
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 

IPD Tichy, Fakultät für Informatik 

Empirical Methods in Software Research: 
 
Which Method Should I Use? 

Walter F. Tichy 



Why do we need empirical methods  
in software research? 

!   There are simply too many tools and methods available for 
an individual or a software organization to try them all out 
in order to select the best one(s). 

 
!   However, the choice is critical for practitioners. Without 

data, there is no choice than to fall back on trends, fashion, 
opinions, personal preferences, prejudice, hearsay, 
salespersons, consultants, gurus. 
 

!   Empirical studies investigate, whether differences in 
software technologies actually exist, 
with respect to cost, reliability, maintainability, usability, 
ease of learning, etc.  

2 



3 

Empirical studies have become an active area 
in software research 



 Empriische Methodik wird übernommen 

4 



5 

Quelle: American Scientist 6/2006 

Invariant questions: 
 
1.  How to produce 

software  better 
(faster, cheaper)? 

2.  How to produce  
better software (more 
reliable, more usable, 
more maintainable, etc.)? 

3.  How to show that  
1. or 2. have been 
achieved? 

Software researchers  
at work  



The controlled, randomized experiment 

6 

Vary  
Independent 
variables 

Observe 
dependent 
variables 

Control  
confounding  
variables 



Example: Experiment about Pair Programming 

!   295 professional consultants (!) 
!   split into 99 single programmers and 98 pairs 
!   coming from 29 consultant companies in Norway, Sweden 

and GB 
!   Accenture 
!   Cap Gemini 
!   Oracle 
!   and others 

!   Participants were compensated for 5 hours work time. 
!   Cost for that alone: € 250.000 

7 

Erik Arisholm, Hans Gallis, Tore Dyba, Dag Sjoberg, 
„Evaluating Pair Programming with Respect to System  
Complexity and Programmer Expertise“,  
IEEE Trans. On Software Engineering, Vol 33, no 2, Feb. 2007, 65-85. 



Results for Pair Programming 

-8% 

84% 

7% 

-50% 

-25% 

0% 

25% 

50% 

75% 

100% 

125% 

150% 

Dauer Aufwand Korrektheit 

D
iff

er
en

ce
 to

 s
in

gl
es

 

Duration Duration Correctness Cost 

8 

significant  
 p <= 0,0001 



Difference according to 
programmer competence 

5% 

111% 

73% 

-28% 

43% 

4% 

-9% 

83% 

-8% 

-50% 

-25% 

0% 

25% 

50% 

75% 

100% 

125% 

150% 

Dauer Aufwand Korrektheit 

D
iff

er
en

ce
 to

 s
in

gl
es

 

Anfänger Mittel Fortgeschritten Interme 
diate 

Expert                

9 

Duration Correctness Cost 

Beginner 



Results 

!   Large study, with almost 300 professional subjects 
!   Generalizability is excellent. 

!   Distinguishes competence and sw complexity 
!   PP is effective for beginners, especially when the sw is complex.  
!   PP is ineffective for experts (without PP experience). 
!   Recommendation: use pair programming for beginners 

 
 

!   Many studies use students as subjects. 
Have results with student subjects any relevance for 
professionals? 

10 



Some results from Experiments 

!   Inspections help find software defects early. 
!   Design patterns work as advertised. 
!   Inheritance depth is a poor predictor for maintenance effort. 
!   Pair programming only works for beginners. 
!   Pair programming can be replaced with single 

programmers and inspections (for beginners) 
!   Test-first is not better than test-last. 
!   UML does not help in maintenance tasks. 
 
!   Note: these are all experiments about software processes, 

not about tools (other than the last).  

11 



Pros and Cons of Experiments? 

!   Advantages: 
!   Establishes cause-effect relationship 
!   Experimental method is well developed (methods, statistics)   

!   Disadvantages: 
!   Expensive 
!   Professional participants are hard to get, even if you pay for their 

time 
!   Experiments take time (about 1 experiment per year per PhD 

student) 
!   Negative results are the rule 
!   Only feasible, if tools/methods are easy to learn 

12 

Suppose you are developing a new sw technique. 
Your are busy improving it. 
Experiment is much too expensive and time-consuming 
for each improvement step. 
How can we make progress more quickly? 



Alternative: Ex post facto Studies: 
Analyse Software Repositories 

!   Look for correlations in software repositories including bug 
histories 

!   Example: Can software metrics predict fault-prone 
components? 

 

13 

Nagappan, Ball, Zeller: Mining Metrics to Predict Component Failures, 
ICSE 2006 
 
Zimmermann et al: Cross-project Defect Prediction, ESEC/FSE 2009. 



High level description 

Bug
Database

CodeCodeCode

Entity Entity Entity

PredictorEntity Failure
probability

1. Collect input data

2. Map post-release failures to defects in entities

3. Predict failure probability for new entities

Version
Database

14 

Source: Nagappan 



Projects researched 

!   Internet Explorer 6 
!   IIS Server 
!   Windows Process Messaging 
!   DirectX 
!   NetMeeting 

>1,000,000 Lines of Code	


15 

Quelle: Nagappan 



16 



Metrics and their Correlation  
with Post-Release Defects 

17 

Quelle: Nagappan 



Do metrics correlate with failures? 

Project Metrics correlated w/ failure 

A #Classes and 5 derived 

B almost all 

C all except MaxInheritanceDepth 

D only #Lines (software was refactored if 
metrics indicated a problem) 

E #Functions, #Arcs, Complexity  

18 



Project Metrics correlated w/ failure 

A #Classes and 5 derived 

B almost all 

C all except MaxInheritanceDepth 

D only #Lines 

E #Functions, #Arcs, Complexity  

Do metrics correlate with failures? 

YES	

19 

Given enough data for a project, a predictor for this project can be built. 
Quelle: Nagappan 



Is there a set of metrics that fits all projects? 

Project Metrics correlated w/ failure 

A #Classes and 5 derived 

B almost all 

C all except MaxInheritanceDepth 

D only #Lines 

E #Functions, #Arcs, Complexity  

20 



Is there a set of metrics that fits all projects? 

NO	

Project Metrics correlated w/ failure 

A #Classes and 5 derived 

B almost all 

C all except MaxInheritanceDepth 

D only #Lines 

E #Functions, #Arcs, Complexity  

21 

Quelle: Nagappan 



Pros and Cons of SW Repositories 

!   Advantages 
!   Large data sets available, even open source 
!   Automate analysis 
!   Quantitative results 
!   Don’t need to deal with, or search for, human subjects. J 

!   Disadvantages 
!   You only get correlations, no cause-effect relationship 
!   Can only analyze what is there. If a new technique has not been 

used, then there is no data to analyze. 
!   So it is useless for untried tools and methods 

22 



Analysis of software repositories 

23 

Vary 
independent 
variables 

Observe 
dependent 
variables 

Control 
confounding 
variables 



What to Do? 

!   How can the empirical community contribute useful insights 
that demonstrably improve software engineering? 

!   And do so faster than it has in the past? 
 

!   Note: “More money” is the wrong answer. 

24 



Recommendation: Use Benchmarks! 

!   Benchmarks are sets of problems with a quality metric for 
solutions (or gold standard solutions) 
!   Independent teams apply their automated “solvers” to the problem 

and the quality of the solutions can be compared. 
!   Benchmarks have a tremendous advantage over experiments with 

human subjects: they can be repeated as often as necessary, 
usually at moderate cost. 

!   Setting up a benchmark is usually not for free: data has to be 
collected, benchmark programs have to be prepared. 

!   However, this cost can be amortized over many trials and provides 
a basis for comparison. 

!   Over time, the benchmark must evolve (become harder, more 
general, avoid overfitting.) 

25 



Benchmarks have been extremely successful 
in driving research 

!   Computer architecture: Various benchmarks have been 
used for decades in order to compare processor 
performance. 
!   The Standard Performance Evaluation Corporation (SPEC) 

publishes benchmarks to evaluate a range of performance criteria 
(CPU, Web server, Mail Server, AppServer, power consumption, 
etc.) 

!   Benchmarks combined with simulation have made computer 
architecture research quantitative. 

!   Every performance feature must be substantiated on relevant 
benchmarks. 

26 



Autonomic vehicles:  
DARPA Grand Challenge 

27  

2007 DARPA 
Urban Challenge 

 



Where Benchmarks Rule: 

!   Databases: Transaction Processing Performance Council 
(TPC) 

!   Speech recognition: large databases of speech samples 
are used in competitions to determine the best speech 
recognizer 
!   Here, the issue is not speed, but error rate. 

!   Speech translation: same idea. 

28 

In all of these cases, benchmarks resulted in swift and 
substantial progress. 
The winning techniques were quickly adopted by other 
teams and improved upon. 
How could we achieve comparable progress in software 
research? 



!   Benchmarks apply to any tool that automates an aspect of 
software engineering. 

!   Share the work on developing a wider range of meaningful 
and challenging benchmarks, so 
!   The work is spread over several teams 
!   better tools can be built, 
!   we know which techniques work best, 
!   progress accelerates. 

!   Some examples of SE benchmarks follow. 

29 

Software research could use more benchmarks 



Example 1: Data Race Detection 

!   Data races (unsynchronized accesses to shared variables) 
are a common defect in parallel programs. 

!   They are difficult to find. 
!   Current race detectors are impractical 

!   They produce thousands to millions of false alarms. 
!   Programmers are overwhelmed. 

!   Why false positives? 
!   Ad-hoc, programmer-defined synchronizations 
!   Unknown synchronization libraries 
!   Detectors cannot reason about these, causing many false positives 

!   Contribution: how to handle user-defined synchronization 
and unknown synchronization libraries, reducing false 
positives. 

30 



What is a Data Race? 

!   Two or more concurrent accesses to a shared location, at 
least one of them a write.  
 
 
 
 
 
 
 
 
 
 
T=0 or T=1? 

 
31 

Thread 1 
 
X = 0 
X++ 

Thread 2 
 
 
T = X 



Ad-hoc (User-defined) Synchronization 

!   Synchronization constructs implemented for  performance 
reasons 
 
 

 

!   Ad-hoc synchronizations are widely used 
!   12 - 31 in SPLASH-2 and 32 - 329 in PARSEC 2.0 

32 

Thread 1 
DATA++     
 

FLAG = 1 
... 
 

Thread 2 

… 
while(FLAG == 0) 
--do nothing 

    
DATA-- 

/*Initially FLAG is zero */  



Test Suite – data-race-test 

!   120 different test cases (2-16 Threads) 
!   Test cases are racy or race-free programs (using Pthread)   

!   Includes difficult cases 
!   Spinning read loop detection of up to 7 basic blocks 

!   24 false positives and one false negative are removed 
!   Removing information about Pthread library (unknown library) 

!   Only one false positive more 

33 

Tools False  
alarms 

Missed  
races 

Failed  
cases 

Correctly 
analyzed  
cases 

Helgrind+  lib 32 8 40 80 
Helgrind+  lib+spin(7) 8 7 15 105 
Helgrind+  nolib+spin(7) 9 7 16 104 
DRD 13 20 33 87 



Exmple 2: Auto-Parallelization Benchmark 

!   To test automatic parallelizers, we construct a benchmark 
!   sequential implementations 
!   hand-parallelized implementation 

!   We test auto-future detection, pipelines, master/worker and 
other patterns 
!   Is all parallelization potential found? 
!   Were correct transformations steps performed? 
!   Were concurrency bugs introduced? 
!   What speed-up was achieved? 

34 



Example 3: NLRP-Bench 
A Benchmark for Requirements Processing 

35 



Online at http://nlrp.ipd.kit.edu 

!   Sample Requirements Specs: 
! ITrust Medical Care 
! Pacemaker 
! Elevator 
! Steam Boiler 
! Ambulance Dispatching System 
! Movie Theatre 
! Kuchenrezept 
! Ludo 
! Problemmelder 
! Pflichtenheft Handyverträge 
 

36 



! RE UTS Coincidence Matrix in the ATLAS Muon 
Spectrometer 

! Quasar Fraunhofer Türsteuergerät 
! German Health Professional Card and Security Module 

Card 
! ERS ACME - University Library Information System 
! Racing 
! Timbered House 
! Whois Protocol 
! Display Management System 
! Cable TV Package Purchase 
! DaimlerChrysler Demonstrator: Instrument Cluster 

37 



 
A Grand Challenge:  
Programming in ordinary language 
 

0100101
0011011
0110101
1001010 

              Natural Language 
Processing 

 
                   World 

Knowledge  
 

                Code-Generation 

NL 
Script 

Program 

Benchmarks would be good for evaluation. 
But where to get them? 



Answer: Create Animations and let subjects 
describe them in their own words. 
Then use the stories as input to the generator. 

39 



Subjects are shown the video and tell the story 

!   10 different animations so far, 
!   90 stories, which are the benchmark for AliceNLP. 

40 

The astronaut says, 
"That's one small step 
for a man...". As he says 
this, the alien is moving 
on his wheels toward 
him. The astronaut 
continues, "...one...giant 
leap for...". He stops as 
he sees the alien moving 
towards […] 

The spaceman makes a 
step forward. While he 
makes the step, he says, 
"That's one small step for 
a man!". Then, the alien 
moves a few meters 
forward and turns a bit to 
its left. […] 



Conclusions 

!   I think the use of benchmarks in software research is not 
as high as it could be. 

!   All areas of SE could benefit: requirements, design, 
implementation, testing, maintenance. 

!   With realistic benchmarks, one gets reliable and testable 
results. 

!   Benchmarks accelerate progress: they eliminate inferior 
choices quickly, help concentrate on the challenges. 

!   Share the work of preparing benchmarks. 
!   With a concentrated effort in benchmarking, we might 

speed up tool research dramatically. 
!   When tool progress has been made, check usability with 

human subjects (the expensive experiment). 
41 



42 

“If you are not keeping score,  
you’re just practicing.” 

 
Vince Lombardi 

Berühmter US Football Trainer 



Barcelona gegen Manchester United: 
Wer spielt besser? 

43 


