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Abstract. Recent advances in natural language processing have made
it possible to process textual software requirements automatically, for
example checking them for flaws or translating them into software ar-
tifacts. This development is particularly fortunate, as the majority of
requirements is written in unrestricted natural language.
However, many of the tools in in this young area of research have been
evaluated only on limited sets of examples, because there is no accepted
benchmark that could be used to assess and compare these tools. To im-
prove comparability and thereby accelerate progress, we have begun to
assemble nlrpBENCH, a collection of requirements specifications meant
both as a challenge for tools and a yardstick for comparison. We have
gathered over 50 requirement texts of varying length and difficulty and
organized them in benchmark sets. At present, there are two task types:
model extraction (e.g., generating UML models) and text correction (e.g.,
eliminating ambiguities). Each text is accompanied by the expected re-
sult that automated tools should produce. Metrics for scoring results are
also provided. This paper describes the composition of the benchmark
and the sources. The utility of the benchmark is demonstrated by four
tool comparisons.
nlrpBENCH is not static. We invite anyone in software engineering to con-
tribute additional requirements, task types, and solutions and, of course,
to use the benchmarks to assess and compare tools.

1 Introduction

According to Mich et al [1], the majority (79%) of software requirements is writ-
ten in unrestricted, natural language (NL). Tools that analyze and transform
requirements should therefore be capable of handling natural language. Recent
advances in natural language processing (NLP) indicate that this is an attain-
able goal. Among the most striking advances is IBM’s Watson program [2], which
beat two former world champions in the game of Jeopardy! in Feb. 2011. Jeop-
ardy! is a quiz competition. Its questions range over diverse areas and contain
jokes, irony, and plays on words. Watson not only parsed the questions (provided
in textual form), but also searched 200 million pages of unstructured content to
answer them. Watson won with a commanding lead, not only because it can
process text, but also because it can handle context. While Watson answers



2 Walter F. Tichy, Mathias Landhäußer, and Sven J. Körner

questions, Google Translate [3] translates texts and web pages among over 60
languages. While not perfect, the results are useable and are improving with
time. Jibbigo [4] translates both voice and text among 20+ languages and runs
on smart phones, without needing an internet connection. Given these feats,
progress in processing natural language requirements should be attainable.

Mich [1] and Nuseibeh [5] suggested research into applications of NLP in soft-
ware engineering, and a number of researchers have risen to the challenge. Kof [6]
argues that NLP tools are now ready for the analysis of requirements documents.

A useful application of NLP is analyzing requirements for flaws such as ambi-
guity, imprecision, or incompleteness. Kamsties [7], Kiyavitskaya [8], Deeptima-
hanti [9], and Körner and Brumm [10] demonstrate specification improvers that
use dictionaries or ontologies to uncover and correct flaws in specification texts.
Generation tasks, such as extracting models or test scripts from texts, are more
demanding, with many open questions. Harmain and Gaizauskas [11], Ambriola
and Gervasi [12], Gelhausen[13], and Körner[14] and others have achieved first
results. Virtually all researchers, however, demonstrate their systems on their
own and usually small examples. Without an accepted benchmark, results are
difficult to reproduce and identifying superior approaches is nearly impossible.
To improve this situation, we introduce nlrpBENCH, an evolving benchmark
for comparing tools for natural language requirements processing. Its primary
goals are to provide challenges and to make requirements engineering (RE) tools
comparable. A hoped-for, secondary effect is to accelerate progress: With the
benchmark, it should be easier to determine superior techniques, which can then
be adopted and improved by others much faster than presently. The examples
in the benchmark can also be used for educational purposes, as they include
realistic samples that could be used for study.

In their study on the effectiveness of benchmarks, Sim et al. [15] note that in
order to advance research it is important to create a culture of “collaboration,
openness, and publicness”, and that benchmarks significantly contribute to such
a culture. According to Sim, “this kind of public evaluation contrasts sharply
with the descriptions of tools and techniques that are currently found in soft-
ware engineering conference or journal publications”. Already in 1998, Tichy [16]
observed that software engineers needed to experiment rather than work with
small, ad-hoc examples. However, it is not enough to make realistic examples
available – it is also necessary to provide solutions and methods to compare and
rank them. For example, Flexray and Daimler have published realistic require-
ments documents [17, 18], but solutions are missing, perhaps because at the time
it was unclear what could be expected from tools. nlrpBENCH provides bench-
marks with complete evaluation schemes. It could become a basis for rigorous
empirical research in NLP for RE.

Researchers and practitioners are encouraged to use and extend nlrpBENCH.
It might have an accelerating effect on RE, just as voice benchmarks accelerated
research in speech understanding, SPEC made microprocessors comparable, and
TCP-ATM [19] helped evaluate databases.
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Section 2 presents the organization of nlrpBENCH and its applicability. Sec-
tions 3 and 4 describe two benchmarks and the results of applying them to four
tools. Section 5 reviews some work on benchmarks in RE.

2 nlrpBENCH

2.1 The Structure of nlrpBENCH

nlrpBENCH is a set of tasks, grouped into benchmarks. A task is a NL require-
ments document and possible solutions. A task is associated with a task type. As
of this writing, there are two task types: model extraction (see also Section 3)
and text correction (compare Section 4). Additional task types will be added
(e.g. test code generation), as the capability of tools expands. Every task has an
expected result and for every task type there are metrics which determine the
quality of a solution (recall, precision, and F-measure).

2.2 Sources and Approach

The current collection holds over 50 tasks. The expected solutions were con-
structed by hand and reviewed. Unfortunately, not all of the tasks have unique
solutions. The tasks are broken down by categories (e.g. teaching example, indus-
trial specification, standard), by language, and by the availability of solutions.

For overall progress, one needs real requirements. At conferences and in per-
sonal discussions, researchers often criticize the lack of real-world requirement
examples. Real requirements are surprisingly hard to find: textbooks contain
few examples, and they seem to be written by the authors or copied from other
textbooks. Many examples about NLP requirements processing use an artificial,
strongly restricted language. Also, companies often hesitate to provide samples
due to fear of exposing intellectual property or because they think their require-
ments to be poorly written or inferior in some other way.

As a starting point, we collected previously published examples (and their
solutions). Berry et al. published specification texts [8, 20, 21] in order to study
flaws. Kof published a solution to Abrial’s well-known steam boiler example [22,
23] and the Daimler Crysler Demonstrator [18, 24]. Industry/research cross-breeds
like Accenture’s RAT [25] provide cleaned-up real-world samples. Other tasks
have been provided by the research community (Universidad Politécnica de
Madrid, Gordon College, and others), companies (Accenture USA, Agilent, BOSCH),
or have been taken from textbooks and teaching materials. We link to texts of
other authors; our own texts and texts for which we have a permission are pro-
vided on our website.

When we designed the benchmark, we kept Sim et al’s [15] desiderata in
mind: Accessibility, affordability, clarity, relevance, solvability, portability, and
scalability. As our benchmark is fully open and the entire material can be down-
loaded free of charge, accessibility and affordability are given. We provide (or
link to) the original documents (possibly containing figures, tables and the like),
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Fig. 1. nlrpBENCH List of Tasks. It comprises over 50 specifications from academia
and industry.

but also offer prepared plain text editions for immediate processing. Every task
is accompanied with clear instructions and evaluation criteria. For texts that
have been published in the literature, we include the solutions provided by the
authors, and, where necessary, improved solutions (not all published solutions
are correct and complete).

The difficulty of the texts varies greatly, so there should be enough material
suitable for testing research prototypes as well as industrial-strenght tools. The
realism of the texts also varies: We included simple textbook examples as well as
industrial examples. The texts in the current benchmarks (c.f. Section 3 and 4)
are mostly drawn from the easier examples. We will assemble benchmark sets of
greater difficulty as tools improve.

2.3 The Tasks

The nlrpBENCH website lists the available tasks in alphabetical order as shown
in Figure 1. The website also allows searching for specific tasks and browsing
through different task categories.

For every task there is a summary page listing the task’s properties (such as
length, difficulty, and source). Figure 2 shows the DailmerCrysler Demonstra-
tor [18]. It consists of two documents: the system requirements and the system
specification. For both texts there is a short summary and a link to the full
document. The source is acknowledged.
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Fig. 2. The DaimlerCrysler Demonstrator Specification. A short summary and down-
loads for detailed information are provided at a glance.

Where there are published solutions, these are listed; if there is no gold
standard for a given task, the available solutions form a baseline to improve
upon. If there are multiple solutions for a task, we provide all of them and allow
for discussion of pros and cons. We plan on introducing a difficulty index on a
scale from 0 to 10.

2.4 nlrpBENCH in Research

The tasks in the first benchmark (c.f. Section 3) stem mostly from software engi-
neering classes and textbooks. These documents are written in precise language,
contain few flaws and cover closed subject areas. They are fairly simple. We
expect the RE community to master these samples soon and then to move on
to more complex tasks, at which point we’ll define a more complex benchmark.
nlrpBENCH aims to cover the full range of difficulty from simple examples to
hard, real-world specifications.

Class diagrams were created by a tool developed by Gelhausen [13] or drawn
manually. Still, they cannot be considered gold standards yet, as there is room
for interpretation and differences in modeling. More tools that create UML class
diagrams directly from text need to be applied to the benchmark to form a joint
understanding of what the gold standard should be.

2.5 nlrpBENCH in Education

The benchmarks can also be used in educational settings. In fact, tasks in the
categories “teaching examples” and “exam questions” were taken from software
engineering classes, textbooks, and our own exams. Training of students should
start with clear and simple examples.

nlrpBENCH also includes real-world examples from industrial projects. Some
of these specifications are only available for registered users and require a non-
disclosure agreement, but the DaimlerCrysler Demonstrator [18] and FlexRayTM
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specification [17] are publicly available. These samples can be used for advanced
students, to prepare them for real-life situations.

All tasks, expected results, and metrics are available at http://nlrp.ipd.

kid.edu/. Both researchers and practitioners are invited to join the wiki plat-
form and to work with us on evolving the benchmarks.

3 Text to UML (T2U) Benchmark

The goal of the Text to UML benchmark (T2U) is the extraction of UML class
models from text. It is comprised of five short and simple English specifications
(two of which are provided in German as well). The lengths of the English texts
range from 49 to 219 words.

The first specification, a public library, has been published several times in
SE papers (e.g. in reference [11]). The second one is the WHOIS server protocol
as described by the IETF RFC 3912. The three remaining texts stem from SE
exams and should therefore be consistent, written in a clear language, and easy to
model. Figure 3 shows the timbered house example accompanied by the expected
solution. All documents contain text only and can be modeled without further
information.

Evaluation criteria for UML class diagrams have been proposed by Harmain
and Gaizauskas in 2003 [11]. They state how to determine recall and precision of
an UML class diagram by mapping the solution to the expected result. Their met-
rics over-specification “measures how much extra correct information in the sys-
tem response is not found in the” expected solution. Given a mapping one can de-
termine recall = Ncorrect/Nexpected, precision = Ncorrect/Ncorrect + Nincorrect

and over − specification = Nextra/Nexpected with Ncorrect being the number
of correct elements of the solution, Nincorrect the number of incorrect elements
of the solution, Nexpected the number of elements in the expected solution. The
evaluation method is manual at the moment but could be partly automated using
model comparison features of the Eclipse Modeling Framework and others.

Table 1 shows how two tools, namely CM-Builder [11] and SalE MX [13], per-
form in the first task; an additional evaluation is shown for the manual solution
by Callan [26].

Table 1. T2U Benchmark Example: Model Extraction of Different Approaches in
Comparison.

Solution recall precision F measure over-specification

CM-Builder 41.7% 71.4% 52.6% 0.0%
SalE MX 100.0% 81.4% 89.7% 34.3%
Callan 30.4% 100.0% 44.9% 0.0%



nlrpBENCH 7

A timbered house consists of 5 to 10 logs, 200 to 400 mud-bricks and 1000-
2000 nails. Each building material, whether log, brick, or nail, is a component
in exactly one timbered house. Each timbered house has a certain number
of rooms and floors. At least one carpenter is in charge of constructing a
timbered, who has a name and an individual hourly wage. For the construction
of a timbered house each carpenter uses his own tools, consisting of exactly
one hammer and exactly one saw. Any carpenter can work on at most one
timbered house at a time.

Fig. 3. The Timbered House exam text with the expected UML class diagram.

4 Text Correction (TC) Benchmark

The goal of the Text Correction benchmark (TC) is the automatic detection and
correction of linguistic flaws. The benchmark texts are interspersed with known
flaws such as ambiguities, nominalization, and incompleteness. The texts were
published in [8, 20, 21] and are accompanied with comprehensive lists of flaws.

With a common benchmark, different approaches, the benefits, and draw-
backs could be easily assessed: Table 2 compares the recall of Körner’s tool
RESI [10] and Kiyavistkaya’s Approach [8] based on the ABC Video Rental spec-
ification [8]. RESI is an interactive tool that points the user to linguistic flaws
and suggests possible corrections. The first column lists the flaws such as words
with similar meanings (near synonyms), definite and indefinite articles (e.g. in-
correctly used all-quantors), incomplete specified process words (e.g. missing
agent of an action), and nominalization of verbs. The last two columns show
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Table 2. TC Benchmark Example 1: Flaw Detection by RESI [10] and Kiyavistkaya’s
Approach [8] in Comparison

Flaw Category Total Flaws Recall Recall
RESI Kiya.

Similar Meaning 15 73% 33%
Indef. Articles 6 100% 17%
Def. Articles 24 100% 25%
Incompleteness 23 61% 87%
Nominalization 5 80% 20%

recall rates of the two tools. To simplify scoring we plan to define a submission
format so that the performance of the tools can be determined automatically.

The benchmark can also be used in case studies and controlled experiments.
An example is the following. We were interested in the time required to discover
flaws in specifications. A case study lead to the results presented in Table 3. It
compares the manual detection rates with the ones obtained with RESI: The
specifications contain 339 or 95 known flaws, respectively. �

∑
Flaws is the

average amount of flaws found by the tested subjects within 15 minutes. The
case study indicates that manual processes are inferior to RESI’s semi-automatic
process under time pressure. A goal of the benchmark is to have other tools run
similar evaluations to make detection rates and usability studies for all tools
comparable.

Table 3. TC Benchmark Example 2: Process Improvement with Tool Usage. Recall
and Precision Comparison of Manual and Semi-Automatic Approaches

ABC Video Rental [8] Monitoring Pressure[20]
manual RESI manual RESI

�
∑

Flaws 47.3 62.2 24.3 45.8
Recall 14.0% 18.3% 25.6% 48.3%
Precision 1.0 1.0 1.0 1.0

Also, the same specifications were used to conduct a case study to evaluate
the effectiveness of RESI. Participants were non-professionals (N), professional
software developers/architects (p) and PhD students (PhD). The subjects had
to find as many flaws as possible from all categories. Time was limited to 15
minutes per specification. We used a counter-balanced design: Half of the group
started with the tool, the other group with the manual process; both switched
half-way through. As can be seen in Figure 4, the average error detection rate
increases by 30 − 80% using RESI. The complete study, results and test texts
can be found in the upcoming dissertation by Körner.
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Fig. 4. Comparing User Test Results with Manual and Tool Supported Approaches
Using ABC Video Rental [8] and Monitoring Pressure [20].

5 Related Work

Benchmarks have been used in a variety of areas. The Transaction Processing
Performance Council (TPC) [19] published benchmarks for comparing databases.
The Standard Performance Evaluation Corporation (SPEC) benchmark evalu-
ates performance of CPUs [27], web servers, mail servers, application servers,
etc.

The DARPA Grand Challenge for driverless vehicles (2004 [28], 2005 [29]) can
also be seen as a benchmark. The task was for autonomous vehicles to navigate
across a stretch of desert. This benchmark was later extended to driving in urban
settings in the DARPA Urban Challenge (2007) [30]. This is a good example how
benchmarks and competition can speed up progress: In the span of about ten
years, this benchmark helped develop autonomous vehicles for real traffic.

About a handful of examples have been used in the RE literature to compare
tools; these include a meeting scheduler [31], an elevator controller [32], a steam
boiler controller [22, 23], and a public library [26, 11]. These are good examples
and they are included nlrpBENCH.

6 Conclusion

We present a publicly available collection of requirements specifications. This
collection is intended to make tools that process requirements specifications com-
parable. We assembled two benchmarks, one for model extraction and one for
text correction, and showed how to use them in tool evaluations. The specifi-
cations can also be used for educational purposes. We invite both professionals
and researchers to use, expand, and improve nlrpBENCH. If accepted by the com-
munity of RE researchers, the benchmarks might lead to public competitions,
awards, and prizes.



10 Walter F. Tichy, Mathias Landhäußer, and Sven J. Körner
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