

 Karlsruhe Reports in Informatics 2013,15
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Universal Programmability - How AI Can Help

Walter F. Tichy, Mathias Landhäußer, Sven J. Körner

 2013

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Universal Programmability - How AI Can Help

Walter F. Tichy, Mathias Landhäußer, Sven J. Körner
tichy|landhaeusser|sven.koerner@kit.edu

ABSTRACT
Everyone should be able to program. Programming in informal,
but precise natural language would enable anyone to program and
help eliminate the world-wide software backlog. Highly trained
software engineers would still be needed for complex and demand-
ing applications, but not for routine programming tasks.

Programming in natural language is a monumental challenge and
will require AI and software researchers to join forces. Early re-
sults, however, appear promising. Combining natural language
understanding and ontological reasoning helps remove defects from
requirements statements, transforms requirements into UML mod-
els, and might even enable script-like programming in specific,
narrow domains. An important precondition for rapid progress in
this area are benchmarks that help compare different approaches
and stimulate competition among researchers.

1. INTRODUCTION
Everybody owns one or more programmable devices – mobile
phones, digital TVs, PCs, tablets, etc. However, only a tiny frac-
tion of the owners of such devices are actually capable of program-
ming them. This means that the major capability of computers,
their programmability, is available to only a tiny proportion of
users. The reason is, of course, that programming is difficult –
it requires the use of esoteric languages, arcane APIs, and years
of training. On the other hand, most people are quiet good at
explaining. Parents teach their children in an amazing range of
skills, workers train colleagues, friends explain various activities
from sports to home repair, and self-help books abound. What if
programming was as easy as explaining?

Programming by everyone sounds far-fetched, but by applying
artificial intelligence approaches we found that certain types of
software artifacts can indeed be produced from natural language
input. For instance, software development starts with customer
requirements: a skilled analysts elicits and records users’ wishes.
Once the requirements are complete and correct enough, engineers
start transforming the requirements into models and later into
executable code. We found that not only can requirements be an-
alyzed automatically for defects such as ambiguity or incomplete-
ness, but requirements can also be transformed automatically into
UML models. The reverse transformation is also possible, keeping
requirements and models in synchrony. Certain tests can also be
generated, by adapting them from similar situations. These soft-
ware artifacts are only auxiliary to the desired end product, i.e.,
executable code, but we are now exploring whether simple scripts
could be derived from step-by-step instructions formulated in nat-
ural language, limited to a narrow domain.

Natural language understanding and processing is a vital part of
this vision. If we want to lower the barrier for programming, we

need to liberate programming from artificial programming lan-
guages and instead rely on people’s innate ability of explaining
and describing concepts and processes in their mother tongue.
With programming in natural language come all the problems of
natural language, such as ambiguity and implicit context, and
these will have to be handled in some way. However, we are
convinced that many of the software engineering steps performed
manually today can be carried out, or at least supported, by ma-
chines. Essentially, computers should support humans in writing
software not only on a syntactic, but also on a semantic level.

2. RECENT ADVANCES IN NATURAL
LANGUAGE PROCESSING

IBM’s Watson is a program capable of answering questions posed
in (typed) natural language [1]. In Feb. 2011, Watson competed
in the quiz show Jeopardy!. It beat Brad Rutter, the biggest,
all-time money winner on Jeopardy!, and Ken Jennings, who had
won 74 games in a row. Except for a few categories, Watson
consistently outperformed its human opponents. Watson had ac-
cess to millions of documents, including Wikipedia, literary works,
newswires, WordNet, the Yago knowledge base, and other sources,
but not the Internet. Watson uses numerous analysis and search
algorithms simultaneously to find the most likely answer. Al-
though Watson does not think nor understand, the system shows
the power of a huge database. When programming, humans also
rely on a lot of background knowledge, such as algorithms, data
structures, software components, domain knowledge, and general
knowledge. It seems obvious that broad background knowledge
will be needed if software is to be produced in response to require-
ments or commands in natural language. The software engineer-
ing community should learn from Watson’s success.

Another example is Apple’s Siri (actually developed by a startup
founded by SRI International). Siri provides a speech recognition
interface and can answer questions or make recommendations.
For example, one can ask Siri: ”Will I need an umbrella tomor-
row?” Siri then checks its calendar to find out where its owner is
traveling the next day, checks the weather forecast for that loca-
tion, and then gives the appropriate answer. Quite a bit of logical
inference is involved in answering this query. We think that when
making everybody a programmer, it is initially enough to provide
a textual interface. Speech input can be added at a later time.
The main difficulty is not speech processing, but finding or gener-
ating usable software artifacts. Search and logical inferences will
be indispensable for this.

If we look at software engineering processes, we see that they rely
heavily on natural language. Most requirements documents are
written in natural language and people use natural language to
explain their needs to the software developers [2]. Humans are

tichy|landhaeusser|sven.koerner@kit.edu

trained in explaining things in natural language and in under-
standing such instructions: We all go to school where we learn
things of increasing complexity via natural language. By leverag-
ing knowledge and explanation, many software engineering tasks
should become easier (see Section 4).

For the past 7 years, we have been applying AI technology to
software engineering. Combining tools, results, and approaches
from SE and AI produced encouraging results which are outlined
in the following section.

3. FIRST RESULTS
At first, our research in AI for software engineering concentrated
on modeling issues. Gelhausen and Tichy developed a system to
extract UML domain models from natural language text [3, 4].
They showed that a systematic extraction process can be car-
ried out, if the text is annotated with so-called semantic roles.
Gelhausen and Körner subsequently showed that these annota-
tions can be simplified by using ontologies that contain common
world knowledge (such as Cyc [5]) [6]. Further research into do-
main modeling led to automatically generated checklists for model
inspection [7]; these checklists have been applied in software engi-
neering courses.

Körner and Brumm demonstrated that natural language under-
standing and ontological reasoning can help detect linguistic de-
fects in specifications [8, 9, 10]. Their tool RESI (Requirements
Engineering Specification Improver) not only checks for common
linguistic defects (such as distortions or deletions), but also rec-
ommends possible corrections.

Extending Gelhausen’s work on model extraction, Körner and
Landhäußer developed a system that semi-automatically anno-
tates a specification with semantic roles [11]. Semi-automatically
means that in certain ambiguous cases, the annotation engine
asks the user for the correct choice. This development closed the
gap between the original specification and the model extraction
process [12]. Recent work extended the model extraction process
to allow for round trip engineering [13]: Changes to the model –
or the specification – can be fed back to its counterpart: Text
changes lead to model updates and model modifications are re-
flected back in the text. This facility allows users to evaluate
model changes made by a domain analyst; the domain analyst
can better determine the estimated impact of change requests.
Sinha et al. follow a similar idea for generating UML class di-
agrams from use case descriptions but use a restricted natural
language [14].

Focusing on the reusability of test scripts, Landhäußer and Genaid
[15] developed a recommendation system for acceptance tests. It
builds a knowledge base from source code (production code as well
as test code) and the respective requirements. For new, unseen
requirements the system recommends test steps that are likely to
be needed (such as setting up a graphical user interface, loading
test data, and so on). Others have applied NLP techniques in
software engineering, e.g. in programming by example [16], in in-
ferring contracts from API documentation [17], in detecting flaws
in API documentation [18] to name a few.

4. PROGRAM SYNTHESIS
Our current research aims at program synthesis from natural lan-
guage input. To limit the domain, we use Alice, a framework for
building 3D environments, animations, and games. Alice is nor-
mally programmed using a Java-like programming language [19].
Alice targets programming novices and is based on real-world ob-

jects. It has the advantage that everybody understands the do-
main.

We analyze the Alice library to build an Alice knowledge base
(i.e. ontology); this way our system gets to know the available
objects and what they can do. The resulting knowledge base can
be harnessed when programming in natural language. So far we
have developed a component that analyzes existing Alice objects
to build the knowledge base.

Presently, we investigate how potential users of the system would
describe Alice animations in natural language, by asking them
to describe existing animations. Also, we investigate how to en-
rich the Alice knowledge base with world knowledge in Cyc [5]
and linguistic information in WordNet [20]; also we need to infer
a hierarchy for the domain ontology’s elements as there is no in-
heritance in Alice. The envisioned system will then analyze an
animation’s description and automatically derive an Alice script
to build it. To do so, the system does not need to understand the
meaning of the description word-by-word, but it must find suitable
components in the knowledge base that match the description.

The next milestones are generating a static scene (i.e. the setup
for an animation) possibly using other modalities (such as user
interaction with a mouse) and generating the script for the actual
plot. Future work also includes switching the domain (e.g. to
programming humanoid robots).

5. BENCHMARKING NATURAL LANGUAGE
REQUIREMENTS PROCESSING

There have been a number of earlier attempts to translate natural
language requirements into software artifacts (e.g. [21, 22, 23, 24,
25, 26, 27]). However, these attempts all used different examples
to test their systems. The result is that objective comparison
is impossible. One simply does not know whether one system is
better than another. This situation is clearly undesirable.

We therefore are collecting a benchmark, called nlrpBENCH, short
for Natural Language Requirements Processing benchmark [28].
The benchmark holds over 40 requirement texts of varying length
and difficulty and their transformations to models, animations,
etc. The documents come from various sources and range from
computer science exams to real-world industrial specifications; we
also include examples and solutions from textbooks. nlrpBENCH
is available online (http://nlrp.ipd.kit.edu/) and fully open
for participation.

Benchmarks have been successfully used in other research commu-
nities, for example in robotics, speech processing, and computer
architecture. Benchmarks speed up progress because they enable
comparison of different approaches. They work because they help
discard unsuccessful techniques and spotlight the successful ones.
We invite the research community to use and extend nlrpBENCH
to develop a common standard for language understanding in a
software engineering context.

6. CONCLUSION
The stored-program concept, discovered in the 1940s, was the
founding invention for the modern IT industry. It has led to an
absolutely astounding growth in both hardware and software. It
is common to have dozens to hundreds of applications on a single,
programmable device such as a smart phone or a laptop. The
number of users of programmable devices is in the billions. How-
ever, only a tiny fraction of users is actually able to use the central
capability of these devices, namely their programmability. If we

http://nlrp.ipd.kit.edu/

find a way to make programming accessible to anyone, then and
only then will computing reach its full potential. Software en-
gineering, artificial intelligence, natural language understanding,
knowledge extraction are some of many fields that have to be
brought together to achieve the vision of universal programmabil-
ity.

7. REFERENCES
[1] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek,

A. Kalyanpur, A. Lally, J. Murdock, E. Nyberg, J. Prager
et al., “Building Watson: An Overview of the DeepQA
Project,” AI Magazine, vol. 31, no. 3, pp. 59–79, 2010.
[Online]. Available: http://www.aaai.org/ojs/index.php/
aimagazine/article/view/2303

[2] L. Mich, M. Franch, and P. Inverardi, “Market research for
requirements analysis using linguistic tools,” Requir. Eng.,
vol. 9, pp. 40–56, February 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1008821.1008824

[3] T. Gelhausen and W. F. Tichy, “Thematic Role Based
Generation of UML Models from Real World
Requirements,” in Proc. International Conference on
Semantic Computing ICSC 2007, 2007, pp. 282–289.

[4] T. Gelhausen, “Modellextraktion aus natürlichen sprachen :
Eine methode zur systematischen erstellung von
domänenmodellen,” Ph.D. dissertation, Institut für
Programmstrukturen und Datenorganisation, Lehrstuhl
Programmiersysteme Prof. Dr. Walter F. Tichy, Fakultät
für Informatik, Karlsruher Institut für Technologie (KIT),
Jul. 2010. [Online]. Available:
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019366

[5] Cycorp Inc., “ResearchCyc,” last visited 09/04/2012.
[Online]. Available: http://research.cyc.com/

[6] S. J. Körner and T. Gelhausen, “Improving Automatic
Model Creation using Ontologies,” in Proceedings of the
Twentieth International Conference on Software
Engineering & Knowledge Engineering, Knowledge Systems
Institute, Ed., Jul. 2008, pp. 691–696.

[7] T. Gelhausen, M. Landhäußer, and S. J. Körner, Automatic
Checklist Generation for the Assessment of UML Models,
ser. Lecture Notes in Computer Science, M. Chaudron, Ed.
Springer, 2009, vol. 5421.

[8] S. J. Körner and T. Brumm, “Improving Natural Language
Specifications with Ontologies,” in Proceedings of the
Twenty First International Conference on Software
Engineering & Knowledge Engineering, Knowledge Systems
Institute, Ed., Jul 2009.

[9] ——, “Natural language specification improvement with
ontologies,” International Journal of Semantic Computing
(IJSC), vol. 03, pp. 445–470, 2010.

[10] ——, “Resi - a natural language specification improver,”
International Conference on Semantic Computing, vol. 0,
pp. 1–8, 2009.

[11] S. J. Körner and M. Landhäußer, “Semantic enriching of
natural language texts with automatic thematic role
annotation,” in Proc. of the Natural language processing and
information systems, and 15th international conference on
Applications of natural language to information systems,
ser. NLDB’10. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 92–99.

[12] W. F. Tichy, S. J. Körner, and M. Landhäußer, “Creating
software models with semantic annotation,” in Proceedings
of the third workshop on Exploiting semantic annotations in
information retrieval (ESAIR’10). New York, NY, USA:
ACM, Sep. 2010, pp. 17–18.

[13] M. Landhäußer, S. J. Körner, and W. F. Tichy,
“Synchronizing domain models with natural language
specifications,” in Proceedings of the Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering
(RAISE’2012), Jun. 2012.

[14] A. Sinha, M. Kaplan, A. Paradkar, and C. Williams,
“Requirements modeling and validation using bi-layer use
case descriptions,” in Model Driven Engineering Languages
and Systems, ser. Lecture Notes in Computer Science,
K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter,
Eds. Springer Berlin Heidelberg, 2008, vol. 5301, pp.
97–112.

[15] M. Landhäußer and A. Genaid, “Connecting user stories
and code for test development,” in Proc. of the Third
International Workshop on Recommendation Systems for
Software Engineering (RSSE 2012), Jun. 2012.

[16] S. Gulvani, “Sythesis from examples: Interaction models
and algorithms,” WAMBSE (Workshop on Advances in
Model-Based Software Engineering) Special Issue, Infosys
Labs Briefings, vol. 10, no. 2, 2012.

[17] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and
A. Paradkar, “Inferring method specifications from natural
language api descriptions,” in ICSE, ser. ICSE 2012.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 815–825.

[18] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/*icomment:
bugs or bad comments?*/,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, pp. 145–158, Oct. 2007.

[19] M. J. Conway, “Alice: Easy-to-learn 3d scripting for
novices,” Ph.D. dissertation, Faculty of the School of
Engineering and Applied Science, University of Virginia,
Dec. 1997.

[20] G. A. Miller, “WordNet: A lexical database for English,”
Communications of the ACM, vol. 38, no. 1, pp. 39–41,
1995.

[21] S. P. Overmyer, B. Lavoie, and O. Rambow, “Conceptual
modeling through linguistic analysis using lida,” ICSE 2001,
vol. 0, p. 0401, 2001.

[22] H. M. Harmain and R. J. Gaizauskas, “CM-Builder: An
automated NL-based CASE tool,” in ASE, 2000, pp. 45–54.

[23] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari,
“Application of linguistic techniques for use case analysis,”
Requirements Engineering, IEEE International Conference
on, vol. 0, p. 157, 2002.

[24] L. Kof, “An Application of Natural Language Processing to
Domain Modelling – Two Case Studies,” Int. Journal on
Computer Systems Science Engineering, vol. 20, pp. 37–52,
2005.

[25] V. Ambriola and V. Gervasi, “Processing natural language
requirements,” in ASE ’97: Proceedings of the 12th
international conference on Automated software engineering
(formerly: KBSE). Washington, DC, USA: IEEE
Computer Society, 1997, pp. 36–46.

[26] H. Liu and H. Lieberman, “Toward a programmatic
semantics of natural language,” in Visual Languages and
Human Centric Computing, 2004 IEEE Symposium on,
Sep. 2004, pp. 281–282.

[27] A. Fatwanto, “Translating software requirements from
natural language to formal specification,” in Computational
Intelligence and Cybernetics (CyberneticsCom), 2012 IEEE
International Conference on, Jul. 2012, pp. 148–152.

[28] W. F. Tichy, M. Landhäußer, and S. J. Körner, “nlrpBench:
A Benchmark for Natural Language Requirements
Processing,” manuscript submitted for publication.

http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303
http://portal.acm.org/citation.cfm?id=1008821.1008824
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019366
http://research.cyc.com/

	2013,15
	UniversalProgrammability-HowAiCanHelp (1)-1.pdf
	Introduction
	Recent Advances in NaturalLanguage Processing
	First Results
	Program Synthesis
	Benchmarking Natural LanguageRequirements Processing
	Conclusion
	References

