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Abstract. Graph rewrite systems provide only elementary primitives –
many applications require more complex structures though. We present
a rewrite system for omnigraphs, a formal extension of hypergraphs with
the ability to connect multiple nodes and edges with a single edge. We
exemplify the adequacy of this approach in the domain of Model Driven
Development (MDD): Using our system trivializes the representation and
transformation of advanced UML structures that are awkward to handle
with common approaches.
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1 Introduction

Graph rewrite systems elegantly handle various tasks; they have sound and con-
cise fundamentals and their computational power is Turing equivalent. But the
operational primitives of current graph rewrite systems are quite elementary,
quite assembler-language-like. Several application domains demand more pow-
erful primitives. One example for such a domain is the representation and trans-
formation of UML within MDD.

UML class diagrams allow n-ary associations which are de facto hyper-
edges [1] (cf. Fig. 2 for example). Furthermore, they allow relations between
associations (cf. Fig. 3). In order to express these relations directly, we would
need to additionally allow edges to be end points of edges – and that is precisely
what omnigraphs1 are about.

In 1998, Minas showed the advantage of hypergraphs over traditional graphs
for representing various kinds of diagrams [9], but no available graph rewrite
system has support for hypergraphs so far, not to mention omnigraphs. There-
fore, we developed languages for model definition, graph definition and rewrite
specifications for omnigraphs. Compilers [18] translate these languages into se-
mantically equivalent definitions for a traditional graph rewrite system. In this
paper, we present these languages (Section 2), their theoretical fundamentals
(Section 3), and the functionality of the compilers (Section 4).

1 In previous work [5, 7], we referred to ‘omnigraphs’ as ‘supergraphs’, but we changed
the name in order to avoid further confusion with the antonym of ‘subgraphs’.
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2 Omnigraphs in Use – A Problem-oriented Introduction

Before giving a formal definition of omnigraphs in the next section, we will intro-
duce omnigraphs by means of their application to a specific problem: represen-
tation and transformation of UML. We thereby demonstrate how the concepts
of omnigraphs ease the handling of advanced UML structures.

2.1 UML Models as Omnigraphs

We show how to represent UML class diagrams using the syntax of our custom-
made graph rewrite system Ogre (OmniGraph REwriting2). For the complete
syntax of Ogre, please refer to [18]. We have taken all examples from the “UML
Superstructure Specification” version 2.1.1 [12].

A

endA

*

B

endB

*

Fig. 1: Simple association, Fig. 7.19 from the UML Superstructure Specification

Defining a Model. Figure 1 shows a simple association between two classes A
and B with multiplicities and the roles endA and endB. Listing 1 shows the def-
inition of an accordant model for omnigraphs: Ogre provides nodes, omniedges,
and roles as graph primitives. A definition starts with the type of the primitive,
so line 1 defines a type for nodes named Class. Line 4 defines a type for omni-
edges named Association. Constraints for omniedges (in parentheses) specify the
allowed types of roles. The constraint in line 4 states that the omniedges need a
least one (+) end point of role type AssociationEnd. In line 5, this class of roles is
defined with the constraint that it is only applicable on nodes of the type Class.
An AssociationEnd has two attributes: name and multiplicity. Please note that
already managing these two attributes is cumbersome in graph rewrite systems
that do not support attributed endpoints on edges.

� �
1 node C l a s s {
2 name : string;
3 }
4 omniedge As s o c i a t i o n (As soc i a t i onEnd+);
5 role As soc i a t i onEnd (C l a s s) {
6 name : string;
7 m u l t i p l i c i t y : string;
8 }� �

Listing 1: Model for UML classes and associations

2 Previous name: SUGR – SUperGraph Rewriting [5]
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Instantiation. Having defined the model, we will now set up an instance of
this model – an omnigraph representing the UML class diagram depicted in
Figure 1. Let’s begin with the one line statement depicted in Listing 2: The graph
definition starts with an omniedge of the type Association. Inside the body of
the omniedge we define two new nodes of type Class. Their corresponding roles
(AssociationEnd in both cases) follow, separated by vertical bars. The two nodes
with their roles form the end points of the surrounding omniedge. In general,
nodes and omniedges are declared by an optional identifier (before) and a type
(after the colon). The declaration of an omniedge additionally has a body (in
square brackets) defining its end points. As we will not refer to any of the declared
graph elements again in the code snippet in Listing 2, we omit the identifiers here.
But what we effectively lack in this declaration are attributes!

� �
1 :As s o c i a t i o n [:C l a s s|As soc i a t i onEnd :C l a s s|As soc i a t i onEnd]� �

Listing 2: Graph definition for a simple association

Now we define a new graph with attributes (cf. Listing 3). This time we also
show how to declare identifiers and how to reference graph elements. In line 1
and 2, the required Class nodes are defined. They have identifiers (a and b) and
attributes to hold the names “A” and “B”. In line 4 and 5, a and b are referenced
(indicated by the @ character). By this means, they are defining end points. The
nodes take the role AssociationEnd as above, but this time we additionally define
attributes for the end points: “endA” respectively “endB” as value for the name
attribute, and “*” as value for the multiplicity attribute of the respective ends
of the association. Now we have completely represented the association from
Figure 1.

� �
1 a:C l a s s(%name=”A”)
2 b:C l a s s(%name=”B”)
3 :As s o c i a t i o n [
4 @a|As soc i a t i onEnd(%{name=”endA”, m u l t i p l i c i t y =”∗”})
5 @b|As soc i a t i onEnd(%{name=”endB”, m u l t i p l i c i t y =”∗”})
6 ]� �

Listing 3: Graph definition for a simple association (with attributes)

Ternary Associations. UML enables the declaration of n-ary associations
which are not directly expressible by simple binary associations. The ternary
association in Figure 2 is an example.

Binary as well as ternary edges are only special cases of omniedges; we do not
need to extend the previous model from Listing 1: It already accepts an arbitrary
number of AssociationEnds for each Association. So we can immediately denote
the example as an omnigraph definition as shown in Listing 4. We simply define
a third end point inside the Association omniedge. The Class nodes are defined
within the omniedge body.
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Team

team

*

Year
season *

Player

goalie

*

Fig. 2: Ternary association, Fig. 7.21 from the UML Superstructure Specification� �
1 :As s o c i a t i o n [
2 :C l a s s(%name=”Team”)|As soc i a t i onEnd(%{name=”team”, m u l t i p l i c i t y =”∗”})
3 :C l a s s(%name=”Year ”)|As soc i a t i onEnd(%{name=”season ”, m u l t i p l i c i t y =”∗”})
4 :C l a s s(%name=”P l a y e r ”)|As soc i a t i onEnd(%{name=”g o a l i e ”, m u l t i p l i c i t y =”∗”})
5 ]� �

Listing 4: Graph definition for the ternary association

Higher Order Predicates. Figure 3 shows an example for a second order
predicate in UML class diagrams: The {xor} constraint is a predicate over two
associations which are predicates over (Class-) nodes themselves. Omnigraphs
remove the restriction of hypergraphs by allowing higher order predicates. To
express this UML constraint, our model needs an extension: a new type of om-
niedge named Constraint and a new role ConstraintEnd. We only want omniedges
of the type Association to take this role, so we restrict the role to this type. The
complete model definition is shown in Listing 5. The graph definition in Listing 6
consists of two associations (line 1 and 4). The constraint is an additional omni-
edge with the two associations as end points (line 7). The two associations share
a common node, so this node is identified by a (line 2) and referenced (line 5).

Account

Person

Corporation

{xor}

Fig. 3: {xor} constraint, Fig. 7.34 from the UML Superstructure Specification

2.2 Transforming UML with Ogre

After having shown how to represent a UML class diagram as omnigraph, we
will show how to define an elementary transformation: We want to transform
the ternary association form the preceding example (cf. Figure 2 and Listing 4)
into adequate binary associations. This transformation is an inevitable step in
every model driven process; we repeat it every time we decompose our model to
obtain executable code. The rule according to this transformation demonstrates
the pragmatical simplification of writing rules the omnigraph approach has been
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1 node C l a s s {
2 name : string;
3 }
4 omniedge As s o c i a t i o n (As soc i a t i onEnd+);
5 role As soc i a t i onEnd (C l a s s) {
6 name : string;
7 m u l t i p l i c i t y : string;
8 }
9 omniedge Con s t r a i n t (Cons t r a i n tEnd+) {

10 t ype : string;
11 }
12 role Cons t r a i n tEnd (As s o c i a t i o n );� �

Listing 5: Model for UML classes, associations, and constraints� �
1 a1:As s o c i a t i o n [
2 a:C l a s s(%name=”Account ”)|As soc i a t i onEnd
3 :C l a s s(%name=”Person ”)|As soc i a t i onEnd]
4 a2:As s o c i a t i o n [
5 @a|As soc i a t i onEnd
6 :C l a s s(%name=”Co rpo r a t i on ”)|As soc i a t i onEnd]
7 :Con s t r a i n t[@a1|Cons t r a i n tEnd @a2|Cons t r a i n tEnd](% t ype=”xor ”)� �

Listing 6: Graph definition for the {xor} constraint

designed for: no need to think about any extra nodes and edges, their names,
types, and directions – simply because we have omniedges with attributed end
points.

Transforming Ternary Associations. The rewriting rule in Listing 7 de-
composes ternary associations into adequate binary associations. The left-hand
side, the pattern graph, matches an omniedge a of type Association with three
end points c1, c2, and c3 of type Class and with roles ae1, ae2, and ae3 of type
AssociationEnd. The syntax is similar to graph definitions: we use an identifier
followed by a colon and a type. The role type is separated by a vertical bar; in
contrast to graph definitions we can use identifiers for roles. On the right-hand
side of the rule, the modify graph, we first delete the ternary association a
(line 9) and create a new node c4 of type Class (line 10) – serving as new connec-
tion node. Then we create three new associations between the connection node
and the former end points of the ternary association. Finally, we have to set
the attributes for the new graph elements, which is done in the eval section.
Line 15, for example, sets the name for the newly created class c4: It consist of
the names of the classes c1, c2, c3 and the suffix “Triple”.

Figure 4 shows the ternary association after transforming it into an extra class
and appropriate binary associations. The rule also changed all multiplicities as
necessary for a correct transformation.

The Rewriting Semantics of Ogre. In Ogre, rules consist of a pattern
graph and a replace or a modify graph. Each element of these graphs has a
name, either user defined or internally defined. Consider a graph element defined
in the pattern part: If its name is used in the replace graph, the denoted
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1 pattern {
2 a:As s o c i a t i o n [
3 c1:C l a s s|ae1:As soc i a t i onEnd
4 c2:C l a s s|ae2:As soc i a t i onEnd
5 c3:C l a s s|ae3:As soc i a t i onEnd
6 ];
7 }
8 modify {
9 delete(a);

10 c4:C l a s s;
11 :As s o c i a t i o n [c4|ae11:As soc i a t i onEnd c1|ae21:As soc i a t i onEnd];
12 :As s o c i a t i o n [c4|ae12:As soc i a t i onEnd c2|ae22:As soc i a t i onEnd];
13 :As s o c i a t i o n [c4|ae13:As soc i a t i onEnd c3|ae23:As soc i a t i onEnd];
14 eval {
15 c4.name = c1.name+c2.name+c3.name+”T r i p l e ”;
16 ae11.m u l t i p l i c i t y = ae1.m u l t i p l i c i t y ;
17 ae21.m u l t i p l i c i t y = ”1”; ae21.name = ae1.name;
18 ae12.m u l t i p l i c i t y = ae2.m u l t i p l i c i t y ;
19 ae22.m u l t i p l i c i t y = ”1”; ae22.name = ae2.name;
20 ae13.m u l t i p l i c i t y = ae3.m u l t i p l i c i t y ;
21 ae23.m u l t i p l i c i t y = ”1”; ae23.name = ae3.name;
22 }
23 }� �

Listing 7: Rule for processing ternary associations

Team

team

1

Year
season 1

Player

goalie

1

TeamYearPlayerTriple

*

*

*

Fig. 4: Ternary Association after the transformation by the rule

graph element will be kept during the execution of the rule. Otherwise the graph
element will be deleted from the host graph. A graph element is created in
the host graph by defining a name in the replace graph. Anonymous graph
elements in a replace graph always create new elements in the host graph.
Using a name multiple times has the same effect as a single occurrence.

The modify variant is syntactic sugar for copying the pattern graph to
the replace graph – in this case deletions from this replacement graph are
triggered by the delete keyword; additions work the usual way. In case of a
conflict between deletion and preservation, deletion is prioritized. It is convenient
to use the modify variant for modifying only small parts of a large pattern
graph.

For a proper graph rewriting system, we need a sound approach on how
incident objects are treated when other objects are deleted. Traditional graph
rewrite systems can be classified according to SPO or DPO, but both approaches
are obviously not applicable for omnigraphs. Our definition of omnigraphs (cf.
Section 3.2) allows edges to have an arbitrary number of end points, including
zero. Deletion of an incident node of an omniedge just reduces the number of



Applications and Rewriting of Omnigraphs 7

end points of that omniedge. Deletion of an omniedge always requires an explicit
statement, and removing it does not bother the objects it connected any further.
Thus deletion can never lead to a data structure that is not an omnigraph.

2.3 Advanced UML Structures in Practice

The UML structures we are referring to in this publication are surprisingly un-
common and many software engineers are unfamiliar with these features of UML.
Nevertheless, one may have a hard time trying to encode their semantics with-
out these structures. In our opinion, this already justifies their existence and
their use – leading to the necessity for their support in modelling tools. Some
more structures of UML that lend themselves to be realized via omniedges are
attributed associations, qualified associations, fork-, join, merge- and decision
nodes, or duration constraints.

3 Formal Definition of Omnigraphs

Before we present the formalism we discuss some issues regarding our approach
of generalizing “direction”. This discussion should explain our perspective on
hypergraphs and demonstrate that the given definition is adequate.

3.1 Roles

In a traditional (directed) graph, each edge has a direction, a point of origin and
an aiming point. But how can we specify something comparable for omnigraphs
with arbitrary numbers of end points? The following paragraphs present an
approach that renders the ordinary directed edge a special case of a more general
concept.

Every formalism – every way of representing information – provides certain
primitives to store pieces of information and other primitives to relate these
fragments. The available primitives determine the semantics that can be encoded
directly with this formalism. Graphs, too, are just a special way of representing
information. Their primitives are usually nodes and edges with labels. We use the
labels to store pieces of information. Contiguity relates the information stored
in a graph.

On closer inspection, one can see that there is a third primitive in graphs
that allows information storage: the direction of edges. Direction enables us to
store several extra bits per edge – one extra bit if only unidirectional edges are
permitted, two extra bits if multidirectional edges are permitted, and no extra
bits if only undirected edges are permitted in the graph. Initially, these bits
encode the direction of an edge. Additional information, for example “who loves
whom” or “which code block precedes another”, is an interpretation that has
been agreed on. This agreement constitutes which bit-value represents which role
in the relation. Thus, we are effectively interested in the roles an edge assigns
and not in its direction.
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Taking into account that we are interested in roles rather than directions, we
could as well provide roles immediately in our way of representing information.
Instead of storing one direction per edge, each end of an edge is assigned a role.
The advantage of this approach is that it scales a lot better: Now, it is irrelevant
how many ends (these “ends” are called “tentacles” in hypergraphs) an edge
has, including the special cases “one” and “zero”.

Another conclusion we can draw from the above consideration is, that the
roles we are effectively interested in are seldom “source” and “target”. We would
rather allow arbitrary roles. Accordingly, the number of available roles does not
need to be limited to two.

For these reasons, our omniedges do not have a direction and no inherent
order or numerical limitations of their tentacles. Instead, each tentacle is assigned
a role out of an arbitrary, finite set of roles. Initially, the combinations of roles
within one omniedge are unrestricted. One might want to impose constraints
about the legal role sets per omniedge, though.

A classic approach to assign meaning to the tentacles of a hyperedge (or the
components of a tuple) is position: Any term-based syntax for the declaration of
hyperedges imposes a sequence of tentacle declarations, and the position within
this sequence assigns its meaning to a tentacle. The downside of this approach is
that the sequence always needs to be specified completely and in order, and that
no meaning can be assigned to additional tentacles. In programming languages
like Eiffel or Visual Basic, some of these drawbacks can be resolved by named
function arguments. The role-based approach is a generalization thereof.

For illustration, we show that an ordinary (directed, two-ended) edge can be
expressed immediately in terms of this approach: It is an omniedge with two
tentacles of which one has the role “source” and the other has the role “target”.
A traditional graph is thus completely representable as omnigraph. As also om-
nigraphs are representable via traditional graphs (cf. Section 4) both formalisms
are theoretically equally expressive. Yet the practical expressiveness of omni-
graphs is more suitable for certain applications as we show in this publication.

3.2 Definition

Definition 1 (Omnigraph). Let N, O, T,R be arbitrary finite pairwise dis-
joint3 sets, C := N ∪ O, and src, tgt , and rol total but not necessarily injective
or surjective functions with

src : T −→ O

tgt : T −→ C

rol : T −→ R

then the 7-tuple G = (N, O, T, src, tgt , R, rol ) is an omnigraph.

3 For clearness we require N, O, T, R to be pairwise disjoint. Formally it is only nec-
essary that N ∩O = ∅ holds.
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Explanation and Implications. We call N the nodes, O the omniedges, T
the tentacles, and R the roles of an omnigraph. C = N ∪ O is the set of all
connectable objects. The tentacles link the elements of C to their connections
o ∈ O; these links are denoted by the src and tgt functions assigning the obvious
direction4 to the tentacle. It is specific to omnigraphs that the tentacles can
only start at omniedges but end at omniedges and nodes. So by definition, no
node can have an outgoing tentacle whereas incoming tentacles are allowed. Each
tentacle linking a connectable object c ∈ C to an omniedge o ∈ O also specifies
a role r ∈ R that c takes in o. This is denoted by the rol function.

As omniedges may connect other omniedges, the tentacles are directed to
make clear which omniedge establishes the connection between the other ones.
It is only usual to utilize the concept of ‘direction’ here – but it is not necessary:
It is sufficient to somehow distinguish which tentacles belong to which omniedge.
Accordingly, it is irrelevant which direction the tentacles exactly have, as long
as it is consistent for all omniedges.

Multigraphs are defined by their allowance for multiple edges between two
distinct nodes. For omnigraphs this property is obtained by our function-based
definition instead of the commonly used tuple-based definition. Thus an arbi-
trary number of omniedges can occur between every set C ′ ⊆ C. Furthermore,
this property allows multiple tentacles of the same or different roles between
an omniedge and one connected object c ∈ C. Moreover, if not every node or
omniedge has an incident tentacle, src and tgt are not surjective. We require src
and tgt to be total such that no dangling tentacles can occur.

Omnigraphs as defined here have two properties that may appear strange,
but are harmless consequences of the generality of the concept: (a) Omniedges
may have one or zero tentacles and (b) omniedges may connect to themselves.

Discussion. Our definition is rather close to the function-based definition of
ordinary hypergraphs. One could picture the set T as “edges” and C as “ver-
tices”. But this picture is only half true, because the set C has an internal
structure: The “edges” can only start at elements o ∈ O ⊆ C and end at any
element c ∈ C = O ∪ N . This way, the property of being representable as bi-
partite graphs (like ordinary hypergraphs) is lost. Clearly, every omnigraph G
can be turned into an omnigraph G′ without nodes by turning every node into
an omniedge not having any outgoing tentacles (“virtual nodes”). Yet in this
case, certain runtime checks and validation procedures on the graph and its
model must be put into place if we want to distinguish omniedges and (virtual)
nodes in a typesave way. We chose the intuitive and computationally cheaper
alternative, namely to enforce this distinction by the formalism and in the Ogre
language.

Formally speaking, our definition is a direct extension of hypergraphs. But
we define names and interpretations of the sets C, O, N , and T to suit our need
for a vocabulary of concepts on a higher level of abstraction.

4 Please note that only the tentacles but not the omniedges themselves are directed.
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3.3 Examples

We will present two of the examples from Section 2 as formal omnigraph def-
initions. The first example is the formal definition of the hyperedge depicted
in Figure 2. The second example is the formal definition of the constraint edge
between two association edges depicted in Figure 3.

The ternary association from Figure 2 has three nodes: Team, Year, and
Player. They respectively take the roles team, season, and goalie in the omniedge
Association.

N =
{
Team,Year, Player

}
O =

{
Association

}
T =

{
t0, t1, t2

}
R =

{
team, season, goalie

}
src(t0) = Association tgt(t0) = Team rol (t0) = team

src(t1) = Association tgt(t1) = Year rol (t1) = season

src(t2) = Association tgt(t2) = Player rol (t2) = goalie

The formal definition of the {xor} constraint has three nodes: Account, Per-
son, and Corporation, and three omniedges: Association0, Association1, and Con-
straint. Each omniedge has two tentacles, so that we have in total six tentacles,
but only two different roles associationEnd and constraintEnd. An illustration of
the formal definition is shown in Figure 5.

N =
{
Account,Person, Corporation

}
O =

{
Association0, Association1, Constraint

}
T =

{
ta0, ta1, ta2, ta3, tc0, tc1

}
R =

{
associationEnd, constraintEnd

}
src(ta0) = Association0 tgt(ta0) = Account rol (ta0) = associationEnd

src(ta1) = Association0 tgt(ta1) = Person rol (ta1) = associationEnd

src(ta2) = Association1 tgt(ta2) = Account rol (ta2) = associationEnd

src(ta3) = Association1 tgt(ta3) = Corporation rol (ta3) = associationEnd

src(tc0) = Constraint tgt(tc0) = Association0 rol (tc0) = constraintEnd

src(tc1) = Constraint tgt(tc1) = Association1 rol (tc1) = constraintEnd

Account

Person

Corporation

ta0 : associationEnd

ta1 : associationEnd

ta2 : associationEnd

ta3 : associationEnd

tc0 : constraintEnd

tc1 : constraintEnd

Fig. 5: Formal graph for the {xor} constraint (names of omniedges omitted).
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3.4 Extensions

For an efficient use of a graph rewriting tool we need (a) labels on nodes, edges,
and roles, and want (b) these labels to obey certain constraints, i. e. typing.
Furthermore, (c) inheritance relations among these types are needed for an easier
declaration of rules. Accordant extensions to the formal basis of omnigraphs can
be defined the usual way without difficulty.

Ogre implements these features. It seamlessly incorporates them from the
underlying graph rewrite system (cf. Section 4). In contrast to some formaliza-
tions of hypergraphs, we assign the type of an omniedge directly to it and do
not derive it from the number or types of tentacles. In particular, omniedges of
a certain type may have arbitrary numbers of tentacles. However, Ogre supports
constraints about the legal role types for each omniedge type.

4 Implementation

To avoid developing a graph rewrite system from scratch, we chose to decom-
pose omnigraph model-, rule-, and graph-definitions to model-, rule-, and graph-
definitions for the traditional graph rewrite system GrGen.NET [6]. Ogre pro-
vides three compilers for this task. As the space in this paper is limited, we only
give a rough outline of these transformations. Details can be found in [5], the
compilers including source code are available from [18].

4.1 Mapping Ogre Definitions to GrGen.NET Definitions

As GrGen.NET has no support for omniedges and roles, we need a mapping to
translate omniedges and roles into nodes and edges, the primitives provided by
GrGen.NET. We map omniedges by introducing an additional interconnection
node. As a consequence, each tentacle becomes an independent edge between
the interconnection node and the node connected by the tentacle; the role of
the tentacle is mapped to the type of the according edge. This approach is
quite obvious and well-known from treating hyperedges as bipartite graphs. But
in the context of omniedges we have to pay special attention to the direction
of decomposed edges: their tentacles are directed, as discussed in Section 3.2.
Correspondingly, we realize tentacles with directed edges. Figure 6 shows the
mapping for the {xor} constraint example from Figure 3.

Mapping Models. Listing 8 shows the result of mapping our model from
Listing 1 to GrGen.NET syntax. We can see that the omniedge type Association
has become a node type (line 9) and the role type AssociationEnd has become an
edge type (line 4). Line 5 shows a GrGen.NET constraint defining the allowed
source and target types for this edge type.

Figure 7 shows the visualization of the mapped model for the ternary associ-
ation. We can clearly see the interconnection node with the omniedge type and
the edges with the role types.
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:Class

:Class

:Class

:Association

:Constraint

:Association

Fig. 6: Mapping of the {xor} constraint

� �
1 node class C l a s s extends NODE {
2 name : string;
3 }
4 edge class As soc i a t i onEnd extends ROLE
5 connect As s o c i a t i o n [1:∗] -> C l a s s[∗] {
6 name: string;
7 m u l t i p l i c i t y : string;
8 }
9 node class As s o c i a t i o n extends OMNIEDGE;� �

Listing 8: Model from Listing 1 after translation in GrGen.NET syntax

Mapping Graphs. Listing 9 shows the ternary association from Listing 4 after
the mapping to GrGen.NET syntax. The omniedge Association is decomposed
into an interconnection node (line 1) and edges representing the tentacles (line 3,
5, and 7). In GrGen.NET edges are denoted by an arrow from the source to the
target node. Identifier, type and attributes of the edge are stated between begin-
ning and end of that arrow. The dollar sign is a build-in attribute of GrGen.NET
keeping the identifier of the graph primitive for debugging purposes. The Class
nodes and their declared attributes are preserved during the mapping.

This listing shows how the concept of omnigraphs disburdens the user from
the necessity to fragment his or her thoughts for the input into a traditional graph
rewrite system. Besides this semantic advantage, the Ogre syntax eliminates the
need to constantly repeat identifiers for miscellaneous nodes and edges. This is
not so much a quantitative but a qualitative alleviation, as repeating numerous –
only technically induced – identifiers is an error prone work. However, an IDE or

:Class

:Class

:Class:Association
:AssociationEnd

:AssociationEnd

:AssociationEnd

Fig. 7: Mapping of the model for the ternary association
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1 new s 3:As s o c i a t i o n ($=”s 3 ”)
2 new n 0:C l a s s($=”n 0 ”, name=”Team”)
3 new s 3 −:As soc i a t i onEnd(name=”team”, m u l t i p l i c i t y =”∗”)−> n 0
4 new n 1:C l a s s($=”n 1 ”, name=”Year ”)
5 new s 3 −:As soc i a t i onEnd(name=”season ”, m u l t i p l i c i t y =”∗”)−> n 1
6 new n 2:C l a s s($=”n 2 ”, name=”P l a y e r ”)
7 new s 3 −:As soc i a t i onEnd(name=”g o a l i e ”, m u l t i p l i c i t y =”∗”)−> n 2� �

Listing 9: Graph from Listing 4 after translation in GrGen.NET syntax

a graphical notation could alleviate this work, while the model and its instances
will still be polluted with artificial entities.

Mapping Rules. Basically, rules are processed by treating the left-hand and
right-hand side patterns individually as graph definitions and mapping them
separately. As the syntax for patterns is quite similar to graph definitions we
reuse the mappings for graph definitions with some minor changes. Listing 10
shows the rule from Listing 7 after mapping to GrGen.NET syntax. The content
of the eval section can just be copied as it is, because it does not need to be
changed by the mapping.

� �
1 pattern {
2 a:As s o c i a t i o n ;
3 a −ae1:Assoc i a t i onEnd−> c1:C l a s s;
4 a −ae2:Assoc i a t i onEnd−> c2:C l a s s;
5 a −ae3:Assoc i a t i onEnd−> c3:C l a s s;
6 }
7 modify {
8 delete(a);
9 c4:C l a s s;

10 x2:As s o c i a t i o n ;
11 x2 −ae11:Assoc i a t i onEnd−> c4;
12 x2 −ae21:Assoc i a t i onEnd−> c1;
13 x5:As s o c i a t i o n ;
14 x5 −ae12:Assoc i a t i onEnd−> c4;
15 x5 −ae22:Assoc i a t i onEnd−> c2;
16 x8:As s o c i a t i o n ;
17 x8 −ae13:Assoc i a t i onEnd−> c4;
18 x8 −ae23:Assoc i a t i onEnd−> c3;
19 eval {
20 c4.name = c1.name+c2.name+c3.name+”T r i p l e ”;
21 ae11.m u l t i p l i c i t y = ae1.m u l t i p l i c i t y ;
22 ae21.m u l t i p l i c i t y = ”1”; ae21.name = ae1.name;
23 ae12.m u l t i p l i c i t y = ae2.m u l t i p l i c i t y ;
24 ae22.m u l t i p l i c i t y = ”1”; ae22.name = ae2.name;
25 ae13.m u l t i p l i c i t y = ae3.m u l t i p l i c i t y ;
26 ae23.m u l t i p l i c i t y = ”1”; ae23.name = ae3.name;
27 }
28 }� �

Listing 10: Rule from Listing 7 after translation in GrGen.NET syntax

Obviously, the semantics of our rules are derived directly from the semantics
of GrGen.NET rules [2]. GrGen.NET implements closely the SPO semantics, so
deleting an incident node of an edge will also delete that edge. This behaviour
is well suited for our needs: If we want to delete an omniedge, we can just delete
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the interconnection node. The SPO semantics will lead to the deletion of edges
representing its tentacles. As we allow omniedges to have an arbitrary number
of tentacles (including zero), deleting an incident connectable object (and thus
‘losing’ a tentacle) cannot lead to an invalid omnigraph (cf. Section 2.2).

5 Related Work

Graph rewrite systems have been under research for several decades. Research
in Model Driven Development has lead to a strong demand for model transfor-
mation technology. This has brought graph rewriting – as one possible solution
for model transformation – to industrial relevance.

In this paper, we discuss omnigraph rewriting. To the best of our knowledge,
no system with this capability has been published, yet. In Ogre, omniedges –
and thus also hyperedges – are first-class citizens among the graph primitives:
They are quasi materialized in the graph and can seamlessly be used in search
and replacement patterns. Thus Ogre is also a hypergraph rewriting system. But
even for hypergraph rewriting5, there is no comparable system available. A prop-
erty – besides allowing edges to be endpoints of edges – that distinguishes our
notion of omnigraph rewriting from the usual theoretical notion of hypergraph
rewriting is that omniedges have no fixed number of tentacles defining their type.
Furthermore, the tentacles of omniedges have no inherent order. Both properties
are by design, as we discuss in Section 3.

The Graph eXchange Language (GXL) supports omnigraphs using rel- and
relend-elements. But as already suggested by its name, GXL is not a rewrite
system but an exchange format and only serves to store graphs – it can neither
store rules nor rewrite sequences. For solely exchanging omnigraphs, GXL would
suit very well, but we could not find a tool to exchange omnigraphs graphs with:
Holt [8] gives an overview of GXL capable tools, namely GRAS [15], DiaGen [10],
Fujaba [13], GenSet [14] and PROGRES [19]. Except DiaGen6, all these systems
ignore rel tags, they have no support for hyper- or omniedges. The same holds
for GROOVE [17].

AGG-graphs [3], a variant of ALR-graphs and the formal basis of AGG, ex-
plicitly enable edges between edges. But these edges are only binary, hyperedges
are not first-class citizens in AGG-graphs. Instead, AGG-graphs come with a
direct support for ‘abstractions’ which in turn are not first-class citizens in omn-
igraphs. So AGG-graphs and omnigraphs are skew to each other. However, AGG
(the tool) has no support for edges between edges.

GReAT [16] and VIATRA [20] partially support edges between edges: GReAT
can define edges between edges in models, but has no possibility to use them in

5 Please note that ‘hypergraph rewriting’ and ‘hyperedge replacement’ [11] are dif-
ferent things: In hyperedge replacement, hyperedges are only special left-hand side
patterns of replacement rules. Our concept of hypergraph rewriting is much broader.

6 DiaGen is a tool for generating diagram editors based on hypergraphs. We aim to
develop a general purpose graph rewrite system.
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Table 1: Overview Graph Rewriting Tools

Fujaba GReAT VIATRA GrGen.NET Ogre

Typed Domain yes yes yes yes yes

Type Inheritance single multi multi multi multi

Node Attributes Java types simple types,
enumerations

simple and
complex types

simple types,
enumerations

simple types

Edge Attributes same as nodes no same as nodes same as nodes same as nodes

Role Attributes no no no no yes

NACs yes yes yes yes yes

Hyperedges no no no no yes

Omniedges no see text see text no yes

Rule Definition programmed programmed declarative declarative declarative

Rule Notation graphical graphical textual textual textual

Parameterization all types no all types graph entities no

Rule Scheduling story diagrams sequence dia-
grams

state machine similar regular
expressions

similar regular
expressions

Rule Iteration loop loop, recursion loop, recur-
sion, fix point
iteration

loop, fix point
iteration,
transaction

loop, fix point
iteration,
transaction

graphs or rules. VIATRA can use edges between edges in graphs and rules, but
cannot define them in models. In both systems, edges are always binary.

Apart from the support for omniedges, we regard Ogre as ordinary gen-
eral purpose graph rewrite system. Table 1 compares the features of Ogre with
those of Fujaba, GReAT, VIATRA and GrGen.NET [6], some of the most pop-
ular general purpose graph rewriting tools today. The criteria are adopted from
Czarnecki and Helsen [4].

6 Conclusion

We presented omnigraphs together with an appropriate rewrite system called
Ogre. Omnigraphs are an extension of the well known hypergraphs, enabling the
attachment of multiple nodes and edges to edges. In this paper, UML structures
like n-ary associations and constraints between associations served as examples
for the usefulness of omnigraphs. Besides model transformations, we use omni-
graphs for the representation of natural language [7]. In this domain, hyper- and
omniedges are essential as natural language includes complex sentence struc-
tures with higher order relations. Bond angles are an example from the domain
of chemistry where one would like to declare edges between edges.

The rewrite system Ogre provides custom-made languages for the definition
(i. e. typing) and instantiation of omnigraphs as well as the declaration of rules
for their transformation. As the implementation of Ogre is based on a traditional
graph rewrite system, we provide compilers [18] and can thus incorporate many
features from our underlying system.

The reduction to normal graph rewrite systems is straight forward, but the
provided abstraction eases the task of specifying transformations and graphs.
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The automatic transformation unburdens the user from consistently and contin-
uously regarding auxiliary nodes and edges. Instead, the user can directly express
his intention. This makes omnigraphs and Ogre practically more expressive than
common approaches – and thus well suited to simplify model transformation for
advanced UML structures.
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