
Automated Test-Case Generation by Cloning

Mathias Landhäußer, Walter F. Tichy
Karlsruhe Institute of Technology

Karlsruhe, Germany
landhaeusser@kit.edu, tichy@kit.edu

Abstract—Test cases are often similar. A preliminary study
of eight open-source projects found that on average at least
8 % of all test cases are clones; the maximum found was 42 %.
The clones are not identical with their originals – identifiers
of classes, methods, attributes and sometimes even order of
statements and assertions differ. But the test cases reuse testing
logic and are needed for testing. They serve a purpose and
cannot be eliminated.

We present an approach that generates useful test clones
automatically, thereby eliminating some of the “grunt” work
of testing. An important advantage over existing automated test
case generators is that the clones include the test oracle. Hence,
a human decision maker is often not needed to determine
whether the output of a test is correct.

The approach hinges on pairs of classes that provide
analogous functionality, i.e., functions that are tested with the
same logic. TestCloner transcribes tests involving analogous
functions from one class to the other. Programmers merely need
to indicate which methods are analogs. Automatic detection of
analogs is currently under investigation. Preliminary results
indicate a significant reduction in the number of “boiler-
plate” tests that need to be written by hand. The transcribed
tests do detect defects and can provide hints about missing
functionality.

Keywords-Automatic testing; Software testing; Testing; Test
oracle

I. INTRODUCTION

Before embarking on a project to generate tests by
cloning, it is important to have an estimate of the potential
of this technique. To this end, we performed a preliminary
study of nine open source projects in Java: A library for
parsing command line arguments (args4j), a library for
logging (log4j), and seven libraries from the Apache Com-
mons project. These projects were analyzed for test cases
that were potential clones, i.e., could have been generated
by cloning and adaptation. We chose JPlag [1], a tool
that is used for plagiarism detection, to find potential test
clones. The advantage of JPlag is not only that it ignores
differences in identifiers, comments, and layout, but that it
is also insensitive to reorderings. Irrelevant reorderings of
declarations, statements, or assertions occur in practice and
should not lead to the rejection of a test from the set of
potential clones. (Other useful clone detectors are compared
by Roy et al. [2].)

Data collection proceeded as follows. For each project,
we extracted the test files and compared them pairwise with

Table I
ANALYSIS OF CLONED TEST CASES.

Project Version Tests Potential %Total Clones
args4j v2.0.20 (2011-12-12) 95 40 42 %
log4j v1.2.16 583 106 18 %
collections v4.0 (2011-12-23) 1085 61 6 %
configuration v1.9 (2012-02-05) 1481 75 5 %
email v1.3 (2012-01-11) 110 6 5 %
io v2.2 (2012-01-23) 757 28 4 %
lang3 v3.2 (2012-01-26) 2098 130 6 %
primitives v1.1 (2011-03-31) 808 102 13 %
Totals/Average 7017 548 8 %

JPlag. Test files typically include several tests, so the pairing
and counting of tests had to be done manually. Since cloning
can go in both directions, we were careful to count only
one direction. Due to the amount of data, we only analyzed
file pairs that showed a similarity threshold above 50 %.
The likelihood of clonable tests in files with a similarity
below 50 % is by no means zero. The results in Tab. I
thus underestimate the true number of highly similar test
cases.1 A more thorough study of the extent of potential
test case cloning should be conducted. Nevertheless, on
average at least 8 % of all tests could be generated by a
suitable cloning technique, sometimes significantly more.
An important benefit of the cloning approach is that it also
clones the test oracle. Hence, a manual decision of whether
the output of a test case is correct is often not needed (for
exceptions see below).

The concept of analogous functionality is central for test
case cloning. We say that pairs of software components
exhibit analogous functionality, if they share an abstract
specification. For example, when testing set functionality,
a typical test enters some data elements and then checks
whether they are present. Set functionailty occurs in all con-
tainer data types, including for example JFrame. JFrame
is a Java class that displays a window on a computer screen,
but it is also a container for display items. The test logic of
entering elements and checking their presence applies to all
containers. Similarly, when testing conversion functions, a
conversion followed by its inverse should return the input.

1For the last project, “primitives”, JPlag cut off the list of results because
there were too many files with 100 % similarity; we expect the actual
number of clonable tests to be even higher for this library.

public class F2CConverterTest {
 private static final double TOLERANCE = 1e-6;
 @Test
 public void backAndForthTest() {
 F2CConverter conv = new F2CConverter();
 final int degreeCelsius = 100;
 Assert.assertEquals(
 degreeCelsius,
 conv.toCelsius(conv.toFahrenheit(degreeCelsius)),
 TOLERANCE);
 }
}

public class Kilo2PoundConverterAnalogTest {
 private static final double TOLERANCE = 1e-6;
 @Test
 public void backAndForthTest() {
 Kilo2PoundConverter conv = new Kilo2PoundConverter();
 final int degreeCelsius = 100;
 Assert.assertEquals(
 degreeCelsius,
 conv.kiloToPound(conv.poundToKilo(degreeCelsius)),
 TOLERANCE);
 }
}

public class F2CConverter {

 public double toFahrenheit(double degreeCelsius) {
 return ((degreeCelsius / 5 * 9) + 32);
 }

 public double toCelsius(double degreeFahrenheit) {
 return (degreeFahrenheit - 32) * 5 / 9;
 }
}

model component under test

cloned test casetest case

automatic
test case cloning

analog
methods

public class Kilo2PoundConverter {
 /** @analog F2CConverter.toFahrenheit(double degreeCelsius) */
 public double poundToKilo(double pound) {
 return pound * 0.45359237;
 }
 /** @analog F2CConverter.toCelsius(double degreeFahrenheit) */
 public double kiloToPound(double kilo) {
 return kilo * 2.20462262;
 }
}

Figure 1. Adaption of Test Cases to the New Component Under Test.

This pattern could be transferred from, say, a Fahrenheit-to-
Celsius converter to any other unit converter.

Testing by cloning means identifying analogous software
components and adapting the test cases of one of the analogs
(called the model) to be used on the other (the component
under test or CuT). Consider the example in Fig. 1. There are
two converters: one converts degrees Fahrenheit to Celsius
and back, the other one pounds and kilograms. The weight
conversion functions are annotated to indicate that they have
analogs in the temperature converter. With this information,
we can transcribe the test case of the temperature converter,
including its built-in oracle, for the weight converter.

This approach is not limited to functions and their in-
verses. For example, the Java class JMenu has methods to
add, remove, and enumerate menu items. The analogs for
these methods can be found in the class LinkedList.
If we have tests for linked lists, they can be transcribed
automatically for JMenu. Of course, this test set is not
sufficient, because it fails to test the special properties of
menus. But it still reduces the tester’s work.

Note that this technique also transfers the test oracle. It
is well known that test oracles are difficult to construct
automatically [3], [4]. Furthermore, our technique does not
require algebraic specifications as in metamorphic testing
[5], [6]. This approach can also reduce test writing in the
following situation, often occurring in test-driven develop-
ment: If one implements a class following a known interface,
tests of a pre-existing implementation of the same interface
can be applied to the new class.

Not all tests can be cloned without help from the program-
mer. For example, if we have a test that checks whether 120
degree Fahrenheit is converted to the right Celsius value,
then this test does not apply to weight conversions imme-

diately. But this test can still be re-used, if the programmer
is willing to adapt the constants, which is less work then
rewriting the entire test.

Test cases need to be transcribed, not merely copied. For
instance, the identifiers of a model that appear in a test case
need to replaced consistently with the corresponding CuT
identifiers. If parameter lists differ, parameters need to be
reordered or additional ones supplied. Parameter types may
differ, which means that values of the correct types need to
be generated for the tests.

Up to this point, we have assumed that programmers
indicate the analogs. We are also researching techniques that
find analogs automatically. So far, we have experimented
with information retrieval techniques on identifiers. More
sophisticated natural language processing techniques that
analyze comments are currently under investigation.

II. APPROACH

This section describes the concepts underlying Test-
Cloner, our prototype for automated testing by cloning.
It works with the Java programming language, Javadoc
documentation, and JUnit test cases. The following subsec-
tion explains the process of test case transcription given
programmer-provided analogs. The second one discusses
research into automatically finding suitable analogs.

A. Defining Model-CuT Relationships

TestCloner loads available classes using Javaparser [7]
and generates an AST based on the Eclipse Modeling
Framework [8]. The AST also records the analogs marked
by @analog annotations. Any class that contains @analog
links is considered a CuT, for which test cases should be
generated. The class to which the annotation points is called

public class Container {
 public Element addElement(int e) { ... }

 public Element removeElement(int e) { ... }

 public int getSize() { ... }
}

model
public class Library {
 /** @analog Container.addElement(int e) */
 public void addBook(Book b) { ... }

 /** @analog Container.removeElement(int e) */
 public void removeBook(Book b) { ... }

 /** @analog Container.getSize() */
 public int getNumberOfBooks() { ... }

 /** @analog Container.addElement(int e) combine(title, author) */
 public void addBook(String title, String author) { ... }

 /** @analog Container.removeElement(int e) combine(title, author) */
 public void removeBook(String title, String author) { ... }
}

component under test

test casepublic class ContainerTest {
 @Test
 public void insertTest() {
 Container c = new Container();
 int elem = 42;
 c.addElement(elem);
 Assert.assertTrue(c.contains(elem));
 }
}

Figure 2. Library Example.

a model, since it provides test patterns. A CuT can have
several models. A model can be a CuT itself with respect
to a different model.

The mapping of a CuT method to its analog is annotated
by providing the fully qualified name of the model class
followed by the signature of the model method. Differences
among CuT and model methods in terms of parameter
number, type, and order must be treated specially (see
below). Return types only matter if return values are actually
used in test cases. If TestCloner cannot find a match for a
given annotation, it emits a warning and proceeds with the
next annotation.

A given CuT may provide the same model functionality
more than once. For example, MultiConverter pro-
vides methods for converting temperatures among the scales
Celsius, Fahrenheit, Kelvin, and Reaumur. Only consistent
pairs of X-to-Y and Y-to-X converters should be mapped
to the methods of F2CConverter. This aspect is taken
into account by including group numbers in annotations.
The group number indicates which CuT methods should be
mapped to model methods as a set. Multiple setter/getter
pairs are a frequent instance of this situation. Without
groups, TestCloner cannot determine consistent mappings.

B. Test Case Transcription
Before the actual transcription process, TestCloner identi-

fies applicable test cases. For all model classes, TestCloner
loads the corresponding JUnit test cases and checks their
applicability to CuTs. A model’s test case is applicable to
a CuT if the mapping is complete with respect to the test
case; i.e. every member that is accessed in a test case must
have an analog in the CuT. If not, TestCloner cannot clone
the test case and proceeds with the next one.

If TestCloner identifies an applicable test case, TestCloner
transcribes it so that the test uses the CuT instead of the
model. Therefore it replaces model identifiers with CuT
identifiers and performs parameter adaptations. After tran-
scription, the applicable tests of a model class are provided

to the programmer as a new class containing JUnit test cases
which can be run immediately. If a cloned test fails, the
programmer has to decide whether this a true failure of
the CuT or whether the cloned test needs to be adapted or
discarded. We identified the following issues when cloning
test cases.

1) Transcribing parameters: Test data is typically pro-
vided as parameters. If the parameter types of CuT and
model methods are compatible, TestCloner simply reuses the
parameters from the model’s test case. If not, TestCloner
generates a new parameter. So far, TestCloner generates
primitive types randomly and calls default constructors for
objects. More sophisticated test data generators will be
added later. In particular, we are investigating whether the
setup of test fixtures can be transcribed.

2) Handling extra parameters: A related problem
arises when a CuT method uses multiple parameters
instead of a single one. An example is the pair of
analogous functions Container.add(element) and
Library.addBook(title, author); see Fig. 2. The
problem is that in the library class, the addition of a new
book is not in terms of a single object, but instead of two
parameters. (We took the class Library from reference [9]
and modified it slightly for this example.) There are two
ways to handle this situation. The programmer can provide
a convenience method that takes a Book as a parameter and
calls the original addBook method. The other technique
is to indicate that both parameters should be treated as a
single object using the combine annotation. TestCloner
then produces two appropriate values wherever the model
method is passed a single one. Both of these techniques are
illustrated in Fig. 2; of course, only one is actually needed.

3) Handling duplicates: The transcription of parameters
that are used more than once in a given test case also needs
careful handling. For example, in Fig. 2 the test case uses
the variable elem twice. If the developer declares a variable
for a parameter and uses it more than once, the transcription

Table II
ANALYSIS OF CLONED TESTS.

Component under Test Model Analog
Methods

Testcases Test LOC
GeneratedModel Applicable Generated Invalid Fault Revealing

MultiConverter F2CConverter 2*2 5 5 10 4 0 80 (181.8 %)
UniqueBoundedStack BUStack 10 31 20 20 2 0 241 (51.9 %)
UniqueBoundedStack Stack 8 23 12 12 2 0 139 (38.3 %)
Library LinkedList 5 13 13 13 0 8 249 (51.2 %)
JMenu GetterSetter 2 1 1 1 0 0 16 (100 %)
JMenu LinkedList 8 31 21 21 0 4 405 (83.3 %)
BubbleSort QuickSort 1 13 13 13 0 0 132 (100 %)
Totals 38 117 85 90 12 8 1262 (63.4 %)

process simply uses the variable in the generated test case.
If we encounter a test case that uses different variables
with equal content, the transcriber also must generate equal
content for the new parameters. The same applies if the
programmer passed the same literal constant multiple times.

4) Handling return values: As stated above, return types
are ignored when analyzing analog mappings. However,
when transcribing, return values become important. If a
model method returns void, we can safely ignore any re-
turned value of the analogous CuT method. If the return
type of a model method is non-void, TestCloner needs
to check whether the returned value is actually used in
applicable test cases. If not, no further action is needed. If
it is used elsewhere, e.g. as a parameter, TestCloner checks
the compatibility of the returned type and the parameter’s
type. A similar analysis is needed if both return types are
non-void and not identical.

5) Mapping attributes: Test cases may read and write
attributes of the model class. If model and CuT provide those
attributes, our test transcriber simply uses them. But what is
to be done if the attributes are missing from the CuT? So
far, we decided not to add analogy mappings for attributes
but instead rely on (private) setter and getter methods. These
methods allow flexible mappings, but they may have to be
added by the programmer.

C. Software Maintenance

During maintenance, test cases of the model may change
or additional ones may be added. The new test cases may
simply be transcribed for the CuTs. The question is what to
do with modified test clones. With some bookkeeping, the
original clone could be found and replaced with the new
one. However, this may not always be appropriate, because
the specification of the methods involved may diverge. This
is clearly an area for future research.

D. Test Coverage

Estimating the test coverage of cloned tests in a CuT is
impossible. To achieve a prescribed coverage, programmers
should use the usual tools and write additional tests until the
desired coverage is reached.

Table III
ANALYSIS OF ANALOG DETECTION.

Component under Test Model Analog Detection
Precision Recall

MultiConverter F2CConverter – 0 %
UniqueBoundedStack BUStack 100 % 60 %
UniqueBoundedStack Stack 100 % 62.5 %
Library LinkedList 100 % 80 %
JMenu GetterSetter 100 % 100 %
JMenu LinkedList 100 % 62.5 %
BubbleSort QuickSort 100 % 100 %
Totals 100 % 67.6 %

E. Finding Analogs Automatically

Up to now, we have assumed that programmers provide
the analogs. Even with this assumption, TestCloner can save
work. An interesting extension would be to detect analogs
automatically. Automatic detection would reduce the testing
load on programmers even further and potentially provide
greater test coverage. We present several options for finding
mappings between a CuT and existing models.

A potential source for analogies are method and parameter
names, because analogous concepts are often expressed with
the same vocabulary. For example, the method for adding
items to JMenu is called add, the same as in many other
container types. TestCloner presently uses a word similarity
approach, because exact matches cannot be expected. This
approach works as follows.

We assume that methods begin with verbs. TestCloner
therefore isolates the verbs and retrieves their synonyms
from WordNet [10]. This would yield, for instance, append
as synonym for add. For every pair of CuT method and
potential model method, a similarity score is computed. In
particular, this score is high if both verbs appear in the
same synonym set. Generally speaking, the score depends
on how far two words are separated in the WordNet graph,
for instance by Hypernym/Hyponym edges. Since not all
methods are named by a single verb, we split identifiers,
taking into account CamelCase, underscores, and other sep-
arators. The mapper then tries to identify a similar verb
in the model and the CuT method and checks whether
extra words appear as parameters or as part of the identifier

(as in addBook(...) and add(Book b)). The mapper
also takes mapping groups into account. For example, if
the Library contains a set of methods for adding and
removing books and another set for adding and removing
customers, the mapper creates a group for both subsets.
Further improvements are expected when larger knowledge
bases such as Cyc [11] and more sophisticated splitters
(such as the one described by Enslen et al. [12]) are
integrated in TestCloner.

At present, we are also investigating information retrieval
methods applied to Javadoc comments and even the imple-
mentations of methods. More sophisticated NLP methods
may be applicable. An advanced option is identifying idioms
in program code. For instance, if a method adds a parameter
value to an array or other container structure, then this may
be a hint to test for set functionality.

III. PRELIMINARY RESULTS

To evaluate testing by cloning, we constructed a case
study benchmark; see Tab. II. The left column lists the CuTs.
The converter and sorter classes are based on textbook ex-
amples. Library and UniqueBoundedStack are taken
from reference [9]. JMenu is from the Java Swing package.
The column “Analog Methods” indicates how many methods
were annotated as analogs. The “Testcases” column shows
number of tests provided by the model, number of applicable
tests, number of generated tests, and number of generated
tests that fail. The following column provides the lines
of test code generated by TestCloner. The percentage in
parentheses is the reuse ratio, i.e. the ratio of generated to
model test code. In three cases, the reuse ratio is perfect.
In one case, the ratio is over 100%, because the same
test code was reused multiple times. This is because the
MultiConverter provides two groups of methods which
we can map to the model (this is also indicated in the first
column with the entry 2 ∗ 2), c.f. Section II-A. The reuse
ratios for UniqueBoundedStack and Library are low,
because the corresponding models inherit additional methods
from Container, whereas the CuTs do not. Consequently,
not all tests are applicable. Perhaps this is an indication that
the missing methods should be added (i.e. a specification
defect).

Cloned tests may fail for two reasons. First, they may
fail because of a defect in the CuT. In this case, the clone
revealed a defect. Test clones may also fail because they are
invalid, i.e. they do not apply for the CuT or their oracle is
incorrect. In this case, the cloned test needs to be corrected.

In the following we analyze instances where cloned tests
failed, in order to illustrate test effectiveness. The failures
in the converter class come from constants that do not carry
over from one pair of units to another. Fixing the constants
is sufficient. Tests of UniqueBoundedStack fail because
they overflow the bound (which the models do not have). The
only change necessary is the negation of the test oracles,

because these cases are not failures: a bounded stack cannot
store elements beyond the bound. Four tests concerning
Library fail due to the insertion of null elements which
are permitted in LinkedList but not in Library. The
same is the case for JMenu. In both cases the programmer
must decide whether to change the implementation to allow
null or to simply negate the test oracles. Three further tests
of Library fail because of actual defects in the code. A
final one fails because the library counts books instead of
copies of books. In total, four cloned tests revealed defects,
eight identified a missing case (handling of null), and eight
cloned tests needed to be adapted slightly (but did not reveal
any defects). 70 tests succeeded.

Detection of analogies is still in a state of flux. We
searched for matches of all CuT methods in all model
classes. The precision and recall numbers are shown in
Tab. III, but note that the number of models is small.
The precision figures show that when matching verbs, all
detected analogs were the right ones, but recall is not perfect.
The converter classes have a recall of 0 % because their
methods do not contain verbs. The name of the class would
provide a good clue and will be used in the future.

IV. CONCLUSIONS

Preliminary results appear promising. Automated testing
by cloning does detect defects. Although the method does
not eliminate testing effort entirely, reusing test cases saves
work, in particular work of the tedious kind. Much research
remains to be done before this approach becomes practical.
Transcribing the setup of test fixtures is an open prob-
lem. Additional benchmark examples need to be examined,
which may lead to extensions of the transcription process.
Data-flow analysis may make transcriptions safer. More
sophisticated test patterns are also needed. For instance, can
tests for design patterns such as Observer or Composite be
written once and then transcribed for applications of the
patterns? Finding models automatically would help eliminate
annotations; an intermediate step would be to annotate analo-
gies among classes instead of methods. Finally, a realistic
evaluation on large benchmarks should be performed once
the technology matures. This evaluation should answer the
question whether this approach actually saves work.

REFERENCES

[1] L. Prechelt, M. Philippsen, and G. Malpohl, “Finding pla-
giarisms among a set of programs with JPlag,” Journal of
Universal Computer Science, vol. 8, no. 11, pp. 1016–1038,
2002.

[2] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach,” Science of Computer Programming
– Special Issue on Program Comprehension (ICPC 2008),
vol. 74, no. 7, pp. 470–495, 2009.

[3] W. E. Howden, Software Testing and Validation Techniques,
2nd ed. New York: IEEE Computer Society Press, Jun. 1981,
ch. Introduction to the Theory of Testing, pp. 16–19.

[4] E. J. Weyuker, “On testing non-testable programs,” The
Computer Journal, vol. 25, no. 4, pp. 465–470, 1982.

[5] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang,
and T. Y. Chen, “Metamorphic testing and its applications,”
in Proceedings of the 8th International Symposium on Future
Software Technology (ISFST 2004), 2004, pp. 346–351.

[6] T. Y. Chen, T. H. Tse, and Z. Zhou, “Fault-based testing in
the absence of an oracle,” in Int. Computer Software and
Applications Conf., 2001, pp. 172–178.

[7] J. V. Gesser, “Javaparser – Java 1.5 Parser and AST,”
http://code.google.com/p/javaparser/, accessed: 03/21/2012.

[8] Eclipse Modeling Framework, http://eclipse.org/emf/, ac-
cessed: 03/21/2012.

[9] P. D. Stotts, M. Lindsey, and A. Antley, “An informal formal
method for systematic JUnit test case generation.” in XP/Agile
Universe, ser. LNCS, D. Wells and L. A. Williams, Eds., vol.
2418. Springer, 2002, pp. 131–143.

[10] C. Fellbaum, Ed., WordNet: An Electronic Lexical Database.
Cambridge, MA: MIT Press, 1998.

[11] Cycorp Inc., “ResearchCyc,” http://research.cyc.com/, ac-
cessed: 03/21/2012.

[12] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining
source code to automatically split identifiers for software
analysis,” in 6th IEEE Int. Working Conf. on Mining Software
Repositories, 2009, MSR ’09, May 2009, pp. 71–80.

