
On Mining Concurrency Defect-Related Reports from

Bug Repositories

Frank Padberg and Philip Pfaffe

Karlsruhe Institute of Technology KIT

Karlsruhe, Germany

frank.padberg@kit.edu

Martin Blersch

FZI Forschungszentrum Informatik

Karlsruhe, Germany

blersch@fzi.de

Abstract— We present early findings of two ongoing case studies

in which we automatically extract reports about concurrency

defects from the MySQL and Apache bug repositories. To mine

the unstructured reports, we apply keyword search and machine

learning, using linear and non-linear classifiers. We analyze the

results in detail and suggest some improvements for this mining

task.

Automated Bug Report Classification; Software Reliability

Modeling; Concurrency Defects

I. INTRODUCTION

This paper reports on two mining case studies in progress.

Concurrency defects are notoriously difficult to detect and
costly to debug. Many concurrency failures crash or hang the
system, see, f.e., [Lu08] [Fonseca10]. Development teams need
to know how many concurrency defects to expect, and at what
times in the lifecycle. In our research project QUALICORE

[QualiCore], we develop novel techniques for the early
automated detection of concurrency defects from design
artifacts [Padberg13a] [Padberg13b]. In the project, we also
develop statistical models for the reliability of multicore
software – this is where the mining of unstructured software
engineering data comes into play. In this paper, we report on
our progress with exploring this mining task.

For reliability modeling, specific information about the
distribution of failures over time in an application is required.
Such information usually gets computed based on the time
stamps of bug reports. As our object of study, we currently
analyze the bug repositories of large, open-source applications.
Since we focus on the reliability of the “parallel part” of an
application, we want to screen just the concurrency-related
defects and failures. That means, our reliability models take as
input only reports about failures that are concurrency defect-
triggered; reports about general programming defects are
deliberately left out. Due to the large size of the repositories,
the relevant reports must be identified automatically applying
data/text mining techniques.

The classification problem for bug reports has been
addressed in related work, f.e., [Fonseca10] [Liu13]. The topic
of mining from bug repositories has also been addressed in a
keynote at the first MUD workshop [Lo10]. See the section on
related work for more details.

In our context, we face a number of technical challenges
when extracting concurrency-related bug reports from a
repository:

 The bug repositories for large concurrent applications
typically contain (tens of) thousands of bug reports.
Hence, the concurrency-related reports must be
extracted automatically.

 Bug reports in practice hardly ever contain a defect
classification field. Hence, whether a report is
concurrency-related or not must be identified from the
contents of the main body of the report, which contains
a mixture of natural language text, questions and
answers, code fragments, failure-inducing input, and
links to other software sources.

 For reliability modeling, we need as many reports
about concurrency defects as possible. On the other
hand, some “noise” in the extracted data is tolerable
since the statistical models will smooth the data to
some extent. That is, the automated extraction should
provide a high recall and a good precision.

In the remainder of the paper, we present – preliminary –
results and findings from our attempt to extract concurrency-
related defect reports at a large scale from the bug repositories
of MySQL and Apache.

II. RELATED WORK

[Fonseca10] automatically extract bug reports from the
MySQL repository that pertain to concurrency defects, by
searching for typical concurrency-related keywords. After
extensive manual filtering, they obtain 80 reports of well-
documented concurrency bug. The goal of the study is to
analyze this instructive sample of reports in detail and
understand the problems that lead to concurrency defects. In
contrary, our goal is to extract as many concurrency defect-
related reports as possible, no matter whether a good failure
description and patch are included or not.

[Liu13] classify certain types of bug reports automatically,
as the initial step for generating patches automatically. The
study limits itself to three types of bugs: buffer overflows, null
pointers, and memory leaks. They label a set of representative
reports manually with the bug type, then apply machine
learning to train a separate classifier for each bug type. Trained

on Linux kernel and Mozilla reports, the classifiers seem to
achieve a good precision (80 per cent) when applied to Apache
reports; the recall seems to be low, though (about 50 per cent).
Due to lack of technical detail, the experimental classification
results of the study cannot be reproduced.

 [Lo10] also addresses text mining from bug reports in a
keynote at the first MUD workshop. The goal is to identify
duplicate reports based on textual similarities. The keynote
makes a number of interesting observations, including: Bug
reports suffer from incomplete and badly structured sentences;
bug reports use special technical keywords; there often are
different ways of describing the same issue; bug reports contain
a mixture of content types; there is a variety of bug types each
having its own characteristics. Some recommendations are:
Apply robust text mining techniques; use parsers to split the
contents according to type; use composite features. We arrive
at similar findings in our case studies, see below.

III. MYSQL

The MySQL bug repository has grown to double its size
since the [Fonseca10] study was published. It currently
contains more than 25,000 closed reports. Considering closed
reports only is common and ensures that defects are confirmed
and descriptions are stable. For the purpose of reliability
modeling, we aim at extracting as many concurrency-related
reports as possible.

Henceforth, we shall focus on the subset of closed reports
concerning the MySQL server versions, and simply call this
“the repository.”

A. Extraction Approach

To extract concurrency-related bug reports, [Fonseca10]
searched the report bodies for keywords that are typically used
when describing concurrency defects. The set of keywords was
established in a trial-and-error approach. As stated in the study,
the following keywords were included (among others that were
not specified in the study):

lock, acquire, compete, atomic, concurrency,

synchronization, etc.

We took this list as a starting point and applied the same
keywords to the repository. Then, we randomly sampled from
the reports extracted by the search (“hits”) and checked
manually whether they actually were concurrency-related. We
found that quite often this was not the case, despite the match.
In addition, we knew about certain concurrency defect-related
reports that were not found by the keywords.

Hence, we iteratively refined the set of keywords in order to
achieve a higher precision and recall. This is the list of search
terms that we currently are using:

acquire(s) + lock, wrong + lock(ing), missing + lock,
compete, atomic, concurrency, synchronization,

“race condition(s)”, deadlock(ed), concurrent, mutex,
“read lock”, “write lock”

Our search terms extracted 558 bug reports from the
repository. Each report refers to one or more MySQL versions:

Since the different versions often are based on common source
code modules, many defects are relevant for several versions.
Table 1 shows the number of hits for each version.

Table 1. Number of defect reports extracted (“hits”) for MySQL

Version Hits Version Hits

all 558 5.2 2

3.23 3 5.4 14

4.0 34 5.5 145

4.1 52 5.6 91

5.0 130 5.7 21

5.1 185 6.0 200

Some keywords, such as “concurrent”, “deadlock”, or
“mutex”, are more yielding than others, such as “atomic”.
Table 2 shows the number of hits for each keyword (note that
for a number of reports, more than one keyword matched).

Table 2. Number of hits for the different keywords (MySQL)

Keyword(s) Hits Keyword(s) Hits

all 558 synchronization 20

+acquire(s) +lock 11 "race condition(s)" 40

+wrong +lock(ing) 54 deadlock(ed) 142

+missing +lock 7 concurrent 161

compete 1 mutex 122

atomic 19 "read lock" 67

concurrency 19 "write lock" 26

B. Precision

We checked a random sample of about ten per cent of the
extracted reports manually and found that the majority actually
were concurrency-related. We are in the process of checking all
558 hits. Table 3 specifies our findings on precision for each
MySQL version, as available so far. It seems that the precision
of the search ranges between 70 and 85 per cent.

Table 3. Overall precision for some MySQL versions

MySQL
Version

Hits
Concurrency-

related
Precision

3.23 3 3 100%

4.0 34 29 85%

4.1 51 36 69%

5.0 130 93 71%

5.1 185 138 74%

For the versions 4.0, and 4.1, we checked how efficient the
individual keywords are. Table 4 shows the results for those
keywords that had less than 100 per cent precision.

Table 4. Keyword precision for some MySQL versions

Keyword(s) 4.0 4.1 Keyword(s) 4.0 4.1

+wrong +lock 67% 67% mutex 100% 64%

+wrong
+locking

50% 0% "read lock" 80% 86%

deadlock 78% 75% "write lock" 100% 67%

concurrent 100% 70%

It seems that certain keywords require post-processing in
order to increase their precision. In particular, the combination
of “lock(ing)” and “wrong” seems prone to wrong hits. We are
looking into this. In addition, for C/C++ code such as MySQL,
“mutex” seems to occasionally appear as a parameter name in
the code; similar for “concurrent”. Such peculiarities should be

factored in when classifying bug reports automatically based on
keywords.

C. Some Wrong Hits

We analyzed all 15 wrong hits for MySQL 4.1, to find out
why exactly the keywords were misleading.

 In 6 cases, the keyword appeared as part of the code
listed in the report, f.e., as a call parameter, a
configuration parameter, or a MySQL command.

 In 4 cases, the keyword appeared in the code as an
error string, or in the debugger output given in the
report.

 In 1 case, the keyword appeared as a test case name
mentioned in the report.

 In the remaining 4 cases, the keyword did appear in the
bug report in some other way, but the defect was
actually not related to a concurrency issue.

This preliminary analysis provides some hints how splitting
the body of a bug report according to content type – such as
code snippet, failure-inducing input, failure description, and
defect cause explanation – might improve the precision of the
search. For classifying email contents, this approach is pursued
in [Bacchelli12]. Considering the content type is in line with
the suggestions given in [Lo10], and subject to further study.

D. Recall

Currently, we cannot make any substantiated statement
about the recall of the keyword search. The MySQL bug
repository is way too large to check this manually.

Unless development teams are willing to spent more effort
on classifying defects when reported during development or
maintenance, there seems to be little that research can do about
estimating the ecall in large repositories.

For our primary purpose of reliability modeling, the
situation seems not too bad, though: We expect that we can
build useful reliability models already from a sufficiently large
extract of the set of all concurrency defects.

IV. APACHE

A. Search-based Approach

Keyword-based search worked fairly well on the MySQL
repository. We tried the same approach on the Apache
repository, which contains almost 15,000 closed reports. For
Apache, we used the following – slightly adapted – set of
keywords:

deadlock, race condition(s), atomic, lock(s), locked,
locking, unsynchronized, threading, synchronization,
(multi)threaded, concurrency, mutex, atomicity.

515 hits were reported by the keyword search. This set of
hits includes reports that actually were not concurrency-related,
despite the match. For a random sample of 60 reports drawn
from the hits, we had a low precision, below 50 per cent.

It seems that our concurrency-related keywords are less
discriminative for Apache reports than for MySQL reports. We
took a closer look at the Apache reports and identified several
potential reasons for this:

 The Apache project has a more complex software
structure than MySQL. Hence, identifying and
describing the root cause for a failure is more difficult.

 The bug reports are filed not only by developers, but
also by end users, as opposed to the MySQL project.
Typically, it is hard for end users to describe the
symptoms and runtime conditions of a failure
precisely. Hence, the reports tend to be less specific.

 Developers who fix a defect don‟t always add as much
technical information to user-reported defects as to
developer-reported defects.

 The Apache project spans several programming
languages and paradigms. The terminology that is
being used in the reports often reflects the special
terms of the language, not the general terms.

It might be helpful to tailor the keywords to the language
(natural and technical) used by the authors of the report. This
would require identifying, f.e., the programming language in
the code snippets, and identifying whether the initial author of
the report is a developer or an end user.

B. Voting-based Approach

Similar to MySQL, we often found that more than one
concurrency-related keyword matched an Apache bug report.
Hence, we tried a simple voting scheme: A report was marked
as a hit, iff two or more keywords matched. Exploring this
scheme on a sample of 30 Apache bug reports drawn randomly
from the 515 reports retrieved by the keyword search, the
precision increased to 60 per cent, but no more. We took this as
a suggestion that it might make sense to try a learning-based
approach, which would allow for more than one text fragment
(keyword) as input for the classification.

C. Learning-based Approaches

To increase the precision, we are experimenting with
augmenting the keyword search with machine learning-based
approaches; that is, we aim at a two-stage extraction process.
From the 515 (true and false) hits that resulted from the search,
we randomly sampled 81 reports and subdivided them, roughly
2:1, into a training set and a test set, then trained linear and
non-linear classifiers, using different sets of features.

Linear classifier – standard features. We first tried a linear
classifier using unigrams, bigrams, and the corresponding
relative term frequencies as features. This choice was inspired
by standard text mining approaches [Feldman07]; we were
aware that this would result in a large number of features. We
implemented a linear “balanced winnow” classifier, which is
known to be robust against having a large set of irrelevant
features [Littlestone87]. Based on the [WEKA] winnow
defaults, we set α=1.1, β= 0.9, and θ=1; the initial weights were
set equal to 2·θ divided by the average length of the reports.
We trained the classifier for 100 cycles. 57 reports were used

for training and 24 reports for testing. In the training set
(testing set), 35 (17) reports were concurrency defects, 22 (7)
were not.

The results were best when using the relative term
frequencies as features. We achieved a precision of 77 per cent,
but a recall of only 59 per cent on the test data – bearing in
mind that we apply learning on top of the keyword search, this
value is low. We are in the process of analyzing the results in
more detail; f.e., we are checking which features receive a
significant weight in the classifier.

Linear classifier – custom features. Next, we drastically
reduced the set of features, trying to tailor them to the problem
before training the classifier. We started from our set of
keywords, the rationale being that a classifier can weigh and
combine the keywords, contrary to a simple search. We ran a
staged series of experiments, using the following features:

(i) binary values that indicate whether the keywords
matched or not; (ii) the absolute frequencies of the keywords;
(iii) the absolute frequencies of the keywords, plus the size of
the bug report; (iv) the relative frequencies of the keywords.

We used the same linear classifier, training set, and test set
as before. From the learning curves (not shown), 100 training
cycles apparently were sufficient. Table 5 shows the precision
and recall on the test data.

Table 5. Precision and recall for different feature sets (Apache)

Features Linear Class. Neural Net

Prec Rec Prec Rec

binary (i) 80% 47% 74% 76%

absolute freq. (ii) 91% 64% 83% 59%

abs. freq. + size
(iii)

88% 47% 88% 57%

relative freq. (iv) 78% 64% 81% 69%

The absolute frequencies performed best; their precision is
good, yet, their recall is not. A comparison of (iii) and (iv)
indicates that it is difficult to learn relative frequencies by
adding the report size as a feature to the absolute frequencies.

Non-linear classifier. Finally, we quickly tried a non-linear
classifier (neural net [WEKA] [Hall09]) on the same data set of
81 reports. We wanted to gain insight into the question whether
some features carry non-linear information about the target.

We used a default configuration for the neural net, as
provided by the library function: one hidden layer with 9
neurons, and backpropagation with a learning rate of 0.3 and a
momentum of 0.2. The subdivision into training and test set
was done automatically (3-fold cross-validation) by the library.
Table 5 shows the precision and recall values for the neural net,
using the same feature sets as before.

The maximum precision that we achieved on the test data
was close to 90 per cent, but with a low recall below 60 per
cent. Overall, as opposed to the linear classifier, the binary
features provided the best balance between precision and recall
with the neural net. We are in the process of analyzing these
results in detail, in particular, how the features are being
weighed by the classifier. This is ongoing work.

V. CONCLUSIONS

We presented early findings of two – ongoing – case
studies that aim at extracting the concurrency-related defect
reports from a large bug repository, automatically. The case
studies are part of our research on reliability modeling for
multicore software. From the perspective of mining
unstructured software data, we consider this to be an instructive
application domain, because the requirements on the precision
and recall seem manageable.

We applied a search-based approach using specific
concurrency keywords with some success. We found that some
keywords work better than others, that the keywords need to be
adapted to the repository somewhat, and that some keywords
require post-processing for a good precision.

To improve the precision, we currently are exploring
learning-based approaches. Initial results are interesting and
encouraging, but we think that we need to better tailor the
feature set and learning technique to the problem.

We are looking forward to the discussions and advice from
the data mining experts at the MUD workshop.

 ACKNOWLEDGMENT

The QUALICORE project is supported by research grant no.
01|S11011 from the German Federal Ministry of Science and
Education BMBF.

REFERENCES

[Bacchelli12] Bacchelli, A., Dal Sasso, T., D‟Ambros, M., and Lanza, M.,
“Content classification of development emails,” 34th Int. Conf. on Softw. Eng.
(ICSE‟12), 375-385.

[Feldman07] Feldman, R., and Sanger, J., The Text Mining Handbook,
Cambridge University Press, 2007.

[Fonseca10] Fonseca, P., Li, C., Singhal, V., and Rodrigues, R., “A study of
the internal and external effects of concurrency bugs,” Int. Conf. on
Dependable Systems and Networks (DSN „10), 221-230.

[Hall09] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and
Witten, I. H., “The WEKA Data Mining Software: An Update,” SIGKDD
Explorations Newsletter, vol. 2, no. 1 (2009), 10-18

[Littlestone87] Littlestone, N., “Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm,” Machine Learning, vol. 2, no. 4
(1987), 285-318

[Liu13] Liu, C., Yang, J., Tan, L., and Hafiz, M., “R2Fix: Automatically
Generating Bug Fixes from Bug Reports,” 6th Int. Conf. on Softw. Testing,
Verification and Validation (ICST‟13), 282-291.

[Lo10] Lo, D., “Mining Execution Traces and Bug Reports: Challenges and
Opportunities,” 1st Int. Workshop on Mining Unstructured Data at WCRE
(MUD‟10), Keynote Presentation.

[Lu08] Lu, S., Park, S., Seo, E., and Zhou, Y., “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,” 13th Int.
Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS‟08), 329–339.

[Padberg13a] Padberg, F., and Denninger, O., “Multicore-Softwarefehler im
Visier. Automatische Fehlererkennung in Entwürfen paralleler Programme,“
Objektspektrum, vol. 20, no. 1 (2013), 72-76

[Padberg13b] Padberg, F., Carril, L. M., Denninger, O., and Blersch, M., “On
Detecting Concurrency Defects Automatically at the Design Level,” 20th Asia
Pacific Softw. Eng. Conf. (APSEC ‟13), accepted.

[QUALICORE] http://www.qualicore-projekt.de/

[WEKA] http://www.cs.waikato.ac.nz/ml/weka

