we found that lists
were decorated to behave like other data structures from the

standard library instead of simply using the existing ones.

In one case a list was used to act like a binary tree,

although binary tree implementations are available in the

standard library. Both cases showed poor performance and

could be optimized using the proper sequential or parallel

data structure.

For the question of data structure frequency we conclude

that list is the most frequently used dynamic data structure

from the CTS. We extended our regular expression to also

cover arrays as static data structures and state that lists
and arrays account for more than 75% of all data structure

instances.

1006

B. How can we visualize data structure usage?

Visualizing data structure accesses facilitates their analy-

sis. We use runtime profiles that contain all access events to

a data structure instance from initialization to deallocation

in chronological order. For a proper visualization we need

to be able to capture when an access event occurs, its target

location within the data structure instance, and its access

type.

We developed a custom data mining tool that helped us to

locate recurring access patterns within the runtime profiles.

Our tool instruments source code, recompiles and executes

it, captures the information, and displays it graphically so we

could focus on exploration. Figure 2 shows a screenshot of

this tool and the corresponding source code. In this example

a list is filled with values from front to end. In a second

phase these items are read in reverse order. The number

at the top of each bar represents the index of the accessed

element. The green bars represent read accesses, the red bars

stand for write accesses. The grey bar in the background

represents the length of the data structure instance at each

point of access. As the list is initialized to a fixed size, the

Add()-operations insert new elements but do not increase

the size of the list. This snippet is meant as an example and

it can easily be seen that the runtime profile contains two

separate access patterns. Realistic programs may contain a

multitude of different patterns.

III. LOCATING PARALLELIZATION POTENTIAL

In this section we deal with the question whether we can

locate access patterns in runtime profiles and whether they

can profit from parallelization. We address the following two

questions: 1) What access patterns are predominant? 2) What

access patterns offer parallel potential?

Application Domain LOC Recurring
Regularities

Parallel
Use
Cases

TerraBIB Office 10,309 1 0
rrrsroguelike Game 659 1 1
fire Simulation 2,137 1 2
dotqcf Simulation 27,170 2 0
Contentfinder Search 1,046 2 2
astrogrep Computation 846 2 3
borys-MeshRouting Simulation 6,429 3 3
csparser Parser 17,836 5 5
dsa DS lib 4,099 5 0
TreeLayoutHelper Graph lib 4,673 6 0
ManicDigger2011 Game 24,970 6 6
clipper Office 3,270 9 5
Net With UI Simulation 1,034 11 2
netinfotrace Office 7,311 13 5
MidiSheetMusic Office 4,792 14 7
∑

72,613 81 41

Table II
ACCESS PATTERN PREDOMINANCE. RECURRING REGULARITIES ON

COMMON DATA STRUCTURES IN 15 PROGRAMS.

Figure 3. Visualization of a data structure access pattern that experiences
index-sequential inserts and reads. The x-axis shows the temporal order and
the y-axis the target index.

A. What access patterns are predominant?

In section II we described how we captured and visualized

runtime profiles. As we performed manual code inspections

for each access profile we only took a subset of 15 of 37

benchmark programs with a total of 72,613 LOC. At first we

looked for recurring access patterns and marked the runtime

profile with ”contains regularity” or ”contains no regularity”.

After that we reopened all profiles with regularities and

looked at the corresponding source code to understand how

the data structure instance was used. In a third step we tried

to find similarities among all runtime profiles from the 15

programs and classified them manually.

Figure 3 shows regularities in the runtime profile of a

list: The x-axis shows the temporal order of the access

events and the y-axis their target position within the list. The

blue line represents an insertion operation that repeatedly

adds elements. The read operations are marked in green

and always occur in ascending order from front to end.

Along the whole runtime profile there is also a grey line

that shows the current length of the list. It can hardly be

seen because it is overlapped by the insertion operations.

This means that new elements are always appended to the

end of the list. Every time the read index reaches the last

element the list instance is cleared. This access pattern
occurs very frequently and obviously exhibits regularities.

We identified 81 locations with recurring regularities like

the one presented in Figure 3 and derived the following

eight access pattern types. Table II shows the distribution

of access patterns across the 15 programs together with the

number of parallel use cases that result from them. They are

introduced in the next section.

• Read-Forward: Read adjacent elements; access po-

sitions increases in time.

• Write-Forward: Write adjacent elements; access

positions increases in time.

• Read-Backward: Read adjacent elements; access

1007

positions decreases in time.

• Write-Backward: Write adjacent elements; access

positions decreases in time.

• Insert-Front: Adjacent insert operations; always

start at the front.

• Insert-Back: Adjacent insert operations; always

start from the end.

• Delete-Front: Adjacent delete operations; always

start at the front.

• Delete-Back: Adjacent delete operations; always

start from the end.

B. What access patterns offer parallel potential?

After we identified 81 locations with recurring patterns

and defined eight access pattern types we manually looked

through all of them to explore their parallel potential. For

each location we tried to figure out whether parallelization

could be used successfully so that the code remained correct

and yielded a speedup. This led us to eight generic use
cases, i. e. a statement on how the data structure is used

together with a recommendation on how to improve it. These

eight use cases serve as an advice for the engineer and five

of which deal with parallel potential. Each one contains a

combination of access patterns, defines threshold values, and

a recommended action.

Coming back to Figure 3 we found that the list con-

tains two distinct access patterns and both have direct

implications on parallelization: This runtime profile illus-

trates the access patterns Insert-Back marked in blue

and Read-Forward marked in green several hundreds

times. This leads to the two use cases Long-Insert and

Frequent-Long-Read. Hence, the insert operation

should be parallelized and it should be checked whether the

operation that causes Frequent-Long-Read contains a

loop that iterates over the data structure. In this case, this

operation is most likely a search operation and should be

parallelized.

We evaluated the five use cases with parallel potential on

a subset of 23 of our 37 benchmark programs. The results

are listed in Table III. We took nine programs from the same

sample that we used to detect recurring patterns and added

14 programs that had not been analyzed by us before. We

also used these 23 programs to tune the threshold values to

yield the best detection quality. In total we detected 66 use

cases. For each category we defined a recommended action
for parallelization. The use cases, recommended actions and

threshold values are listed below. Drawing the software

engineer’s attention to these locations and following the

recommended actions not only reduces the search space for

parallelization but also yields speedup as we will show in

section V.

• Long-Insert (LI, 49 instances in 21 programs).

This use case is defined by an insertion pattern from

either end of a linear data structure that inserts more

Application # LI # IQ # SAI # FS # FLR
∑

QIT 6 1 1 8
ManicDigger2011 3 1 1 1 6
csparser 5 5
clipper 4 1 5
gpdotnet 4 1 5
netlinwhetcpu 3 2 5
Mandelbrot 3 3
quickgraph 3 3
astrogrep 2 1 3
borys-MeshRouting 1 2 3
Contentfinder 2 2
DambachMulti 2 2
LinearAlgebra 2 2
MathNetIridium 2 2
Net With UI 2 2
fire 1 1 2
DesktopSuche 1 1
FIPL 1 1
FreeFlowSPH 1 1
networkminer 1 1
rrrsroguelike 1 1
WordWheelSolver 1 1
wordSorter 1 1
Algorithmia 1 1
∑

49 3 1 3 10 66

Table III
LISTING OF 66 USE CASES IN 23 PROGRAMS BY USE CASE CATEGORY.

than one element and applies to runtime profiles which

contain frequent insertion phases (>30% of runtime).

An insertion phase is classified as long, if it consists of

at least 100 consecutive access events.

Recommended action: Parallelize the insert operation.

• Implement-Queue (IQ, three instances in three pro-

grams). A data structure is used like a queue but is

implemented as a list. This use case applies to situations

in which a high amount of read and write accesses

(>60% in sum) affect two different ends of the data

structure.

Recommended action: Employ a parallel queue as data

container.

• Sort-After-Insert (SAI, one instance in one

program). A data structure is sorted after a long inser-

tion phase (>30% of runtime, >100 consecutive access

events). When a sort pattern follows an insertion pat-

tern, then the insertion order is obviously not important.

Recommended action: Parallelize both insert and search

phases.

• Frequent-Search (FQ, three instances in two pro-

grams). The program often searches for a specific ele-

ment within a linear data structure (>1000 search oper-

ations). We define search operations as frequent when

at least 2% of all access events are Read-Forward
or Read-Backward patterns. As we operate on lists

it might be useful to change the data structure to one

that is optimized for searches. Binary trees might be

better suited.

Recommended action: Either employ a parallel data

structure that is optimized for searches or parallelize

1008

the search operation in a way that splits the list into

smaller chunks and search them in parallel.

• Frequent-Long-Read (FLR, ten instances in eight

programs). >10 sequential read patterns occur repeat-

edly. This is similar to Frequent-Search: The

program might be looking for an element, but more

disguised, i. e. without an explicit search operation,

because the existence of frequent read operations over

a majority of the list elements indicates a search. In

our case 50% of all access types have to be Read or

Search and each pattern has to read at least 50% of

the data structure in order to be classified as frequent

and long. The software engineer possibly developed

a search algorithm on his own, and we are unable

to detect this because the source call comes from a

different data structures instance. This use case might

reveal a situation which contradicts our definition of a

data structure that canalizes all operations via a defined

interface.

Recommended action: Check the origin of this access.

In case it contains a program loop that looks for a

specific element the program might profit from trans-

forming this operation into a parallel search operation.

Besides these five use cases with parallel potential we

identified three additional use cases in our study. They do

not specifically address parallelization but rather serve as

sequential optimizations.

• Insert/Delete-Front (IDF). For arrays insert

and delete operations result in a relative high copy

overhead at runtime, because arrays are fixed size data

structures. Resizing them means that an array of the

new size is allocated and all elements are copied to the

new locations.

Recommended action: If insert and delete patterns often

occur in combination or alternate each other, a dynamic

data structure like list might be better suited.

• Stack-Implementation (SI). When insert and

delete operations always access a common end of a

list, we identify this as the implementation of a stack.

Recommended action: Analyze the data structure and

think about using a stack implementation.

• Write-Without-Read (WWR). Our analysis of

runtime profiles showed that they often end with write

patterns and the results of these write accesses are never

read. This is often the case when objects are cleaned up

at the end of their life cycle. For example, all entries

might be set to NULL. This functionality resembles

garbage collection or deallocation and should be left to

these mechanisms.

Recommended action: Check if the write accesses in

the corresponding profiles are necessary.

Create runtime profiles Deduce patterns and
recommendations

Use case
generation
Use case

generation
Pattern

detection
Pattern

detectionExecutionExecutionInstrumentationInstrumentation

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

Source
code

......

......

......

......

......

......

......

......

Profiles

......

......

......

......

......

......

......

......

Advice

......

......

......

......

......

......

......

......

Patterns

......

......

......

......

......

......

......

......

Use Cases

Figure 4. DSspy: Automatic deduction of use cases and recommended
actions

IV. AUTOMATIC DETECTION OF PARALLELIZATION

POTENTIAL IN OBJECT-ORIENTED DATA STRUCTURES

We implemented all findings from our empirical study in

DSspy, an automatic tool that locates parallel potential in the

runtime profile of object-oriented data structures and derives

use cases and recommended actions on how to parallelize

them. As we showed in section II, lists are the most frequent

dynamic data structures from the standard class library.

Apart from that is is well known that arrays are widely

used. To support general applicability we implemented our

tool for lists and arrays. DSspy uses static and dynamic

analyses to collect the runtime profiles, to find recurring

access patterns and use cases, and to deduce recommended

actions. The results are then charted and presented to the

engineer. Figure 4 illustrates DSspy.

Creation of runtime profiles: We process the source code

of software projects using the compiler framework Roslyn

[9]. At first we execute a static analysis to identify all list
instances and arrays and add instrumentation statements

to the beginning and the end of all interface methods. In

the second step DSspy compiles the instrumented program,

executes it, and starts the dynamic analysis module. This

module is triggered any time an instrumentation statement

is executed during program execution. We keep the execu-

tion slowdown low by only recording the access events at

runtime and analyzing them post-mortem. DSspy executes

the dynamic analysis module in a separate process which

receives the runtime information via asynchronous intra-

process communication. This design lets us bypass the

typical disadvantages of file-based or in-memory log files:

I/O is time consuming and for in-memory the log size can

be a limiting factor. DSspy instruments and executes a full

source code copy that is cleaned up after data collection so

the slowdown only occurs once during the analysis.

Object-oriented data structures incorporate both, a con-

tainer to store data elements and the algorithms to ma-

nipulate them. Any data interaction happens via interface

methods. We classify all interactions as access events of

different access types (Insert, Read, Clear ...) and bind them

to their target object instances in temporal order to compose

the runtime profile for each data structure instance. We

locate recurring access patterns as sequences of specific

access events. As already mentioned, Figure 3 visualizes

1009

Source Code Dynamic Analysis Access Patterns & Use Cases Recommendation

Name LOC Domain Runtime Profiling Slowdown Data Structures Use Cases Search Space Reduction Total Speedup

Algorithmia 2,800 Library 0.50 2.40 4.80 16 2 of 4 75.00% 1.83
Astrogrep 4,800 File Search 4.80 5.80 1.21 21 1 of 2 90.48% 2.90

Contentfinder 290 File Search 1.80 5.20 2.89 11 2 of 2 81.82% 1.56
CPU Benchmarks 400 Benchmark 0.01 0.55 55.00 7 4 of 5 28.57% 1.20

Gpdotnet 7,000 Simulation 0.36 78.00 216.67 37 2 of 5 86.49% 2.93
Mandelbrot 150 Solver 0.11 1.20 10.91 7 4 of 4 42.86% 3.00

WordWheelSolver 110 Solver 0.04 1.50 38.46 5 1 of 2 60.00% 1.50

Total 15,550 47.13 104 16 of 24 76.92% 2.13

Table IV
EVALUATION OF DSSPY. ANALYSIS SLOWDOWN, SEARCH SPACE REDUCTION, PRECISION, AND SPEEDUP.

the access profile of a list that consists insertion and read

sequences. Both overlap and occur repeatedly. DSspy gathers

the following information for each access event:

• Time stamp: When did the event occur?

• Read/Write: Did the event read or write to the data

structure?

• Position: What location of the data structure was ac-

cessed?

• Size: What was the size of the structure in the moment

of access?

• Thread-ID: What thread raised the access event?

Deduction of access patterns, use cases, and recom-
mended actions: After the execution of the instrumented

program DSspy executes the phase detection on the access

profiles as third step. All access events are assigned to their

instantiation location and the access types are derived. We

derive the trivial access types Read and Write and define

the compound access types Insert, Search, Delete,

Clear, Copy, Reverse, Sort and ForAll for each

access event. The y-axis in Figure 3 symbolizes the position

of the access, so the two patterns Insert-Back and

Read-Forward can be obtained programmatically. We

want to be able to support single- and multithreaded code

so we are aware of access events that occur in parallel. In

order to detect successive access events we also capture the

thread id and bind it to each access event. DSspy loads the

patterns specified in section III and maps them onto each

runtime profile. In the final step the specified use cases and

parameters are loaded and applied to the access patterns. As

a result DSspy presents the access profiles, the use cases and

the recommended actions to the engineer.

We decided to directly manipulate the source code and

add instrumentation statements. This provides a second way

of using DSspy besides the fully automatic approach that

detects parallelization potential in lists and arrays: An

engineer can use DSspy as a selective profiler that only

analyzes instances that he manually instrumented before.

Furthermore we implemented the dynamic profiler using the

proxy design pattern so that it is easily extensible to runtime

profiles of other data structures or use cases.

V. EVALUATION

This paper presents an approach to automatically detect

parallelization potential in runtime profiles of object-oriented

data structures and to derive recommendations on how to

parallelize them. We assess its detection and recommenda-

tion quality by evaluating these three questions: 1) What is

the search space reduction for the software engineer? How

many instances can be sorted out? 2) What is the slowdown

when executing the dynamic analysis? 3) How many true-

positives are in the result set and 4) What is the speedup

when following the recommended action? Table IV summa-

rizes all benchmarked programs and quantitative numbers.

Experimental setup: For the evaluation we assembled a

benchmark of seven programs with a total of 15,550 LOC

written in C#. We took two programs from our empirical

study in section II, the two established benchmarks Linpack
and Whetstone, and four additional programs that had not

been analyzed by us previously. With gpdotnet and mandel-
brot we had two programs that contained a sequential and a

manually parallelized version. This is particularly interesting

because it allows us to compare the results and speedup gains

from DSspy with a parallel version from a parallel software

engineer. Our test system was an 8-core AMD FX 8120h

with 3,1 Ghz each and 8 GB RAM.

Search space reduction: As mentioned we implemented

our analysis for arrays and lists. In order to quantify the

search space reduction we manually counted the number

of instantiations of both data structures and set this in

relation to the number of data structures that our use cases

referenced. For Algorithmia, an engineer now only has

to look through 4 specific access patterns instead of 16

data structure instances in the original program (Reduction:

75.00%). Across all seven benchmark programs DSspy

decreases the number of instances for the software engineer

from 104 down to 24 (Reduction: 76.92%). Apart from

the net reduction the recommended action provides the

additional advantage that the engineer does not only see

at what location to parallelize but also why it should be

transformed.

Slowdown during data collection: To measure the slow-

down we wrote a tool that runs all instrumented versions ten

times and computes their average execution times. Across all

1010

benchmark programs the average slowdown factor is 47.13.

Gpdotnet can be seen as an outlier with a slowdown of

216.67. We looked into it and found that this program makes

extensive use of access patterns that take relatively long to

capture in DSspy, such as Clear: For this access pattern

all information stated in section III are gathered. Without

gpdotnet, the average slowdown is 18.88. As the slowdown

only accounts once during data capturing, this is a minor

aspect.

Precision: The search space reduction quantifies the de-

crease of elements in the result set but does not make a

qualitative statement on how good the result set in fact is.

The recall rate states, how many of the correct use cases

are in fact part of the DSspy result set. We are unable

to provide this information with certainty, because we did

not evaluate how many of the data structures that were

not part of the result in fact yielded a speedup. But we

manually looked through all 104 data structure instances

and did not recognize parallel potential in them. As the

main focus of this research was the feasibility and not a

high accuracy we did not further investigate this information.

The precision rate in another qualitytive measure and states,

how many use cases in the DSspy result set are in fact

correct. We manually looked through all 24 use cases and

followed the recommended actions. We executed the parallel

programs on different program inputs, calculated average

speedups and classified the use cases in true and false

positives. The number of true positives is shown in column

”Use Cases” in Table IV. Across all parallelizations we

measured an average speedup gain of 2.13. With gpdotnet
and mandelbrot our benchmark contains two programs with

a previous parallelization that yielded speedups of 2.88 and

2.50.
Algorithmia is a data structures and algorithms library

that comes with hand-written unit tests. We selected 16 unit

tests that are built to simulate typical data structure use cases.

We used them as input for DSspy and received four results.

The average speedup was 1.83.

• Use case one addresses the initialization of a list

with random values. The recommended action tells

us to parallelize the method call because the pat-

tern Long-Insert was detected. The parallelization

yielded a speedup of 1.35 for this location, but as the

initialization is only executed once this might hardly be

noticeable during program execution.

• Use case two is a Frequent-Long-Read and rec-

ommends to check whether this method is meant to be

a search operation. If so, the search operation should

be parallelized. In fact, this data structure implemented

a priority queue using a list object. Each search for an

element with the highest priority causes linear overhead

because each element has to be traversed in sequence.

We parallelized the search operation and obtained a

speedup of 2.30 for a list with 100.000 elements.

Use Case 1

Class: GPdotNet.Engine.GPModelGLobals
Method: GenerateTerminalSet
Position: 120
Data structure: Array<System.Double>
Use Case: Frequent-Long-Read

Use Case 2

Class: GPdotNet.Engine.CHPopulation
Method: .ctor
Position: 14
Data structure: List<GPdotNET.Core.IChromosome>
Use Case: Frequent-Long-Read

Use Case 3

Class: GPdotNet.Engine.CHPopulation
Method: .ctor
Position: 14
Data structure: List<GPdotNET.Core.IChromosome>
Use Case: Long-Insert

Use Case 4

Class: GPdotNet.Engine.CHPopulation
Method: FitnessProportionateSelection
Position: 68
Data structure: Array<System.Double>
Use Case: Frequent-Long-Read

Use Case 5

Class: GPdotNet.Engine.CHPopulation
Method: FitnessProportionateSelection
Position: 68
Data structure: Array<System.Double>
Use Case: Long-Insert

Table V
EXAMPLE DSSPY USE CASE FOR GPODOTNET

• The other two use cases were initializations without

speedup.

Gpdotnet uses genetic optimization algorithms for dis-

crete time series analyses. The five use cases comprised

Frequent-Long-Reads (3x) and Long-Inserts (2x).

The output of DSspy for Gpdotnet is shown in Table V.

• Use case one identified a Frequent-Long-Read in

a program loop that iterates over a data structure to

compute an aggregate value. The length of the data

structure in this case was too short for parallelization

to yield a speedup. However, for longer lists a paral-

lelization would be well-suited.

• Two use cases referred to the same data structure but for

two different reasons: It is often read and new values are

often inserted consecutively. It is the main data structure

for the genetic algorithm which often updates the list

entries. Each value has to be found first and is then

changed to the new value. The two recommendations

are to parallelize both methods because the first one

might be a search operation (which it in fact is) and the

second one might profit from using a parallel insertion.

Both patterns refer to the same data structure that has

been parallelized in the manual parallelization.

• The use cases four and five also involve both access pat-

terns and refer to a data structure that is used to generate

new populations. By following the recommendation the

runtime of this location could be lowered from 164ms

1011

to 50ms (speedup 3.28), but it is executed rarely. With

the computations of 100 generations we achieved a

small performance increase from 2.57 minutes to 2.40

minutes (speedup 1.07).

Mandelbrot calculates the well-known fractal and dis-

plays it to the user as image. We used the resolution of

1,858 x 1,028 pixels for the result image and identified seven

use cases in the program run. Four yielded a speedup and

three of them referred to parallel locations that were also

parallelized in the corresponding manual parallelization.

• Use case one leads the engineer to a location that had

been parallelized manually with a runtime improvement

from 490ms to 170ms (speedup 2.90).

• Use cases two and three both refer to a program loop

that initializes an array of floating point values. They

recommend to execute the initialization in parallel. This

had in fact also been done in the parallel version by the

use of a compiler switch. This optimization decreased

the initialization time from 60ms to 34ms (speedup

1.77).

• Use case four identifies Long-Inserts in the image

that holds the resulting fractal. The recommended ac-

tion is to parallelize the operation that is responsible

for the long insertions, which is the operation to create

the final image. This operation yielded a speedup of

1.40.

CPU Benchmarks is a typical benchmark suite for CPU

computations and combines the two commonly know bench-

marks Linpack and Whetstone. This program provides a

user interface to execute them. With DSspy only a relative

moderate speedup of 1.20 could be achieved. To further

investigate this, we manually assessed the parallel potential

for CPU Benchmarks. We analyzed the original program

and determined, what parts need to be executed sequen-

tially and what parts might profit from parallelization. After

this we determined the runtime share of both parts. This

allowed us to assess the parallel potential because the lower

the sequential fraction, the higher obviously the parallel

potential. We performed this procedure for three other

benchmark programs that yielded better speedups than CPU
Benchmarks and compared the sequential fractions with the

achieved speedups. The results are shown in Table VI. We

can show that the sequential fraction in CPU Benchmarks is

significantly higher than in the other three cases. This tells

Name Sequential
Runtime

Parallelizable
Runtime

Sequential
Fraction

CPU Benchmarks 7,600ms 460ms 94.29%
Gpodotnet 7,000ms 173,000ms 3.89%
Mandelbrot 50ms 500ms 9.09%
WordWheelSolver 55ms 140ms 28.21%

Table VI
COMPARISON OF SEQUENTIAL AND PARALLEL RUNTIME FRACTIONS IN

MILLISECONDS

us that the moderate speedup of 1.20 is caused by the low

parallel potential of this program.

VI. RELATED WORK

This paper describes a method to detect parallel potential

on the level of data structure runtime profiles. To achieve this

goal we used principles from the disciplines programming

assistance systems, software visualization, data layout opti-

mization, memory access analysis and automatic paralleliza-

tion. The specific strengths of each discipline are outlined

in Table VII.

Parallel Libraries ([10], [11], [12]): The Task Parallel
Library (TPL), the Pattern Parallel Library (PPL), and

Threading Building Blocks (TBB) are three examples of

parallel data structure libraries and provide two different

use cases for parallelization: 1) They ensure that a data

structure can safely be used in a parallel program without

causing parallel errors. To achieve thread safe execution,

they implicitly employ a locking mechanism. This aspect

addresses parallel correctness but not performance improve-

ment. 2) They bring parallelism into the program by imple-

menting parallel data structure operations. These operations

are provided via defined interfaces that differ from former

sequential versions. An engineer has to identify the relevant

parts of a data structure and perform the code transformation

by himself without any assistance in identifying and utilizing

parallelization potential.

Automatic Parallelization ([4], [5]): The highest abstrac-

tion layer for parallelization are fully automatic approaches.

Here, static and dynamic analyses are used to identify

parallelizable regions. Static analyses only rely on source

code statements and have no information about runtime

distributions or call frequencies, so they tend to over ap-

proximate. The information we need can only be detected

dynamically. In [4] Tournavitis et al. employ a dynamic

analysis to derive parallel potential. The results are meant

to assist engineers in code analysis and identification of

parallelization potential, but the decision how to interpret

and how to parallelize them are still left to the engineer.

Programming Assistance ([6], [13], [14], [15]): Paral-

lelization can be done on different levels of abstraction. One

way are libraries like STAPL [13] which is a collection

of parallel data structures and algorithms. PetaBricks [6]

enables specifying different parallelization strategies and al-

gorithms, so that the runtime environment can decide which

implementation fits best for the current system load. XJava
[14] is a language and runtime extension for Java which

makes it specifically easy to develop object-oriented stream

programs. MapReduce [15] is a very specific parallel pattern

that enables software engineers to implement a parallel

framework in a fast and less error prone way. One common

property of these research activities and main difference to

this work is that engineers have to identify themselves where

1012

P
ar

al
le

l
L

ib
ra

ri
es

P
ro

g
ra

m
m

in
g

A
ss

is
ta

n
ce

S
o

ft
w

ar
e

V
is

u
al

iz
at

io
n

D
at

a
L

ay
o

u
t

O
p

ti
m

iz
at

io
n

M
em

o
ry

A
cc

es
s

A
n

al
y

si
s

D
at

a
S

tr
u

ct
u

re
O

p
ti

m
iz

at
io

n

A
u

to
m

at
ic

P
ar

al
le

li
za

ti
o

n

T
hi

s
w

or
k

Chronological order of
data

+ - + o + - - o

Collection of data ac-
cesses

- - o + - - - +

Detection of parallel po-
tential

- - - - - + + +

Deduction of use cases - - - - - - - +

Table VII
COMPARISON OF RELATED WORK

to parallelize. Also the source code has to be transformed

manually to match the parallel constructs.

Data Layout Optimization ([16]): In this paper Zhang

et al. analyze the target locations of array accesses in order

to optimize cache efficiency of multithreaded programs.

The authors propose a technique called array restructuring

which aligns the arrays to cache lines. They monitor all

arrays accesses and rearrange the arrays at runtime. For this

they use hyperplanes that enable local and temporal array

segmentation. We have in common the analysis of array

accesses but for Zhang et al. it is sufficient to capture access

targets within a certain time frame in order to restructure

the in-memory representation of the array. A distinction of

different access types is not necessary. For us, the evolution

of access types over the whole life cycle and the interaction

of different access types are inevitable information.

Memory Access Analysis ([17]): Like the former work

Rane et al. also aims at performance optimization but here

this is achieved by monitoring cache performance at runtime.

The authors propose to collect histories of cache access

times, cache-hit-ratio or other cache-related information. The

engineer can identify bottlenecks from the analysis and track

them back to source code locations, because the source code

had been instrumented before. The main difference to our

work is that Rane et al. present aggregated values to the

engineer that have to be analyzed manually. We evaluate

whole profiles and automatically derive recommended ac-

tions without any user interaction.

Data Structure Optimization ([18]): Jung et al. intro-

duce the tool brainy which is similar to DSspy because

it measures the execution times of different data structures

and tries to derive optimization potential. Brainy follows a

different approach because it executes each data structure

with different inputs and uses the results to train an evolu-

tionary algorithm. A dynamic analysis is used to generate

different program inputs. Brainy represents a model that

projects all gathered performance data onto a predefined

set of implementation alternatives for a data structure. Two

differences to our work are that we focus on parallelization

and do not rely on the presence of certain hardware counters.

We retrieve all necessary information from the runtime

profiles.

Software Visualization ([19], [20]): Research activities

in this field mainly deal with the proper presentation of static

information or dynamic runtime data like pointer arithmetic

or program execution histograms. In [20] Mukherjea et al.

analyze the number of instances per class, capture what

methods are invoked across the life cycle of an instance and

propose an enriched call graph as form of expression. In

[19] Walker et al. employ graphic animations which enable

zooming into the call graph to support a deep program

understanding. The main difference to our work is that here

the information is only visualized but not processed any

further to retrieve parallel potential.

VII. CAVEATS AND CRITICISM

In this section we want to discuss potential weaknesses

of our approach and threats to validity.

• Empirical Study: In the study we took freely available

open source projects and based all of our work on

them. Although a considerable amount of software is

open source, it is an open question whether source code

quality is as high as in closed source projects. Also, it is

not clear whether the average programming skills of an

open source software engineer is equivalent to the skills

of a closed source engineer. If so, the data structure fre-

quency, the number of use cases, and the recommended

actions would probably be different in closed source

software projects, but this does not affect our concept.

Furthermore, we are sure that lists and arrays are

also frequently used in closed source projects and are

therefore also interesting for parallelization purpose.

A second shortcoming of our study is that we did all

our research in C#, but we do not see any reason why

we would get a different picture if we conducted our

study in other object-oriented environments like C++

or Java. Both, STL and JFC contain equivalent object-

oriented data structures as the CTS.

• Derivation of Recommended Actions: For the evalu-

ation we counted how many data structure instances

were in the benchmark programs and how many in

the result set. We parallelized the latter and checked

which yielded a speedup and which did not. What

we did not check was if the instances that were not

part of our result set also yielded a speedup. We

therefore cannot make a statement on the recall rate of

DSspy. The motivation for this work was to research the

parallel potential in the runtime profile of data structure

instances and not to develop a detection mechanism

with high accuracy. With our results we showed that re-

curring patterns and appropriate recommended actions

1013

can be identified automatically. We will now work on

improving the detection accuracy.

A second shortcoming deals with the speedup gains.

We evaluated whether a manual parallelization of the

recommended action yielded a speedup, so DSspy can

successfully be used to parallelize legacy software.

As we did not have parallelized versions for most

of our benchmark programs as reference value, we

cannot assess the quality of our speedups. Hence, we

added two programs to our benchmark that contained

a sequential and a manual parallelized version. The

sequential versions were analyzed by DSspy and we

compared the results with the parallel version. For

both programs DSspy found all locations that had also

been parallelized in the parallel version. This is not a

significant statement, but a good indication.

A third shortcoming deals with the frequency of the five

use cases. As Table III shows the use case frequency

varies and some occur more often than others. This ac-

counts for the empirical study and the evaluation bench-

mark. In 23 programs Queue-Implementation,

Sort-After-Insert, and Frequent-Search
were only found seven times in total. As we have

shown in section V, the main speedup in all bench-

mark programs come from the remaining two use

cases Frequent-Long-Read and Long-Insert.

So there is reason to believe that our study revealed

only special cases and not patterns of general appli-

cability. This will be investigated in future work. But

even if we identified rather special cases: They can be

found in realistic programs across different application

domains and they effectively lead to speedups.

VIII. CONCLUSION

In this paper we presented an empirical study which

reveals parallel potential in the runtime profiles of object-

oriented data structures. For the study we composed a bench-

mark of 37 programs from eleven applications domains with

a total of 936,356 lines of code (LOC). The study unveils the

distribution of data structures from the .NET standard class

library in these 37 programs and points out that list is used

3.94 times more often as the second most frequent data type

dictionary, making it by far the most frequently used

data structure in open source projects.

We mined on lists and arrays for recurring access patterns
in the runtime profile and used a subset of 15 programs with

a total of 72,613 LOC. This mining lead us to eight use
cases. Five of them permit general recommendations on

how to parallelize accesses to the particular data structures.

For the remaining three use cases the recommendations

cover general code restructuring but did not involve par-

allelization.

For the five use cases, we automated the process in DSspy.

DSspy collects runtime profiles on lists and arrays for

each instance, localizes access patterns, derives use cases,

provides recommendations on how to parallelize each use

case, and visualizes the results to the software engineer.

DSspy aims at assisting the engineer in understanding the

runtime profile, where parallel potential is located and

for what reason parallelization might yield a performance

improvement.

We applied DSspy to 7 open source programs written in

C#. DSspy revealed 24 use cases in 104 data structure in-

stances within those programs and reduced the search space

by 76.92 %. 16 of 24 use cases yielded an average speedup

of 2.13 on an 8-core machine. DSspy found them within

minutes with a precision of 66.67%. For now, each rec-

ommendation needs to be implemented manually; however

automated transformation is possible if the recommended

action is clearly specified [21]. We intend to integrate the

dynamic analysis into the parallelization process published

in [22].

ACKNOWLEDGMENT

We thank Siemens Corporate Technology for their finan-

cial support within the Shared Research Group APART. We

also appreciate the support of the Initiative for Excellence

at the Karlsruhe Institute of Technology.

REFERENCES

[1] H. Vandierendonck and T. Mens, “Averting the next software
crisis,” Computer, vol. 44, no. 4, pp. 88–90, Apr. 2011.

[2] A. J. Ko and B. A. Myers, “Designing the whyline: a debug-
ging interface for asking questions about program behavior,”
in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’04, 2004, pp. 151–158.

[3] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle,
“Towards a holistic approach to auto-parallelization: integrat-
ing profile-driven parallelism detection and machine-learning
based mapping,” in Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implemen-
tation, ser. PLDI ’09, 2009, pp. 177–187.

[4] G. Tournavitis and B. Franke, “Semi-automatic extraction
and exploitation of hierarchical pipeline parallelism using
profiling information,” in Proceedings of the 19th interna-
tional conference on Parallel architectures and compilation
techniques, ser. PACT ’10, 2010, pp. 377–388. [Online].
Available: http://doi.acm.org/10.1145/1854273.1854321

[5] S. Rul, H. Vandierendonck, and K. De Bosschere, “A profile-
based tool for finding pipeline parallelism in sequential pro-
grams,” Parallel Comput., vol. 36, no. 9, pp. 531–551, Sep.
2010.

[6] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe, “Petabricks: a language
and compiler for algorithmic choice,” in Proceedings of the
2009 ACM SIGPLAN conference on Programming language
design and implementation, ser. PLDI ’09, 2009, pp. 38–49.

1014

[7] (2013) SourceForge. [Online]. Available:
http://sourceforge.net/

[8] (2013) Microsoft Corporation, CodePlex. [Online]. Available:
http://www.codeplex.com/

[9] (2013) Microsoft Corporation, Roslyn ”CTP”.
[Online]. Available: http://msdn.microsoft.com/en-
us/vstudio/roslyn.aspx

[10] (2013) Microsoft Corporation, Task Parallel Library
(TPL). [Online]. Available: http://msdn.microsoft.com/de-
de/library/dd460717(v=vs.110).aspx

[11] (2013) Microsoft Corporation, Parallel Patterns Library
(PPL). [Online]. Available: http://msdn.microsoft.com/de-
de/library/dd492418.aspx

[12] (2013) Intel Corporation: Threading Building Blocks (TBB).
[Online]. Available: http://software.intel.com/en-us/intel-tbb

[13] G. Tanase, A. Buss, A. Fidel, H. Harshvardhan, I. Papadopou-
los, O. Pearce, T. Smith, N. Thomas, X. Xu, N. Mourad,
J. Vu, M. Bianco, N. M. Amato, and L. Rauchwerger, “The
stapl parallel container framework,” in Proceedings of the
16th ACM symposium on Principles and practice of parallel
programming, ser. PPoPP ’11, 2011, pp. 235–246.

[14] F. Otto, V. Pankratius, and W. F. Tichy, “Xjava: Exploiting
parallelism with object-oriented stream programming,” in
Proceedings of the 15th International Euro-Par Conference
on Parallel Processing, ser. Euro-Par ’09, 2009, pp. 875–886.

[15] Y. Liu, Z. Hu, and K. Matsuzaki, “Towards systematic parallel
programming over mapreduce,” in Proceedings of the 17th
international conference on Parallel processing - Volume Part
II, ser. Euro-Par’11, 2011, pp. 39–50.

[16] Y. Zhang, W. Ding, J. Liu, and M. Kandemir, “Optimizing
data layouts for parallel computation on multicores,” in Par-
allel Architectures and Compilation Techniques (PACT), 2011
International Conference on, 2011, pp. 143–154.

[17] A. Rane and J. Browne, “Performance optimization of data
structures using memory access characterization,” in Cluster
Computing (CLUSTER), 2011 IEEE International Conference
on, 2011, pp. 570–574.

[18] C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande,
“Brainy: effective selection of data structures,” in Proceedings
of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, ser. PLDI ’11, 2011,
pp. 86–97.

[19] R. J. Walker, G. C. Murphy, B. Freeman-benson, D. Wright,
D. Swanson, and J. Isaak, “Visualizing dynamic software
system information through high-level models,” 1998.

[20] S. Mukherjea and J. T. Stasko, “Applying algorithm animation
techniques for program tracing, debugging, and understand-
ing,” in Proceedings of the 15th international conference on
Software Engineering, ser. ICSE ’93, 1993, pp. 456–465.

[21] K. Molitorisz, J. Schimmel, and F. Otto, “Automatic par-
allelization using autofutures,” in International Conference
on Multicore Software Engineering, Performance, and Tools
(MSEPT’12), May 2012.

[22] K. Molitorisz, “Pattern-based refactoring process of sequen-
tial source code,” in Proceedings of the 2013 17th European
Conference on Software Maintenance and Reengineering, ser.
CSMR ’13, 2013, pp. 357–360.

1015

