Creating Software Models with Semantic Annotation

Walter F. Tichy
Karlsruhe Institute of
Technology
Am Fasanengarten 5
Karlsruhe, Germany
walter.tichy@kit.edu

ABSTRACT

Requirements engineering is a big part of software engineer-
ing and consumes a lot of time. We propose a novel approach
of automatically creating software domain models from tex-
tual requirements specifications using semantic annotation.
Natural language processing (NLP) has progressed much in
the last years and the usage of NLP tools for automatic an-
notation shows promising results. We use thematic roles [4]
to explicitly denote the semantic relations in a sentence.

Semantic annotations also maintain the connection be-
tween textual artifacts and their corresponding model ele-
ments. Therefore changes in the domain model can be fed
back to the textual specification. Additionally, changes in
the textual specification can be analyzed and their impact
towards the software model can be assessed.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifica-
tions; D.2.10 [Software Engineering]: Design—Method-
ologies, Representation

General Terms

Design, Documentation, Experimentation, Theory

Keywords

Requirements Engineering, Automatic Annotation

1. INTRODUCTION

Today, semantic annotation is used especially in search
related fields and knowledge management. A new but fea-
sible approach is the usage of semantic annotation for soft-
ware development. As part of software development, re-
quirements engineering (RE) is time consuming and costly.
Other work in this area include form based methods of spec-
ifying software such as semantic ontologies of software com-
ponents, or the application of controlled languages such as
ACE. We claim that requirements are and will stay mostly
in “common” natural language. Therefore tool support is
desirable [3]. Our research [7, 8, 5] shows that semantic an-
notation in combination with the latest achievements in nat-
ural language processing (NLP) can be used to support this
process.

Copyright is held by the author/owner(s).
ESAIR’10, October 30, 2010, Toronto, Ontario, Canada.
ACM 978-1-4503-0372-9/10/10.

Sven J. Kérner
Karlsruhe Institute of
Technology
Am Fasanengarten 5
Karlsruhe, Germany
sven.koerner@kit.edu

Mathias Landh&u3er
Karlsruhe Institute of
Technology
Am Fasanengarten 5
Karlsruhe, Germany
lama@ipd.uka.de

Non-Automated Approach w/o Tool Support

Envision System

State Requirements Handover Model

Discuss Requirements 0
N\ \
Zé) Software
Communicate Changes i Architect
Elicitate User Needs Make Changes
Document Req. Analyst/)
Stakeholder Verify Req. Requirements Final Model
Engineer
Programmer
Implement
@ wjﬂ}‘
Stakeholder/ Delivery/ Testing/
Customer Consulting Shipping

Figure 1: RE Lacks Tool Support

As shown in Fig. 1, RE lacks distinct tool support in the so
called manual and psychological tasks. These tasks include
the elicitation, verification, documentation, formalization,
and transformation of stakeholder views into actual domain
software models. The size of the gaps between the stakehold-
ers’ meaning, the analysts’ understanding and the software
architects’ implementation vary a lot. The quality of re-
quirements mostly depends on the skill set of the concerned
groups. Using an automated approach to build software do-
main models improves the process in speed and precision
and also gives the process a deterministic approach.

We consider semantics the main issue in RE where ana-
lysts have to grasp the envisioned system of the stakeholders
as well as being able to communicate their findings to soft-
ware architects and vice versa. Software architects make de-
cisions and changes on software models which then affect the
original requirements of the stakeholders. Synchronization
between the corresponding groups takes place constantly,
but not comprehensively. Also, the effort of synchronization
sometimes excels the effort of the actual implementation.
This is one of the main reasons why software requirements,
implementation, and documentation underly an erosion pro-
cess. Considering the fact that requirements specifications
often found the base for legally binding contracts, we postu-
late the necessity to maintain the connection between Soft-
ware Lifecycle Objects (SLOs) [2].

Taking a look into the future of software and market ex-
pansion, one has to prepare more efficient ways of software
engineering. Even companies which do not understand soft-

8=, o 2%

Improved
spea- | D, |
oation fication L
e

Text Improved Internal MDA via Executable
Specification Specification Model Model umL Code

Figure 2: Automatic Model Creation from Text

ware development as their main competence, need tools to
steer and support their development.

2. SEMANTIC ANNOTATION

We use an extension of Fillmore’s thematic roles [4] to an-
notate textual requirements specifications. This set of 67
roles allows the explicit decoration of all semantic entities
within a given text [5]. An example annotation is the fol-
lowing listing where the thematic role AG (agens) depicts
the acting entity, PAT (patiens) the entity being acted upon,
and ACT (actus) the action, that is being performed.

[A shoemaker |AG repairs |ACT shoes |PAT |.

As can be seen in Fig. 2, the specification is at first im-
proved semi-automatically (1), including cleaning of text,
disambiguation, and further tasks[6]. The automatic se-
mantic annotations are then being used in the model extrac-
tion process. Using the annotations, we transform the re-
quirements specification into an internal data model (2) [8].
This model is then automatically transformed into a UML
model representation (3) which can be transformed into XMI
output format (4) [5] for later use in the model driven archi-
tecture (MDA) as shown in (5).

We have run case studies to verify the results of our ap-
proach which include the WHOIS protocol specification, the
FIDE laws of chess [1], and specifications used in text books
and various papers. The automatic annotations have been
compared to gold standards of the corresponding specifi-
cations. The results yielded an coverage of 83% with an
incorrect annotation rate of only 5%.

3. NEW APPLICATION FIELDS

Using the latest NLP techniques to individually annotate
semantics and applying transformation rules is the main
step to automatically creating models from text. Combin-
ing these strategies with the “semantic power” of knowledge
bases (e.g. WordNet or Cyc) tremendously improves com-
puter generated results and leaves little manual work for the
analyst.

The huge benefit of having semantic annotations in nat-
ural language textual requirements is that SLOs stay con-
nected over time and all process steps. According [2], a SLO
is any kind of artifact (see Fig. 3) involved in the software
development process. SLOs are vertically dependent, which
means that for instance a group of requirements is depen-
dent from another group of requirements. Horizontal depen-
dencies describe the connection of different types of SLOs.
These dependencies are 1:n relations.

Establishing vertical dependencies between SLOs manu-
ally is tedious. For example, this can be done on the re-
quirements end, establishing vertical links using tools like
IBM’s Rational Rose or HP’s QualityCenter. Still, it is man-
ual work and the analyst needs to gain complete overview

Testcases

Figure 3: Keeping SLOs in Sync

of the process to generate the right dependencies. Main-
taining horizontal dependencies is even more complex due
to the lack of tool support as well as the gaps that exist
between the various steps of the development process. Cre-
ating horizontal connections automatically when generating
the models, supports the development process.

4. CONCLUSIONS

Creating software models from natural language texts is
feasible using semantic annotations. Creating these annota-
tions automatically is possible. This approach could speed
up software development while decreasing the amount of
possible errors that occur during the process. Also, estab-
lishing automatic semantic annotation is the first step of
keeping SLOs in sync. We already create models from text
but plan to refine our concept to a stage where changes in all
SLOs can be reflected into their dependent counterparts. We
are currently researching the automatic feedback of model
element changes into text as well as the impact analysis of
textual requirements changes and additions to already ex-
isting software models.

In the future we plan the further usage of our semantic
roles concepts to create (non-trivial) test cases for software
directly from textual or API specifications.

S. REFERENCES

[1] FIDE Handbook — E.I.O1A. Laws of Chess, Feb. 2008.

[2] S. A. Bohner and R. S. Arnold. An introduction to software
change impact analysis. In S. A. Bohner and R. S. Arnold,
editors, Software Change Impact Analysis, pages 1-26. IEEE
Computer Soc. Press, 1996.

[3] B. H. C. Cheng and J. M. Atlee. Research directions in
requirements engineering. In Proc. Future of Software
Engineering FOSE ’07, pages 285-303, 23-25 May 2007.

[4] C. J. Fillmore. Toward a modern theory of case. In D. A.
Reibel and S. A. Schane, editors, Modern Studies in English,
pages 361-375. Prentice Hall, 1969.

[5] T. Gelhausen and W. F. Tichy. Thematic Role Based
Generation of UML Models from Real World Requirements. In
Proc. International Conference on Semantic Computing
ICSC 2007, pages 282-289, 2007.

[6] S. J. Kérner and T. Brumm. Natural language specification
improvement with ontologies. International Journal of
Semantic Computing (I1JSC), 03(04):445-470, 2010.

[7] S. J. Koérner and T. Gelhausen. Improving Automatic Model
Creation using Ontologies. In Knowledge Systems Institute,
editor, Proceedings of the Twentieth International
Conference on Software Engineering € Knowledge
Engineering, pages 691-696, July 2008.

[8] S. J. Kérner and M. Landh&ufler. Semantic enriching of natural
language texts with automatic thematic role annotation.
NLDB 2010, June 2010.

