
Noname manuscript No.
(will be inserted by the editor)

From Requirements to UML Models and Back

How Automatic Processing of Text Can Support
Requirements Engineering

Mathias Landhäußer · Sven J. Körner ·
Walter F. Tichy

Published online: 05 July 2013, The final publication is available at http://link.springer.
com, DOI: 10.1007/s11219-013-9210-6

Abstract Software engineering is supposed to be a structured process, but
manual tasks leave much leeway. Ideally, these tasks lie in the hands of skilled
analysts and software engineers. This includes creating the textual specifi-
cation of the envisioned system as well as creating models for the software
engineers. Usually, there is quite a bit of erosion during the process due to
requirement changes, implementation decisions, etc. To deliver the software
as specified, textual requirements, models, and the actual software need to
be synchronized. However, in practice the cost of manually maintaining con-
sistency is too high. Our Requirements Engineering Feedback System (REFS)
automates the process of keeping textual specification and models consistent
when the models change. To improve overall processing of natural language
specifications, our approach find flaws in natural language specifications. In
addition to the already published workshop paper, we show how well our tools
support even non-software-engineers in improving texts. The case studies show
that we can speed up the process of creation texts with fewer flaws significantly.

1 Introduction

Most of the time, requirements documents and domain descriptions are pro-
vided in natural language [Mich et al., 2004]. The first steps of a software
project comprise the transfer of natural language specifications into semi-
structured documents. Eventually, (semi-) formal models form the basis for
the subsequent software development process.

Mathias Landhäußer · Sven J. Körner · Walter F. Tichy
Karlsruhe Institute of Technology (KIT)
Tel.: +49-721-608-43934
Fax: +49-721-608-47343
E-mail: {landhaeusser—sven.koerner—tichy}@kit.edu

http://link.springer.com
http://link.springer.com
http://dx.doi.org/10.1007/s11219-013-9210-6

2 Landhäußer, Körner, Tichy

Fig. 1 The RECAA Process Considers Requirements Elicitation, Quality Assurance, Model
Generation and Change Management.

The quality of models and the time needed to build the models depend on
the quality of the natural language specifications and the skills of the modeler.
Several approaches aim at enhancing the quality of specification documents to
provide a good basis for the subsequent software engineering process. After the
specification is written down and signed off by the customer, it is often trans-
ferred manually into more formal models (e.g. UML models). This transfer
creates two separate representations – one in written text and one as models.
Again, the manual transformation allows the quality to vary depending on
the skills of the modeler. Tools should support the modeler in creating high
quality models more or less independent of his or her skill level. A good tool
should ask the appropriate questions and point out possible problems.

The representations initially (and ideally) are equivalent; but this is not al-
ways the case: A modification in one representation should be accompanied by
a change in the other. If synchronization is not maintained in the development
process, the representations diverge from one another. Before incorporating
new information from the customer in the software model, one has to assess
how the demanded changes affect the model.

Many requirements engineering software systems [Volere, 2009] only sup-
port very distinct parts of the software production process and few tackle the
problems that arise when one works with natural language specifications.

We believe that a system that supports requirements engineers and cus-
tomers alike must consider multiple issues: At first, requirements must be
written down in high quality. Then the problem domain must be modeled in
a repeatable and consistent fashion. The impact of change requests should be
estimated before integrating them [Arkley and Riddle, 2005, Berry, 2004]. Last
but not least, changes must be adopted as well as on the requirements as on
the resulting models.

Our requirements engineering complete automation approach (RECAA)
emphasizes on natural language specifications [Körner et al., 2012] and sup-
ports the software production process from quality assurance of requirements
via automatic UML model generation to synchronizing models [Landhäußer

From Requirements to UML Models and Back 3

et al., 2012] and specifications and impact analysis. The model generation
covers class diagrams, state charts and activity diagrams. As Figure 1 shows,
our process does not (re-)generate the customer’s specification but integrates
the changes into it. In general, text generation from models is fine. But if
you start with a text given by the customer, an entirely new text might con-
fuse the customer, even more so when the specification’s structure and style
is changed completely. Manually detecting the actual changes (derived from
model changes) in an entirely new document is cumbersome. Integrating the
changes into the customer’s document is the goal REFS achieves. Also, (re-)
generating the entire model after the specification is changed is fine in general.
But changes in the customer’s wishes occur quite often during the develop-
ment phase. Regeneration would break the links between the model and the
already developed artifacts.

This article is an extended version of a workshop paper published at RAISE
2012 [Landhäußer et al., 2012]. It gives an overview of how our tools interact
with one another to improve requirements engineering. It includes additional
statistics about user studies conducted to test the usability of our tools. It
seems that especially RESI is suitable for stakeholders and requirements an-
alysts as well. If we manage to introduce more and more tool support for
natural language processing, we will be closer to Parnas’ vision of automatic
programming [Parnas, 1985]. Since software becomes ubiquitous and a part of
everyday life, we need more and more programmers. Since the number of peo-
ple capable of programming is small and cannot grow as fast as devices enter
our lifes, we need to enable the average person to do some of the programming
themselves.

2 Related Work

In 2000, Nuseibeh and Easterbrook drafted a road map, especially emphasiz-
ing on bridging the gap between contextual inquiry and formal representa-
tions [Nuseibeh and Easterbrook, 2000]. Dag et al. showed that one can use
natural language processing (NLP) to link users’ wishes with requirements in
large-scale software projects [Natt och Dag et al., 2004, 2005]. Their approach
speeds up requirements management significantly when one deals with large-
scale user bases and many requirements. In 2007, Cheng and Atlee showed that
requirements engineering activities are more iterative compared with other
software engineering activities [Cheng and Atlee, 2007]. The involved tasks do
not yet have pervasive tool support. Automating more parts of software en-
gineering should speed up the processing times of requirements and decrease
error rates. Figure 2 shows where RECAA is situated in the software develop-
ment process and which parts of the development stages it supports and ideally
combines. It bridges the gap between the manual tools used for requirements
administration (RE-Tools) and the semi-automatic tools (CASE-Tools) used
in the design and implementation phase.

4 Landhäußer, Körner, Tichy

Fig. 2 RECAA and its Support for Software Development.

Today’s requirements engineering (RE) relies mostly on the combination
of certain tools and an experienced analyst [Volere, 2009]. Latter of which
knows which tools to use to achieve the best results. Many tools focus on
requirements management, their elicitation, and documentation. Other tools
support the model creation process and code-stub generation. Our comparison
of the tools is summarized in Table 1 and Table 2: + indicates their strengths,
− their shortcomings, and o indicates an average performance.

2.1 Improving Requirement Specifications

Researchers often demand for complete, correct and unmistakable specifica-
tions [IEEE Computer Society, 1998]. But there are only a few papers that
describe which concrete problems can occur and which aspects a human ana-
lyst should consider.

Berry et al. help writers to avoid linguistic ambiguities, explain the accord-
ing problems by example and show how to avoid them [Berry et al., 2003]. Rupp
and the SOPHIST group dedicate a complete chapter [Rupp and die SOPHIS-
Ten, 2006] to finding and avoiding “linguistic defects” in natural language
specifications. These defects are produced unintentionally when formulating
sentences in natural language and lead to inferior specifications.

A manual technique that has been used for decades, are inspections which
base on the ideas of Fagan [Fagan, 1976, Ackerman et al., 1989]. The process
itself depends largely on the skill-set of the inspectors and their experience.
Also, the inspectors tend to classify flaws and errors into minor and major
problems according to their experience. Then they tend to overlook or dismiss
the minor problems which might be a major problem in the given context.

From Requirements to UML Models and Back 5

M
a

n
u

fa
ct

u
re

r
N

am
e

M
an

ag
e

 T
e

xt
u

al

R
e

q
u

ir
e

m
e

n
ts

R
e

q
u

ir
e

m
e

n
ts

M
o

d
e

lin
g

Er
ro

r

Tr
ac

ki
n

g

M
an

u
al

 T
e

xt

P
re

p
ar

at
io

n

Sp
e

e
ch

O
p

ti
m

iz
at

io
n

N
LP

T2
M

M
2

T
R

o
u

n
d

tr
ip

A
cc

ep
t

So
ft

w
a

re
, I

n
c.

A
cc

ep
t

3
6

0
°

+
o

+
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a

IB
M

IB
M

 R
at

io
n

al

R
eq

u
ir

em
en

ts
 C

o
m

p
o

se
r

+
+

o
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a

IB
M

IB
M

 R
at

io
n

al

R
eq

u
is

it
eP

ro
o

o
o

n
/a

n
/a

n
/a

n
/a

n
/a

n
/a

B
o

rl
a

n
d

C
al

ib
er

R
M

 2
0

0
5

+
o

-
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a

IB
M

IB
M

 R
at

io
n

al
 D

O
O

R
S

+
+

o
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a

Le
a

p
 S

ys
te

m
s

Le
ap

 S
E

n
/a

+
n

/a
o

n
/a

o
+

n
/a

n
/a

H
ew

le
tt

 P
a

ck
a

rd
H

P
 Q

u
al

it
y

C
en

te
r

9
.2

+
-

+
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a

Fo
re

si
g

h
t

Sy
st

em
s

In
c.

Fo
re

si
gh

t
n

/a
+

o
n

/a
n

/a
n

/a
o

n
/a

n
/a

iR
is

e
iR

is
e

o
-

-
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a

P
o

la
ri

o
n

 S
o

ft
w

a
re

P
o

la
ri

o
n

 R
EQ

U
IR

EM
EN

TS
+

o
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a
o

G
en

tl
ew

a
re

P
o

se
id

o
n

 f
o

r
U

M
L

n
/a

+
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a

R
B

C
 P

ro
d

u
ct

D
ev

el
o

p
m

en
t

R
M

Tr
ak

+
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a

O
p

en
So

u
rc

e
G

A
TE

n
/a

n
/a

n
/a

o
-

+
+

o
-

O
p

en
So

u
rc

e
O

p
en

N
LP

n
/a

n
/a

n
/a

o
-

+
-

-
-

U
n

iv
er

si
tä

t
Tr

en
to

, I
T

N
L-

O
O

P
S

n
/a

n
/a

n
/a

n
/a

+
o

n
/a

n
/a

n
/a

TU
 C

h
em

n
it

z
TE

SS
I

o
+

n
/a

+
-

+
+

-
+

C
o

G
en

Te
x,

 In
c.

LI
D

A
o

+
n

/a
o

n
/a

o
+

o
o

U
n

iv
. o

f
Li

m
er

ic
k,

 IR
SU

G
A

R
 /

 U
M

G
A

R
-

+
n

/a
-

-
+

o
n

/a
-

SS
EC

 -
 F

M
T

La
b

Q
u

A
R

S
o

n
/a

n
/a

n
/a

+
+

n
/a

n
/a

n
/a

A
cc

en
tu

re
R

A
T

+
n

/a
-

-
o

o
n

/a
n

/a
-

Table 1 Comparing Existing RE Tools and their Features – Part I.

6 Landhäußer, Körner, Tichy

Table 2 Comparing Existing RE Tools and their Features – Part II.

From Requirements to UML Models and Back 7

We feel that inspections lack the deterministic behavior of a tool that assesses
text following strict rules. This is one of the reasons why Kamsties provided an
improved inspection type [Kamsties et al., 2001], as inspections were sometimes
seen as one-dimensional [Kiyavitskaya et al., 2008].

To leverage the power of computers, one can encode requirements in a
machine-readable format. While this greatly eases the detection of specifica-
tion flaws, one loses readability. As only few stakeholders are trained in formal
representations, it is almost impossible for them to participate in the soft-
ware engineering process [Heitmeyer et al., 1996]. From a specialist’s side, we
point out that even though the necessary training is available [Pease and Mur-
ray, 2003], practitioners perceive formal specification languages as difficult to
use [Konrad and Cheng, 2005].

A less formalized approach is controlling natural language. The allowed
spectrum of language is being reduced and writers must adhere to certain
rules that make the texts less ambiguous. One of the most popular approaches
is Attempto Controlled English (ACE) [Fuchs et al., 1999]. Denger et al. present
an approach that is pattern-based but also report that existing specifications
can be patternized only with difficulties [Denger et al., 2003]. Propel [Smith
et al., 2002] accompanies a controlled textual specification with a finite state
machine thereby using the advantages of both representations. Keeping them
synchronized requires a huge effort though. We conclude that constrained nat-
ural languages lead to similar problems like formal languages and the effort of
applying them to existing documents is often a problem.

The research community has also come up with tools that detect defects
in natural language specifications or rate their quality. Davis et al. present 24
criteria to measure the quality of a specification with the help of metrics [Davis
et al., 1993]. They point out that the perfect specification cannot exist since
the individual quality criteria affect and sometimes even contradict each other
(e.g. legibility vs. redundancy).

Wilson et al. categorize reoccurring expressions of natural language speci-
fications and define metrics to evaluate a specification’s completeness, consis-
tency, and so on [Wilson et al., 1997].

Chantree et al. scrutinized ambiguities in specifications [Chantree et al.,
2006]. They automatically detect ambiguities, but they must be removed man-
ually. They further differentiate between nocuous ambiguities (i.e. different
readers are likely to interpret these passages differently) and non harmful
ones. To reduce the manual effort, they heuristically detect non-harmful ones
and leave them unchanged.

In 2010, Yang et al. presented a machine learning based analysis that
identifies whether ambiguous anaphors are nocuous and therefore should be
rephrased [Yang et al., 2010]. Their approach focuses not on the detection of
all ambiguous anaphors but on the ones that are likely to be misinterpreted.
The classifier is trained with ambiguity information obtained in surveys; it
identifies nocuous ambiguities with high recall and acceptable precision.

Fabbrini et al. developed a tool called QuARS (Quality Analyzer of Re-
quirement Specification) [Fabbrini et al., 2001]. It searches for words that in-

8 Landhäußer, Körner, Tichy

dicate potential problems. Depending on the density of the indicators for a
given passage, it is being flagged as problematic or non-problematic. Thereby
QuARS pinpoints potential flaws to the user. Berry et al. offer an extension to
QuARS in their New Quality Model work [Berry et al., 2008]. Fantechi et al.
use QuARS as conceptual basis for their own metrics [Fantechi et al., 2002].

Pisan [Pisan, 2000] takes another route and begins with specifications that
are evaluated and known to be of high quality. These already existing specifi-
cations or parts thereof are then being used as building blocks for new speci-
fications.

2.2 Ontologies in Requirements Engineering

Today, several approaches use domain specific ontologies to cope with the
problems that occur in the requirements engineering process [Kaiya and Saeki,
2005, 2006, Saeki, 2004, Zhang et al., 2006, Meng et al., 2006]. They use
ontology based systems to correctly classify textual information that has been
delivered from stakeholders. Other projects for example make sure that the
correct (domain specific) wording is used when the specification documents
are elicited from different stakeholders. Some projects have a narrow field
of application and are specified for certain conditions and use cases [Liu and
Singh, 2004, Havasi et al., 2007]. Until today, real world applications as listed
in reference [Volere, 2009] have not yet adopted many of the solutions resulting
from current research.

2.3 Automatic Model Creation and Text Synthesis

After elicitation, requirements are transformed into models that give a more
formal representation of the described software system. These models are usu-
ally not intended for use with the client but with the software architects and
the programming team. The average client cannot understand these models.
As a result, the analyst usually maintains two models: one (semi) formal model
for the development team, and one informal description in natural language
for the client. These models have to be kept synchronized during requirements
evolution. Dawson and Swatman argue that the mapping between informal
and formal models is ad hoc and often results in divergent models [Dawson
and Swatman, 1999]. This strongly suggests to fill the gap between textual
specifications and the models.

In 1997, Moreno set the foundation for model extraction [Moreno and
van de Riet, 1997]. Juristo et al. explain that a systematic procedure to dis-
sect and process natural language information is strongly needed [Juristo et al.,
2000]. They hint to the disadvantages of manual tasks which dominate the RE
process until today. They postulate that this procedure must be independent
from the analyst and his individual skills.

In 2000, Harmain developed CM-Builder, a NLP tool which generates an
object oriented model from textual specifications [Harmain and Gaizauskas,

From Requirements to UML Models and Back 9

Fig. 3 Requirements Engineering is Iterative.

2000]. Montes et al. describe a method of generating an object-oriented con-
ceptual model (like UML class diagrams) from natural language text [Montes
et al., 2008]. Hasegawa et al. describe a tool that extracts requirements models
(abstract models of the system) from natural language texts [Hasegawa et al.,
2009]. Instead of relying solely on natural language processing techniques, they
perform text mining tasks on multiple documents to extract relevant words
(nouns, verbs, adjectives etc.), assuming that important and correct concepts
of the domain are contained in multiple distributed documents.

Gelhausen presented an approach to generate UML domain models directly
from textual specifications [Gelhausen and Tichy, 2007, Gelhausen et al., 2008].
The domain model includes class diagrams, activity diagrams and state charts.
He uses a graph as an intermediate representation of text. The graph contains
typed nodes for sentences and words. Edges stand for thematic roles and are
the heart of his approach because they represent the semantic information
given in the text. The roles are inspired by the work of Fillmore [Fillmore,
1969] on which other researchers in the software and requirements engineering
community based their work as well (e.g. [Liaskos et al., 2006, Niu and East-
erbrook, 2008]). Gelhausen adapted Fillmore’s roles for the purpose of model
extraction [Gelhausen et al., 2008]. Graph transformation rules are then used
to build an UML representation. Following his approach, the first step of model
driven development can be automated.

Requirements engineering is an iterative process, as Figure 3 shows [Glinz
et al., 2009]. Often, stakeholders change the textual software specification
whilst the software is already in the making [Wiegers, 2003]. The direct ap-
proach would be to generate a new model after modifications. This approach
leads to information loss if work on the existing models has already begun.
It is the requirements analyst’s job to assess the impact of the changes on
the existing domain model. Ideally, one calculates the necessary changes in
the models and keeps the unchanged parts of the models as well as the other
software artifacts that have been created already. Our aim is to provide a fast
and accurate evaluation of the situation when changes occur. We help the an-
alyst to decide if changes are worthwhile or if they imply an overhaul of the
architecture and the implementation.

Overmyer’s Linguistic Assistant for Domain Analysis (LIDA) is a tool for
requirements engineers who want support in the iterative requirements engi-
neering process [Overmyer et al., 2001]. LIDA analyzes the lexical content of

10 Landhäußer, Körner, Tichy

natural language specifications written by domain experts. It identifies and
marks lexical items corresponding to candidate model elements. The analyst
creates the UML class model according to model elements proposed by LIDA.
It supports the analyst with a well-arranged document that he or she can use
to extract the system domain model. When the models change, LIDA gener-
ates a new requirements specification instead of updating the initial text. This
is unfortunate if you start with a customer-provided specification: then you
end up with a totally different text – LIDA provides no support for identifying
the changes in the original specification. In contrast to LIDA, our approach
keeps the connection between the specification and the various model types
without re-generating the specification.

Kroha’s TESSI is another automatic model generator that is capable of
supporting iterative processes [Kroha, 2000]. TESSI helps the analyst to com-
plete requirements. The analyst needs to specify the roles of words in the text.
The problem is that the analyst needs to know every role of every word during
the modeling process, because incomplete role arguments lead to incomplete
UML models. The model is then used to synthesize a new specification from
the model, i.e. to provide a model-derived requirements description. Again,
the original specification is not updated but discarded. With SUGAR Deep-
timahanti et al. offer a tool to extract models from text [Deeptimahanti and
Sanyal, 2009]. Changes in the specification text require a rerun of the process
and models from the previous run are discarded. This can be a major draw-
back, if the development phase already has started. Model changes are not fed
back to the text.

Mala’s system uses a NLP pipeline to generate a model without the help
of a domain expert [Mala and Uma, 2006]. Mala states that the yielded results
are at least as good as or exceeding human made class diagrams. Other tools
that extract models from natural language with the phrase pattern approach
come from Fliedl [Fliedl et al., 2004] and Li [Li et al., 2005]. Bajwa’s UMLG ex-
tracts nouns and verb combinations from input texts and maps the nouns and
verbs to UML class elements and relations respectively [Bajwa and Choudhary,
2006]. Unfortunately, none of these tools support iteration or impact analysis.

Adding new information to the model needs to be expressed in the textual
specification, too. An example would be a new class element that has been
added to the UML domain model. In this case, natural language would have
to be generated from the model. Research projects from Reiter, Meziane, and
Kroha focus on this [Meziane et al., 2008, Kroha et al., 2006, Reiter and Dale,
2000]. But still, this cannot be considered as synchronization between model
and textual specification rather than document generation from models. There
is no direct connection to the initial specification.

2.4 Impact Assessment

Being able to determine the impact of changes on a software specification is a
well-known problem that has existed ever since software development became

From Requirements to UML Models and Back 11

Whois client

The

Phrase

makes

replies

then

with

a

Whois server

Text content

Whois server

the

text request

to

the

Class: Whois client

Method: replies

Method: makes

Class: text request

Class: Text content

Class: Whois server
hasMethod

hasParameter

hasParameter

hasMethod

Fig. 4 Tracking Edges Connect the Textual Nodes with their UML Counterparts.

an industry. Bohner and Arnold define impact analysis as “identifying the po-
tential consequences of a change, or estimating what needs to be modified to
accomplish a change” [Bohner and Arnold, 1996]. To do that, one has to main-
tain traceability among various entities of the software development process.
Also one has to detect possible side and ripple effects of the changes.

Kung et al. use impact analysis to focus testing efforts on hot spots [Kung
et al., 1994]. They describe a formal model to identify changes and their impact
on an object-oriented software library. Chaumun et al. use impact analysis
methods to assess maintainability [Chaumun et al., 2002].

Most impact analysis approaches focus on changes of the program code
whereas Han used dependencies defined between software artifacts to identify
the impact of a change [Han, 1997]. Briand et al. propose a tool that uses a
set of OCL constraints to detect the differences between two versions of an
UML model and their impact on unchanged model elements [Briand et al.,
2003]. Xing and Stroulia present an automatic tool called UMLDiff that de-
tects structural model changes of two subsequent UML class models [Xing
and Stroulia, 2005]. Their approach is similar to ours regarding the detection
method: When comparing two versions of an UML model, they identify pairs
of classes that are identical in both models. Modified classes are matched based
on their name, neighborhood (e.g. associations to already paired classes), and
contents (e.g. when the name of a class changes but not its attributes and
methods). UMLDiff then produces a concise list of changes based on the pairs
(unmodified classes or modified classes) and unpaired classes (deleted from the
old model or introduced in the new model).

3 RECAA Components

The RECAA process (as outlined in Figure 1) comprises several stages – and
several tools that collectively support the requirements engineer. The following
subsections cover the quality assurance with RESI, the automatic UML model
generation with AutoAnnotator and Sale mx, and the model and text syn-
chronization with REFS. The technical basis of REFS also allows for impact
analysis when the specification text or the domain models change. Each tool
has been evaluated with case studies (see Section 4).

12 Landhäußer, Körner, Tichy

3.1 Quality Assurance: RESI

Before we start a software production process based upon natural language
specifications, we make sure that the natural language text has as few defects
as possible. During the work on Sale mx, Gelhausen and Körner discovered
that many problems resulting from linguistic defects could be detected auto-
matically right at the beginning of the process. Körner’s and Brumm’s RESI
uses NLP tools and ontological reasoning to detect linguistic defects such as
distortion, incompletely specified process words and so on [Körner and Brumm,
2010]. For every detectable defect type there is a “rule” which can be applied
to the specification under inspection. The user can decide which rules and in
which order to apply to the text. RESI then iterates over the specification,
applying one rule after the other. Many of the defect types can not only be
detected: RESI often can make suggestions and sophisticated guesses on how
to repair the defects. The suggestions and possible solutions are being deliv-
ered to the analyst who then can decide to fix the problem or to consult the
customer first.

3.2 Model Extraction Support: AutoAnnotator

To derive UML domain models (class, activity, and state diagrams) from
textual specifications, Sale mx relies on explicitly encoded semantic informa-
tion [Gelhausen and Tichy, 2007]. While the extraction is relatively straight-
forward, the annotation process is not [Körner and Landhäußer, 2010]. To en-
code the semantics, one can choose from about 70 thematic roles and has to
follow very strict annotation rules [Gelhausen, 2010]. If one confuses the pro-
vided structures, one ends up with subtle defects in the model, which have to
be corrected by the analyst unnecessarily. Especially for beginners and large
documents this drawback might render manual annotation impracticable. Au-
toAnnotator supports the analyst in properly encoding the semantics with
thematic roles.

AutoAnnotator uses a pipeline of proven natural language processing
techniques (such as part-of-speech taggers and parsers) that can be used to
analyze grammatical structures. On top of that, our tool uses ontologies (e.g.
WordNet and Cyc) to query further semantic information. If AutoAnnota-
tor cannot determine what to encode, it relies on user interaction. The guided
annotation speeds up the annotation process greatly and scales well with the
size of the documents (see Section 4.3).

For now, AutoAnnotator only processes English texts but can be adap-
ted easily for other languages as long as the underlying natural language pro-
cessing tools support them.

From Requirements to UML Models and Back 13

3.3 Transferring Model Changes to the Specification: REFS

As RECAA uses Gelhausen’s model extractor Sale mx [Gelhausen and Tichy,
2007], we extended its underlying graph representation as Figure 4 illustrates.
With the connection of textual nodes with their UML counterparts, we make
it possible to synchronize changes in the UML models with the text and vice
versa. It does not matter if the the UML model type is class diagram, activity
diagram or state chart. All types of models created by Sale mx are considered.
The left part of the figure shows the text subgraph for the phrase “The WHOIS
client makes a text request to the WHOIS server, then the WHOIS server
replies text content”. The right part shows an excerpt of the corresponding
UML subgraph; typed edges connect the class and method nodes. We added
tracking edges that connect text nodes with UML nodes; the tracking edges are
added to the graph during the UML generation and are shown as dashed lines.
This way, the UML representation is tightly linked with the underlying text.
To account for possible repetitions in the text, we allow a given UML element
to be linked with multiple text nodes. We store the original specification and
the connected model together to reflect model changes back to text later on.

After the first UML models have been created from the textual specifi-
cation, software architects make design decisions, rearrange UML model ele-
ments, group parts of the models, create superclasses, and so on. These changes
are carried out with UML tools. Essentially, updates, creations, and deletions
occur. Updates on relations are being treated as a combination of deletions
and creations. Simple name updates are reflected directly into the text.

To reflect model changes to the specification, the initial model (Mi) and
the changed model (Mc) need to be compared and matched. We use EMF-
Compare [Project, 2010] of the Eclipse Modeling Framework to compute the
difference between Mi and Mc. EMFCompare identifies model elements of Mi

that also occur in Mc by hierarchically (type-aware) matching model elements:
At first, the name of the model element is considered; then, all references to
other elements are being examined. After that, the attributes are analyzed
and finally the type of the element (i.e. the meta-model type) is considered.
Every comparison gives a similarity value between 0 and 1. After comparing
names, EMFCompare sums up the weighted combination of the values. If the
sum is above a certain threshold, the elements are considered equal.

All elements that are being matched are either unchanged or can be iden-
tified for modification. All other elements of Mi have been removed in Mc; all
unmatched elements of Mc are considered new. This way, we create a list of
creations, updates, and deletions and successively integrate them into the orig-
inal specification. Changes are processed in a create/update/read sequence to
assure the correct order of changes without ripple effects. Changed and deleted
elements can be identified in the text graph using the tracking edges for up-
dating the text or removing the text elements. New elements are appended to
the specification using simple templates; readability could be increased using
more sophisticated approaches. At the end of the process, a modified specifi-

14 Landhäußer, Körner, Tichy

cation text can be generated; parts not affected by the model changes remain
untouched during the text modification.

The updated specification can be handed over to the stakeholders, who
can also use text comparison to review the changes. A list of changes can be
used for a quick overview. Figure 9 shows an updated specification after some
modifications (see Section 4.5).

3.4 Using Interconnection to Assess Impact of Textual Changes

If the stakeholders introduce new requirements after the modeling and devel-
opment of software have already started, our interconnection from model to
text can support impact assessment on a textual basis as well. This means that
changes in the requirements text could be evaluated and assessed according
to their possible side-effects, i.e. cost, time, etc. With the introduction of the
bidirectional connection of text and model, we are able to detect the results
of textual changes in the corresponding model.

To find out what would change in a model, we create an UML model of
the initial specification and later of the altered specification. Then we compute
the differences between the initial and the altered model using EMF’s model
compare function [Project, 2010]. Inspired by the function point method, the
users attach a weight-factor to every UML change. As with function point,
weight-factors need to be defined during the evaluation of finished projects,
so that reliable numbers are being used. Subsuming these factors, we assess
the impact of specification changes to their corresponding models. This impact
measure can then be used as a possible value whether new requirements should
be incorporated in the process (if the impact score is lower than a defined
threshold) or not (if it is higher than a defined threshold).

This technique is straightforward for additional text, but also works for
text changes and deletions. This can mean anything from changing a class
name to altering the parameter list of a class’ method. Deletions are simpler –
we check if the deleted text element appears anywhere else in the text. If not,
the corresponding model element is deleted.

Reordering the sentences of a specification has no effect on the model an
thus no impact at all.

4 Case Studies

In this section we show the effectiveness of our approach. At first, we show how
different types of users work with RESI. Then we report on the effectiveness
of AutoAnnotator. Finally, we show how REFS transfers model changes
back to a specification text and we explain how model differencing can help
determine the impact of specification changes on UML domain models.

The specifications used to run the following case studies are the Modal Win-
dow [Chen, 2011], the Musical Store [Deeptimahanti and Sanyal, 2008, 2009],

From Requirements to UML Models and Back 15

Table 3 Results of RESI Specification Improvement.

Specification
Modal Musical Circe Monit. ATM Steam ABC

Win. Store Press. Boiler Video

Words 33 133 138 99 170 188 222

Phrases 1 17 12 6 10 7 17

Found Flaws

Ambiguities

Ambig. W. 8 46 28 26 57 55 44

Add. Mean. 13 91 45 43 141 98 198

Det. Mean. 3 41 22 19 46 42 12

Nominaliz. 1 9 7 4 4 2 4

Process Words

Incomplete 0 5 1 3 2 4 14

Miss. Arg. 0 4 1 5 2 4 18

Synonyms 0 0 0 0 1 1 11

Sets and References

Quantors 0 1 1 0 5 4 8

Def. Art. 3 8 23 13 18 29 24

Indef. Art. 1 2 2 7 5 10 6

Circe [Ambriola and Gervasi, 2006]), Monitoring Pressure [Berry et al., 2003,
Courtois and Parnas, 1993], the ATM [Rumbaugh et al., 1991], the Steam
Boiler [Abrial et al., 1996], and the ABC Video Rental [Kiyavitskaya et al.,
2008] examples. All specifications can be found in appendix A.

4.1 RESI Case Study

Table 3 shows the comparison of all tested specifications and the errors found
using RESI. The possible flaws are categorized into:

– Ambiguities: shows the number of ambiguous words and possible additional
and more detailed meanings.

– Nominalizations.
– Process Words: shows the number of incomplete process words and their

missing arguments.
– Synonyms.
– Sets + References: shows the number of numerical values or sets/enumera-

tions incorrectly used in the text. Definite and indefinite articles are a part
of that.

16 Landhäußer, Körner, Tichy

Table 4 Factorial Design. Subjects were assigned tests by lot.

Person Run 1 Run 2

Subject 1 Text 1, manual Text 2, w/ RESI
Subject 2 Text 1, w/ RESI Text 2, manual
Subject 3 Text 2, manual Text 1, w/ RESI
Subject 4 Text 2, w/ RESI Text 1, manual

0 20 40 60 80

manual

w/ RESI

Errors found in 15 minutes

Group N

Group P

Group D

Average

Fig. 5 Results of the inspection of the ABC Video Rental specification [Kiyavitskaya et al.,
2008]. Errors included: 339.

4.2 RESI User Case Study

In 2010, Körner and Brumm showed the effectiveness of RESI [Körner and
Brumm, 2010]. To further investigate the usability of RESI and user accep-
tance, we conducted a case study involving professional developers (P), PhD
students (D) and test persons without software engineering background (N).
Each group provided four subjects. We used test specifications published by
Kiyavitskaya et al. [Kiyavitskaya et al., 2008] (ABC Video Rental, text 1) and a
text taken from Berry’s “Ambiguity Handbook” [Berry et al., 2003] (Monitor-
ing Pressure, text 2). RESI detects more defects than the manual inspections
in Berry’s and Kiyavitskaya’s publication (95 and 339 respectively in total).
We removed the possibility of false positives to be able to compare the man-
ual with the tool results. We used a factorial design (three user groups and
two texts with and without RESI respectively, see Table 4) and limited the
test time to 15 minutes. Experience showed that well-trained analysts com-
plete the tasks within 20-30 minutes with the support of RESI. Therefore, we
did not expect the participants to complete the tasks whether manual or tool
supported in the available time. And no one did.

Overall, the use of RESI results in a higher number of found defects: For
text 1 the detection rate increases by 31 % (62 instead of 47 defects), see
Figure 5. For text 2 the detection rate increases even by 88 % (46 instead of 24
defects), see Figure 6. The participants reported that they liked being guided
through the specification by RESI.

From Requirements to UML Models and Back 17

0 10 20 30 40 50

manual

w/ RESI

Errors found in 15 minutes

Group N

Group P

Group D

Average

Fig. 6 Results of the inspection of the Monitoring Pressure specification [Berry et al., 2003].
Errors included: 95.

Table 5 Recall and Precision for ABC Video and Monitoring Pressure Examples.

ABC Video Rental Monitoring Pressure

manual RESI manual RESI∑
FlawsTotal 399 95

�
∑

FlawsCS 47,33 62,17 24,33 45,83

RecallCS =

∑
Found Flaws∑

All Flaws
0,1396 0,1834 0,2561 0,4825

Table 5 shows the total number of flaws that could be found in the case
study’s texts in the first row. The second row �

∑
FlawsCS shows the number

of flaws found be the test subjects using manual approaches or tool support.
The recall of the case study RecallCS shows a significant increase in found
flaws using RESI.

The results of the PhD students (D1 - D4) show little difference with or
without tool support (see Table 6). We conclude that the continuous training
in requirements engineering during courses leads to these consistent results.
One can see that the participants tend to search for specific problems and that
they favor searching some defect types over others. Since RESI lets the user
decide which rules to apply and in which order, the results of the RESI session
also exhibit that pattern.

The results for the professional developers (P1 - P4) differ from the PhD’s
results (see Table 7). Similar to the PhD students, the professionals iterated
defect-class-wise over the text manually and the test persons exhibit prefer-
ences for different defect types. Comparing the results with and without RESI,
there is a difference in this group: Using the tool, the professionals found more
defects in the same amount of time. Since the manually found defects were
true positives, we conclude that it is easier for them to read, interpret, and
correct defects than to find (subtle) linguistic flaws themselves.

18 Landhäußer, Körner, Tichy

Table 6 Flaws Found by Group 1 (PhD Students).

Specification ABC Video Rental Monitoring Pressure

Type of Eval manual RESI RESI manual

Test Subject D1 D4 D2 D3 D1 D4 D2 D3

Ambiguous Words 16 22 4 18 15 14 15 15

Additional Meanings 0 16 1 11 21 10 12 2

More Detailed Meaning 0 3 2 10 6 5 0 0

Nominalization 2 0 0 3 0 0 0 0

Incomplete Process Words 14 11 0 1 0 1 3 3

Missing Arguments 18 13 0 0 0 1 5 5

Synonyms 0 1 0 0 0 0 0 0

Quantors 2 3 0 0 0 0 0 0

Def. Articles 8 1 0 0 12 4 1 0

Indef. Articles 0 0 0 0 4 1 1 0

Table 7 Flaws Found by Group 2 (Professional Software Developers).

Specification ABC Video Rental Monitoring Pressure

Type of Eval manual RESI RESI manual

Test Subject P1 P4 P2 P3 P1 P4 P2 P3

Ambiguous Words 6 9 17 18 15 15 5 13

Additional Meanings 4 3 15 27 22 19 2 2

More Detailed Meaning 1 1 6 5 6 5 0 2

Nominalization 0 0 0 0 1 1 0 0

Incomplete Process Words 10 10 2 1 2 1 2 3

Missing Arguments 14 13 2 0 2 1 3 1

Synonyms 2 0 0 0 0 0 0 0

Quantors 3 1 8 0 0 0 0 0

Def. Articles 2 0 24 1 12 12 0 0

Indef. Articles 1 2 6 1 1 6 0 0

The final part of the case study involved persons without software engi-
neering background (N1 - N4) that represent stakeholders (see Table 8). We
wanted to see, whether RESI can help stakeholders to improve their require-
ments or problem descriptions before handing them to an analyst. The results
of this group are similar to these of the developer group and tool support
increases their performance as well.

Some users spent much time understanding and questioning the definitions
and suggestions of RESI. Especially the ontology’s terminology seemed to
distract them; we believe that this is a minor drawback that would diminish
after some training. They also reported that taking notes for later discussions
with the imaginary client took too much time. We also believe that training

From Requirements to UML Models and Back 19

Table 8 Flaws Found by Group 3 (Non-Professionals).

Specification ABC Video Rental Monitoring Pressure

Art d. Eval manual RESI RESI manual

Test Subject N1 N4 N2 N3 N1 N4 N2 N3

Ambiguous Words 26 11 40 23 6 0 15 15

Additional Meanings 1 7 30 11 10 0 2 2

More Detailed Meaning 0 0 9 3 5 0 0 1

Nominalization 0 0 0 0 0 0 0 0

Incomplete Process Words 6 3 3 0 1 0 3 3

Missing Arguments 6 3 4 0 2 0 5 5

Synonyms 0 0 0 0 0 0 0 0

Quantors 4 3 4 8 0 0 0 0

Def. Articles 0 0 22 21 12 12 0 0

Indef. Articles 1 1 6 6 6 6 0 0

could improve this situation – especially because we got that remark from very
few participants.

4.3 AutoAnnotator Case Study

AutoAnnotator shows that implicit semantics can be automatically de-
noted (annotated) in textual specifications [Körner and Landhäußer, 2010].
The quality of the annotations depends largely on the quality of the provided
texts. This is due to the (semantic) knowledge of the ontologies which is better
or worse depending on subject and text quality. Using a domain ontology im-
proves the results tremendously, if available. As of today, a manual inspection
of the AutoAnnotator results is necessary, but results show that detection
rates are acceptably high.

Table 9 shows the specifications that were annotated alongside with the
correct, incorrect and missing annotations. As can be seen, the correct anno-
tation rate is between 61− 77%. The specifications and the annotation results
are comparable to corresponding papers that treated these specifications.

Now if we compare the results of AutoAnnotator after having used
RESI on a specification and having made several changes to the text due to
suggestions, we find that this does not affect the annotation process in average
(see Figure 7). As can be seen, the Chen example would not compute at all
in the original version due to errors that occur in the parser from Stanford.
After making changes to the text following RESI’s suggestions, the example
can be processed but the amount of correct annotations is a meager 45%.

20 Landhäußer, Körner, Tichy

Table 9 Qualitative and Timely Evaluation of Automatic Annotations with AutoAnno-
tator.

Specification
Modal Musical Circe Monitoring ATM Steam

Window Store Pressure Boiler

#Words 33 133 138 99 170 188
#Phrases 1 17 12 6 10 7
#Annot. - 124 120 84 156 158
#Correct - 110 88 72 121 125
#Wrong - 14 32 12 35 33
#Missing - 19 26 33 33 36
#Total - 143 146 117 189 194
%Correct - 76,92% 60,27% 61,54% 64,02% 64,43%

Runtime (in seconds)
Init. time - 2,99 2,91 2,99 3,34 3,17
Calc. time - 9,82 12,32 12,78 30,71 23,67
Proc. time - 109,82 72,3 9,71 62,83 23,75
Total time - 122,64 87,54 25,49 96,88 50,59
Calc. time - 0,074 0,089 0,129 0,181 0,126
per word
Total time - 0,92 0,63 0,26 0,57 0,27
per word

0 10 20 30 40 50 60 70 80

Modal Window

Musical Store

Circe

Monitoring Pressure

ATM

Steam Boiler

0

76.9

60.3

61.5

64

64.4

45.2

67.4

59.4

63.1

62.4

68.4

Correct Annotations in %

Before RESI After RESI

Fig. 7 Correct Annotations with AutoAnnotator before and after using RESI.

4.4 Feedback Loop between the Model and the Text

Table 10 shows the detection rates of changes and deletions performed on the
corresponding models. To avoid overfitting, the changes and deletions were
made randomly to the text. This makes it impossible to evaluate the semantics

From Requirements to UML Models and Back 21

Table 10 Detection Rates of Random (U)pdates and (D)eletions and the Feedback to Text.

Random Detected Feedback to Text

Text #Words D U D U D U

Modal Window 30 2 3 100% 100% 2 3

Musical Store 131 7 13 100% 100% 7 13

Circe 132 7 13 100% 90% 7 3

+other +other

Monitoring Pressure 89 4 9 100% 100% 4 9

ATM 110 6 1 100% 100% 6 1

+other +other

Steam Boiler 163 8 16 100% 100% 8 16

+other +other

and meaning of the sentences, and leaves the comparison of made deletions and
changes and their detection in the model. We can then check if the detection
has been correctly fed back to the text.

Modal Window, Musical Store and Monitoring Pressure The changes and dele-
tions of both texts have been fully detected and fed back to the text.

Circe (with errors) REFS detects all changes in the Circe example, but makes
mistakes in the feedback to the text. One change is not detected as update, but
as deletion and new creation of a model artifact. The biggest problem are sets
and enumerations which tend to get lost when the feedback loop from model
to text is run. This is due to the incomplete annotation of AutoAnnotator
and leads to problems in the REFS process.

ATM (with errors) The feedback of updates and deletions is incomplete. One
enumeration is lost which leaves and orphaned sentence ATM reads the cash

card. Also, REFS deletes parts of the last sentence which is a mistake. The
parts which are deleted in the last sentence are still in the model and must
stay in the text as well. This is an error.

Steam Boiler REFS detects all updated and deletions, but makes mistakes in
the feedback loop again. In the third sentence, REFS stops after the first value
of an enumeration and finishes the sentence with a full stop, though no other
element of the enumeration had been deleted in the model.

4.5 Feedback Loop between the Text and the Model

To illustrate REFS, we worked with the WHOIS protocol specification (IETF’s
RFC 3912) as printed in Appendix A.10.

22 Landhäußer, Körner, Tichy

Fig. 8 An Excerpt of the Generated UML Class Diagram for the WHOIS Protocol Speci-
fication.

Fig. 9 Using Microsoft Word to Present Model Changes in Textual Specifications.

Model to Text Synchronization To exemplify the model to text synchroniza-
tion, we use a generated class diagram for the WHOIS protocol specification.
The diagram (see Figure 8 for an excerpt) has been generated from the unmodi-
fied specification as shown in Appendix A.10. Model elements can be updated,
deleted, or created. For our example, we change the model as follows: We
delete the class ASCII LF and its members as well as the class text content

and the corresponding parameter of the method replies. Also, we rename the
WHOIS server and WHOIS client to WHOKNOWS server and WHOKNOWS client

respectively. Furthermore, we want the server to listen on TCP Port 911 in-
stead of 43. With this modified model, we run REFS to transfer the changes
back to text. The resulting text and the comparison to the original text are
shown in Figure 9. We show the first three sentences only, but a deletion in
the model can lead to multiple deletions in the textual specification; also the
renaming of server and client is propagated to the entire specification.

Text to Model Synchronization Assume the last two sentences of the WHOIS
specification are missing in the initial specification. If a stakeholder now enters
this additional information, the model has to be extended. Elements are not
modeled repeatedly: if already existing model elements appear in new text,
they are reused. Table 11 shows the detected natural language elements from
the last two sentences. The right column shows the UML model elements that
were detected and added if not already existing.

Treating Updates and Creations Until now, we have described the mutual
synchronization process when parts of the UML model are deleted or parts

From Requirements to UML Models and Back 23

Table 11 Text Additions Create New UML Model Elements Unless they are Already Ex-
isting.

Text Addition UML Model Element

WHOIS server class (already existing)
closes method of class WHOIS server
connection class
output class
is finished method
closed attribute of class connection
indication method of an indetermined class
WHOIS client class (already existing)
response class (already existing)
received method of class response
closes method of class WHOIS server

of text are added to the specification. Of course, our approach also allows
modifications, deletions of text, and the creation of new model elements. For
newly created model elements, we need natural language generators to add
the changes to the specification. So far, we use only simple templates to cre-
ate sentences [Derre, 2010]. Updates of model elements and text passages are
handled in a similar manner. Updates are usually treated as deletions followed
by creations. A few exceptions update the text or model elements directly
thereby preserving contextual information. If applicable, we prefer deleting
and creating objects to avoid orphans.

Evaluating Random Modifications To assess, whether our approach provides a
viable feedback loop between models and textual specifications, we conducted
a small study. We used three specifications where we applied random modi-
fications; one member of our team modified the texts, another independently
modified the models using Altova UModel. Both randomly determined the el-
ements to be modified or deleted. The complete specifications can be found
on our website [Körner et al., 2012] with a detailed report.

Table 12 shows an excerpt of the results: Every entry a/b states how many
random modifications (b) have been made and how many modifications have
been correctly transferred in the opposite direction (a). The 3rd and 4th
columns show the results of the analysis of text modifications on the UML
models; columns 5 and 6 show the number of model changes correctly trans-
ferred to the specification. For example, in the Timbered House specification,
we made three modifications to the text and deleted seven words; all three up-
dates have been correctly mapped to the corresponding model elements and
two of the deletions had an effect on the model. As can be seen, the random
text deletions (and updates) sometimes modified elements that were detected
but irrelevant for an UML class diagram. Elements that are not used for the
automatic model creation are omitted in the REFS feedback. Furthermore,
we made three updates to the model and deleted seven model elements; all
changes were correctly transferred to the text. The model to text feedback
is not yet perfect: One update to the model was incorrectly identified as a

24 Landhäußer, Körner, Tichy

Table 12 Results of the Random Modifications Experiment

Case Study Text to Model Model to Text
Text Size Deletions Updates Deletions Updates

Cinema 153 6/7 1/6 7/7 4/4
Words 1 irrel. + 5 irrel.

Timbered 88 2/7 3/3 7/7 3/3
House Words + 5 irrel.

WHOIS 100 2/2 8/8 2/3 5/6
Protocol Words + 1 incorr. crea/del

deletion and a creation; this information was transferred to the specification,
but the resulting text’s readability was reduced. Also, Altova UModel creates
extra tool specific packages. These packages are detected, but are irrelevant for
the feedback loop. Therefore, they are removed before processing the model
with REFS.

5 Conclusion

This article explains our vision of a (complete) requirements engineering tool
chain that eases the work with natural language specifications – RECAA.

Requirements engineers spend a lot of time improving requirement spec-
ifications. Detecting defects before they emerge in later production stages is
vital. With RESI, we provide an automated approach to improve textual spec-
ification which applies ontologies to provide common sense for machines. We
showed that software utilizing semantics is indeed capable of solving some of
the issues analysts deal with daily. The tool has many advantages over a human
centered process. This way, we ensure that the quality of the requirements does
not rely exclusively on the behavior and the skills of the analyst: Every ana-
lyst can use the software to gain access to valuable information about possible
flaws and errors in the specification.

With AutoAnnotator, we were using sentence grammar structures and on-
tologies to determine the correct semantics of a sentence. We use NLP tools
for the pre-processing of natural language texts. The results of the evalua-
tion suggest that the proposed approach is capable of deriving the semantic
tags of Sale mx. Together with its user interactive component to resolve mis-
takes, AutoAnnotator integrates a feedback loop in the annotation process.
Combined with Gelhausen’s UML diagram building process, the analyst could
identify and correct the derived semantics on the fly [Gelhausen, 2010]. We
are convinced that only if the analyst is faster and receives the same quality
models than with the manual process, automatic model creation can support
software development.

With our tool REFS, we presented a novel approach to synchronizing
changes in UML model representations with textual specifications elicited from
stakeholders. We explained how model changes can occur and how we trans-
form these changes back into the textual specification and vice versa. We

From Requirements to UML Models and Back 25

deliver the changed specification to the stakeholder for verification in an easy
to read format, such as Microsoft Word. In future, we expect serious impact
and true benefits if stakeholders can participate with their ideas.

All these tools combined deliver a good coverage of manual and error prone
tasks in software development. Focusing on improving the requirements engi-
neering part of software engineering will be our target for years to come. If
we are able to improve language processing and integrate regular people more
into the software engineering process, we might eventually be able to enable
the stakeholders themselves to program [Parnas, 1985].

Acknowledgements

We would like to thank Alexander M. Turek, Bugra Derre, and Fatih Ok.
Research on the RECAA/AUTOMODEL project is funded by legodo.com in
cooperation with the Karlsruhe Institute of Technology (KIT), Germany.

A Requirements Specifications

The following texts were used during the evaluation of RESI, REFS, and AutoAnnotator.

A.1 Modal Window [Chen, 2011]

A modal window is a child window that requires the user to interact with it before
they can return to operating the parent application, thus preventing any work on
the application main window.

A.2 Musical Store [Deeptimahanti and Sanyal, 2008, 2009]

The musical store receives tape requests from customers. The musical store re-
ceives new tapes from the Main office. Musical store sends overdue notice to cus-
tomers. Store assistant takes care of tape requests. Store assistant update the rental
list. Store management submits the price changes. Store management submits new
tapes. Store administration produces rental reports. Main office sends overdue no-
tices for tapes. Customer request for a tape. Store assistant checks the availability
of requested tape. Store assistant searches for the available tape. Store assistant
searches for the rental price of available tape. Store assistant checks status of the
tape to be returned by customer. Customer can borrow if there is no delay with re-
turn of other tapes. Store assistant records rental by updating the rental list. Store
assistant asks the customer for his address.

A.3 Circe [Ambriola and Gervasi, 2006]

The system is made of the Web interface, of Cico, of the view modules, and of the
view selector. The Web interface receives from the user requirements and glossary.
Requirements contain data on the team, on the author and on the revision. The

26 Landhäußer, Körner, Tichy

Web interface transmits to Cico requirements and glossary. If the project is coop-
erative, the Web interface sends requirements and glossary to the repository, too.
Cico computes abstract requirements using requirements, glossary, MAS-rules, pre-
defined glossary and team data. If the project is cooperative, Cico requests team
data to the repository. The view modules receive abstract requirements from Cico.
The view modules can be dedicated to modeling, validation or metrication. From
abstract requirements, view modules compute a view. The view module sends the
view to the view selector. The user requests a view to the view selector.

A.4 Monitoring Pressure [Berry et al., 2003]

The system monitors the pressure and sends the safety injection signal when the
pressurizer’s pres-sure falls below a “low” threshold. The human operator can over-
ride system actions by turning on a “Block” button and resets the manual block
by pushing on a “Reset” button. A manual block is permitted if and only if the
pressure is below a “permit” threshold. The manual block must be automatically
reset by the system. A manual block is effective if and only if it is executed before
the safety injection signal is sent. The “Reset” button has higher priority than the
“Block” button.

A.5 ATM [Rumbaugh et al., 1991]

Design the software to support a computerized banking network including both hu-
man cashiers and automatic teller machines ATMs to be shared by a consortium of
banks. Each bank provides its own computer to maintain its own accounts and pro-
cess transactions against them. Cashier stations are owned by individual banks and
communicate directly with their own bank’s computer. Human cashiers enter ac-
count and transaction data. Automatic teller machines communicate with a central
computer which clears transactions with the appropriate banks. An automatic teller
machine accepts a cash card, interacts with the user, communicates with the central
system to carry out the transaction, dispenses cash, and prints receipts. The sys-
tem requires appropriate record keeping and security provisions. The system must
handle concurrent accesses to the same account correctly. The banks will provide
their own software for their own computers; you are to design the software for the
ATMs and the network. The cost of the shared system will be apportioned to the
banks according to the number of customers with cash cards.

A.6 Steam Boiler [Abrial et al., 1996]

The general purpose of the steam boiler system, as shown in Figure 1, is to ensure
a safe operation of the steam boiler. The steam boiler operates safely if the con-
tained amount of water never exceeds a certain tolerance, thus avoiding damage
to the steam boiler and the turbine driven by the produced steam. Basically, the
steam boiler system consists of the steam boiler itself, a measuring device for the
water level, a pump to provide the steam boiler with water, a measuring device
for the pump status, a measuring device for the amount of steam produced by the
steam boiler, an operator desk, and a message transmission system for the signals
produced. During operation, the water level is kept within the tolerance level as
long as possible, using the measuring devices and the pump and producing status
information for the operator desk. But even with some devices broken, the system
can still successfully monitor the steam boiler. If no safe operation is possible any
longer, control is handed over to the operator desk. Additionally, the operator can
stop the system at any time via the operator desk.

From Requirements to UML Models and Back 27

A.7 ABC Video Rental [Kiyavitskaya et al., 2008]

Customers select at least one video for rental. The maximal number of tapes that
a customer can have outstanding on rental is 20. The customer’s account number
is entered to retrieve customer data and create an order. Each customer gets an id
card from ABC for identification purposes. This id card has a bar code that can
be read with the bar code reader. Bar code Ids for each tape are entered and video
information from inventory is displayed. The video inventory file is updated. When
all tape Ids are entered, the system computes the total bill. Money is collected
and the amount is entered into the system. Change is computed and displayed. The
rental transaction is created, printed and stored. The customer signs the rental form,
takes the tapes and leaves. To return a tape, the video bar code ID is entered into
the system. The rental transaction is displayed and the tape is marked with the date
of return. If past-due amounts are owed they can be paid at this time; or the clerk
can select an option which updates the rental with the return date and calculates
past-due fees. Any outstanding video rentals are displayed with the amount due on
each tape and the total amount due. Any past-due amount must be paid before new
tapes can be rented.

A.8 Cinema

This text was used in a software engineering exam at our chair.

At first, the user selects the movie show for which he would like to book tickets.
This he do by clicking on the relevant film or the desired date. Depending on the
selection, a list with movie shows for the selected film or a list of movie shows of
the selected day is displayed. Then he clicks on the movie show for which he would
like to order tickets. If there are any of the 30 orderable tickets left, he is prompted
to enter his name, his e-mail address and the desired number of cards. He can also
specify whether he wants to be reminded of the movie show by e-mail. After a click
on Order, the system attempts to allocate the desired cards. If this is possible, a
confirmation page is displayed on which all the provided information is summarized
again. If the tickets for this movie show can not be reserved, there will be an error
message and the user is prompted to reduce the number of cards, or select a different
idea.

A.9 Timbered House

This text was used in a software engineering exam at our chair.

A timbered house consists of 5 to 10 logs, 200 to 400 mud-bricks and 1000 to 2000
nails. Each building material, whether log, brick, or nail, is a component in exactly
one timbered house. Each timbered house has a certain number of rooms and floors.
For the construction of a timbered house is at least one carpenter in charge, which
has a name and an individual hourly wage. For the construction of a timbered house
each carpenter uses his own tools, consisting of exactly one hammer and exactly one
saw. Any carpenter can work on up to one timbered house at the same time.

A.10 WHOIS Protocol [Daigle, 2004]

A WHOIS server listens on TCP port 43 for requests from WHOIS clients. The
WHOIS client makes a text request to the WHOIS server then the WHOIS server
replies with text content. All requests are terminated with ASCII CR and then
ASCII LF. The response might contain more than one line of text so the presence

28 Landhäußer, Körner, Tichy

of ASCII CR or ASCII LF characters does not indicate the end of the response.
The WHOIS server closes the connection as soon as the output is finished. The
closed connection is the indication to the WHOIS client that the response has been
received.

References

Jean-Raymond Abrial, Egon Börger, and Hans Langmaack. The steam boiler case study:
Competition of formal program specification and development methods. In Formal Meth-
ods for Industrial Applications. Specifying and Programming the Steam-Boiler Control,
pages 1–12. Springer, 1996. URL http://citeseerx.ist.psu.edu/viewdoc/download.

A. Frank Ackerman, Lynne S. Buchwald, and Frank H. Lewski. Software inspections: an
effective verification process. Software, IEEE, 6(3):31–36, May 1989. ISSN 0740-7459.
doi: 10.1109/52.28121.

Vincenzo Ambriola and Vincenzo Gervasi. On the systematic analysis of natural language
requirements with circe. Automated Software Engg., 13:107–167, January 2006. ISSN
0928-8910. doi: 10.1007/s10515-006-5468-2. URL http://portal.acm.org/citation.

cfm?id=1107757.1107761.
Paul Arkley and Steve Riddle. Overcoming the traceability benefit problem. In Proc. 13th

IEEE Int. Requirements Engineering Conf. (RE), pages 385–389, 2005. doi: 10.1109/RE.
2005.49.

Imran Sarwar Bajwa and M. Abbas Choudhary. Natural language processing based auto-
mated system for uml diagrams generation. In The 18th Saudi National Computer Conf.
on computer science (NCC18), Riyadh, Saudi Arabia, March 2006. The Saudi Computer
Society (SCS).

Daniel M. Berry. The inevitable pain of software development: Why there is no silver bullet.
In Martin Wirsing, Alexander Knapp, and Simonetta Balsamo, editors, Proceedings of
Monterey Workshop 2002: Radical Innovations of Software and Systems Engineering in
the Future, LNCS 2941. Springer, Berlin, DE, 2004.

Daniel M. Berry, Erik Kamsties, and Michael M. Krieger. From Contract Drafting to Soft-
ware Specification: Linguistic Sources of Ambiguity - A Handbook, November 2003. URL
http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf.

Daniel M. Berry, Antonio Bucchiarone, Stefania Gnesi, and Gianluca Trentanni. A New
Quality Model for Natural Language Requirements Specifications. 2008. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.5268.
Shawn A. Bohner and Robert S. Arnold. An introduction to software change impact analysis.

In Shawn A. Bohner and Robert S. Arnold, editors, Software Change Impact Analysis,
pages 1–26. IEEE Computer Soc. Press, 1996.

Lionel C. Briand, Yvan Labiche, and L. O’Sullivan. Impact analysis and change management
of uml models. Technical Report SCE-03-01, Carleton University, February 2003.

Francis Chantree, Bashar Nuseibeh, Anne de Roeck, and Alistair Willis. Identifying Nocuous
Ambiguities in Natural Language Requirements. In RE ’06: Proceedings of the 14th IEEE
International Requirements Engineering Conference (RE’06), pages 56–65, Washington,
DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2555-5. doi: http://dx.doi.org/
10.1109/RE.2006.31.

M. Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller, and Franois Lustman. A change
impact model for changeability assessment in object-oriented software systems. Science
of Computer Programming, 45(2-3):155 – 174, 2002. ISSN 0167-6423. doi: 10.1016/
S0167-6423(02)00058-8.

Raymond Chen. The old new thing. MSDN Blogs, December 2011. URL http://blogs.

msdn.com/b/oldnewthing/archive/2011/12/12/10246541.aspx.
Betty H. C. Cheng and Joanne M. Atlee. Research directions in requirements engineering.

In Proc. Future of Software Engineering FOSE ’07, pages 285–303, May 2007. doi:
10.1109/FOSE.2007.17.

P.-J. Courtois and David Lorge Parnas. Documentation for safety critical software. In
ICSE ’93: Proceedings of the 15th international conference on Software Engineering,

http://citeseerx.ist.psu.edu/viewdoc/download
http://portal.acm.org/citation.cfm?id=1107757.1107761
http://portal.acm.org/citation.cfm?id=1107757.1107761
http://se.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.5268
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.5268
http://blogs.msdn.com/b/oldnewthing/archive/2011/12/12/10246541.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/12/12/10246541.aspx

From Requirements to UML Models and Back 29

pages 315–323, Los Alamitos, CA, USA, 1993. IEEE Computer Society Press. ISBN
0-89791-588-7.

Leslie Daigle. WHOIS Protocol Specification. Internet, September 2004. URL http://www.

ietf.org/rfc/rfc3912.txt. The Internet Engineering Task Force (IETF).
Alan Davis, Scott Overmyer, Kathleen Jordan, Joseph Caruso, Fatma Dandashi, Anhutan

Dinh, Gary Kincaid, Glen Ledeboer, Patricia Reynolds, Pradip Sitaram, Anh Ta, and
Mary Theofanos. Identifying and measuring quality in a software requirements speci-
fication. In Proceedings of the First International Software Metrics Symposium, pages
141–152, May 1993. ISBN 0-8186-3740-4. doi: 10.1109/METRIC.1993.263792.

Linda Dawson and Paul A. Swatman. The use of object-oriented models in requirements
engineering: a field study. In ICIS, pages 260–273, 1999. doi: 10.1145/352925.352949.

Deva Kumar Deeptimahanti and Ratna Sanyal. Static uml model generator from analysis
of requirements (sugar). In Advanced Software Engineering and Its Applications, pages
77–84, Los Alamitos, CA, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3432-9.
doi: 10.1109/ASEA.2008.25.

Deva Kumar Deeptimahanti and Ratna Sanyal. An innovative approach for generating static
UML models from natural language requirements. In Advances in Software Engineering,
volume 30 of Communications in Computer and Information Science, pages 147–163.
Springer, 2009. ISBN 978-3-642-10241-7 (Print) 978-3-642-10242-4 (Online). doi: 10.
1007/978-3-642-10242-4\ 13.

Christian Denger, Daniel M. Berry, and Erik Kamsties. Higher quality requirements specifi-
cations through natural language patterns. In Proceedings of the IEEE International
Conference on Software-Science, Technology & Engineering (SWSTE ’03), page 80,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-2047-2. doi:
http://doi.ieeecomputersociety.org/10.1109/SWSTE.2003.1245428.

Bugra Derre. Rückkopplung von Softwaremodelländerungen in textuelle Spezifikationen.
Master’s thesis, Karlsruhe Institute of Technology, May 2010.

Fabrizio Fabbrini, Mario Fusani, Stefania Gnesi, and Giuseppe Lami. The linguistic ap-
proach to the natural language requirements quality: Benefit of the use of an automatic
tool. In SEW ’01: Proceedings of the 26th Annual NASA Goddard Software Engineer-
ing Workshop, page 97, Washington, DC, USA, 2001. IEEE Computer Society. ISBN
0-7695-1456-1.

Michael E. Fagan. Design and code inspections to reduce errors in program development.
IBM Systems Journal, 15(3):182–211, 1976.

Alessandro Fantechi, Stefania Gnesi, Giuseppe Lami, and Alessandro Maccari. Application
of linguistic techniques for use case analysis. In Requirements Engineering, IEEE In-
ternational Conference on, page 157, Los Alamitos, CA, USA, 2002. IEEE Computer
Society. doi: http://doi.ieeecomputersociety.org/10.1109/ICRE.2002.1048518.

Charles J. Fillmore. Toward a modern theory of case. In D. A. Reibel and S. A. Schane,
editors, Modern Studies in English, pages 361–375. Prentice Hall, 1969.

Günther Fliedl, Christian Kop, and Heinrich C. Mayr. Recent results of the NLRE (natural
language based requirements engineering) project. EMISA Forum, 24(1):24–25, 2004.

Norbert E. Fuchs, Uta Schwertel, and Rolf Schwitter. Attempto Controlled English — not
just another logic specification language. Lecture Notes in Computer Science, 1559:1–20,
1999. ISSN 0302-9743. doi: 10.1007/3-540-48958-4\ 1.

Tom Gelhausen. Modellextraktion aus natürlichen Sprachen: Eine Methode zur systematis-
chen Erstellung von Domänenmodellen. PhD thesis, Karlsruhe Institute of Technology,
July 2010.

Tom Gelhausen and Walter F. Tichy. Thematic Role Based Generation of UML Models
from Real World Requirements. In Proceedings of the ICSC 2007, pages 282–289, 2007.
doi: 10.1109/ICOSC.2007.4338360.

Tom Gelhausen, Bugra Derre, and Rubino Geiß. Customizing grgen.net for model transfor-
mation. In Proceedings of GRaMoT ’08, pages 17–24. ACM, 2008. ISBN 978-1-60558-
033-3. doi: 10.1145/1402947.1402951.

Martin Glinz, Patrick Heymans, Anne Persson, Guttorm Sindre, Aybüke Aurum, Nazim H.
Madhavji, Barbara Paech, Gil Regev, and Roel Wieringa. Report on the working con-
ference on requirements engineering: foundation for software quality (REFSQ’09). ACM
SIGSOFT Software Engineering Notes, 34(5):40–45, 2009.

http://www.ietf.org/rfc/rfc3912.txt
http://www.ietf.org/rfc/rfc3912.txt

30 Landhäußer, Körner, Tichy

Juan Han. Supporting impact analysis and change propagation in software engineering
environments. In Proceedings of the 8th IEEE Int. Workshop on Software Technology
and Engineering Practice, pages 172–182, July 1997. doi: 10.1109/STEP.1997.615479.

Harmain Mohamed Harmain and Robert J. Gaizauskas. CM-Builder: An automated NL-
based CASE tool. In ASE, pages 45–54, 2000. doi: 10.1109/ASE.2000.873649.

Ryo Hasegawa, Motohiro Kitamura, Haruhiko Kaiya, and Motoshi Saeki. Extracting con-
ceptual graphs from Japanese documents for software requirements modeling. In Markus
Kirchberg and Sebastian Link, editors, APCCM, volume 96 of CRPIT, pages 87–96.
Australian Computer Society, 2009. ISBN 978-1-920682-77-4.

Catherine Havasi, Robert Speer, and Jason B. Alonso. ConceptNet 3: a Flexible, Multilin-
gual Semantic Network for Common Sense Knowledge. In Recent Advances in Natural
Language Processing, Borovets, Bulgaria, September 2007. URL http://web.media.mit.

edu/~jalonso/cnet3.pdf.
Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Automated consistency

checking of requirements specifications. ACM Trans. Softw. Eng. Methodol., 5(3):231–
261, 1996. ISSN 1049-331X. doi: http://doi.acm.org/10.1145/234426.234431.

IEEE Computer Society. Standard 830-1998 IEEE recommended practice for software re-
quirements specifications, October 1998.

Natalia Juristo, Ana Maŕıa Moreno, and Marta López. How to use linguistic instruments for
object-oriented analysis. IEEE Software, 17(3):80–89, May 2000. doi: 10.1109/52.896254.

Haruhiko Kaiya and Motoshi Saeki. Ontology based requirements analysis: lightweight se-
mantic processing approach. In Proc. Fifth International Conference on Quality Software
(QSIC 2005), pages 223–230, 19–20 Sept. 2005. doi: 10.1109/QSIC.2005.46.

Haruhiko Kaiya and Motoshi Saeki. Using domain ontology as domain knowledge for require-
ments elicitation. In Proc. th IEEE International Conference Requirements Engineering,
pages 189–198, 11–15 Sept. 2006. doi: 10.1109/RE.2006.72.

Erik Kamsties, Antje Von Knethen, Jan Philipps, and Bernhard Schtz. An empirical in-
vestigation of the defect detection capabilities of requirements specification languages.
In EMMSAD’01: Proceedings of the Sixth CAiSE/IFIP8.1 International Workshop on
Evaluation of Modelling Methods in Systems Analysis and Design, 2001.

Nadzeya Kiyavitskaya, Nicola Zeni, Luisa Mich, and Daniel M. Berry. Requirements for
tools for ambiguity identification and measurement in natural language requirements
specifications. Requir. Eng., 13(3):207–239, 2008. ISSN 0947-3602. doi: http://dx.doi.
org/10.1007/s00766-008-0063-7.

Sascha Konrad and Betty H.C. Cheng. Facilitating the Construction of Specification
Pattern-based Properties. Requirements Engineering, IEEE International Conference
on, pages 329–338, 2005. doi: http://doi.ieeecomputersociety.org/10.1109/RE.2005.29.

Sven J. Körner and Torben Brumm. Natural language specification improvement with
ontologies. International Journal of Semantic Computing (IJSC), 03:445–470, 2010.

Sven J. Körner and Mathias Landhäußer. Semantic enriching of natural language texts
with automatic thematic role annotation. In Proceedings of the Natural language pro-
cessing and information systems, and 15th international conference on Applications of
natural language to information systems, NLDB’10, pages 92–99, Berlin, Heidelberg,
2010. Springer-Verlag. ISBN 3-642-13880-2, 978-3-642-13880-5. URL http://dl.acm.

org/citation.cfm?id=1894525.1894537.
Sven J. Körner, Mathias Landhäußer, Tom Gelhausen, and Bugra Derre. RECAA – the

Requirements Engineering Complete Automation Approach, 2012. URL https://svn.

ipd.uni-karlsruhe.de/trac/mx.
Petr Kroha. Preprocessing of requirements specification. In Mohamed T. Ibrahim, Josef

Küng, and Norman Revell, editors, Database and Expert Systems Applications, volume
1873 of Lecture Notes in Computer Science, pages 675–684. Springer Berlin / Heidelberg,
2000. ISBN 978-3-540-67978-3. doi: 10.1007/3-540-44469-6\ 63.

Petr Kroha, Philipp Gerber, and Lars Rosenhainer. Towards generation of textual require-
ments descriptions from UML models. In Proceedings of the 9th International Conference
Information Systems Implementation and Modelling ISIM2006, pages 31 – 38. ISIM,
April 2006.

David Chenho Kung, Jerry Gao, Pei Hsia, F. Wen, Yasufumi Toyoshima, and Chris Chen.
Change impact identification in object oriented software maintenance. In Proceedings of

http://web.media.mit.edu/~jalonso/cnet3.pdf
http://web.media.mit.edu/~jalonso/cnet3.pdf
http://dl.acm.org/citation.cfm?id=1894525.1894537
http://dl.acm.org/citation.cfm?id=1894525.1894537
https://svn.ipd.uni-karlsruhe.de/trac/mx
https://svn.ipd.uni-karlsruhe.de/trac/mx

From Requirements to UML Models and Back 31

the Int. Conf. on Software Maintenance, pages 202–211, September 1994. doi: 10.1109/
ICSM.1994.336774.

Mathias Landhäußer, Sven J. Körner, and Walter F. Tichy. Synchronizing domain models
with natural language specifications. In Proceedings of the Workshop on Realizing Ar-
tificial Intelligence Synergies in Software Engineering (RAISE’2012), June 2012. doi:
10.1109/RAISE.2012.6227965.

Ke Li, Rick G.Dewar, and Rob J.Pooley. Towards Semi-automation in Requirements Elic-
itation: mapping natural language and object-oriented concepts. In RE05, pages 5–7,
2005.

Sotirios Liaskos, Alexei Lapouchnian, Yijun Yu, Eric Yu, and John Mylopoulos. On goal-
based variability acquisition and analysis. In Proceedings of the 14th IEEE International
Requirements Engineering Conference, RE ’06, pages 76–85, Washington, DC, USA, 2006.
IEEE Computer Society. ISBN 0-7695-2555-5. doi: 10.1109/RE.2006.45.

Hugo Liu and Push Singh. ConceptNet - a practical commonsense reasoning tool-
kit. BT Technology Journal, Vol 22, 2004. URL http://larifari.org/writing/

BTTJ2004-ConceptNet.pdf.
G. S. Anandha Mala and G. V. Uma. Automatic construction of object oriented design

models [UML diagrams] from natural language requirements specification. In PRICAI,
pages 1155–1159, Guilin, China, August 2006. doi: 10.1007/11801603\ 152.

Wen Jun Meng, Juergen Rilling, Yonggang Zhang, René Witte, and Philippe Charland. An
ontological software comprehension process model. 3rd International Workshop on Meta-
models, Schemas, Grammars, and Ontologies for Reverse Engineering (ATEM 2006).
October 1st, Genoa, Italy, 2006.

Farid Meziane, Nikos Athanasakis, and Sophia Ananiadou. Generating natural language
specifications from UML class diagrams. Requirements Engineering, 13(1):1–18, January
2008. doi: 10.1007/s00766-007-0054-0.

Luisa Mich, Mariangela Franch, and Pierluigi Inverardi. Market research for requirements
analysis using linguistic tools. Requir. Eng., 9:40–56, 2004. ISSN 0947-3602. doi: 10.
1007/s00766-003-0179-8.

Azucena Montes, Hasdai Pacheco, Hugo Estrada, and Oscar Pastor. Conceptual model gen-
eration from requirements model: A natural language processing approach. In Epaminon-
das Kapetanios, Vijayan Sugumaran, and Myra Spiliopoulou, editors, NLDB, volume 5039
of Lecture Notes in Computer Science, pages 325–326. Springer, 2008. ISBN 978-3-540-
69857-9.

Ana Maŕıa Moreno and Reind P. van de Riet. Justification of the equivalence between
linguistic and conceptual patterns for the object model, 1997.

Johann Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkemper, and Bjorn Regnell. Speeding
up requirements management in a product software company: Linking customer wishes to
product requirements through linguistic engineering. In Proceedings of the Requirements
Engineering Conference, 12th IEEE International, RE ’04, pages 283–294, Washington,
DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2174-6. doi: 10.1109/RE.2004.47.

Johann Natt och Dag, Bjorn Regnell, Vincenzo Gervasi, and Sjaak Brinkkemper. A
linguistic-engineering approach to large-scale requirements management. Software, IEEE,
22(1):32–39, Jan-Feb 2005. doi: 10.1109/MS.2005.1.

Nan Niu and Steve Easterbrook. Extracting and modeling product line functional require-
ments. In Proceedings of the 2008 16th IEEE International Requirements Engineering
Conference, RE ’08, pages 155–164, Washington, DC, USA, 2008. IEEE Computer Soci-
ety. ISBN 978-0-7695-3309-4. doi: 10.1109/RE.2008.49.

Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a roadmap. In ICSE
’00: Proceedings of the Conference on The Future of Software Engineering, pages 35–46,
New York, NY, USA, 2000. ACM Press. ISBN 1-58113-253-0. doi: http://doi.acm.org/
10.1145/336512.336523.

Scott P. Overmyer, Benoit Lavoie, and Owen Rambow. Conceptual modeling through lin-
guistic analysis using LIDA. In Proceedings of the ICSE ’01, pages 401–410, Washington,
DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1050-7.

David Lorge Parnas. Software aspects of strategic defense systems. Commun. ACM, 28(12):
1326–1335, 1985. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/214956.214961.

http://larifari.org/writing/BTTJ2004-ConceptNet.pdf
http://larifari.org/writing/BTTJ2004-ConceptNet.pdf

32 Landhäußer, Körner, Tichy

Adam Pease and William Murray. An english to logic translator for ontology-based knowl-
edge representation languages. In Natural Language Processing and Knowledge Engineer-
ing, 2003. Proceedings. 2003 International Conference on, pages 777 –783, oct. 2003. doi:
10.1109/NLPKE.2003.1276010.

Yusuf Pisan. Extending requirement specifications using analogy. In ICSE ’00: Proceedings
of the 22nd international conference on Software engineering, pages 70–76, New York,
NY, USA, 2000. ACM. ISBN 1-58113-206-9. doi: http://doi.acm.org/10.1145/337180.
337190.

Eclipse Modeling Framework Project. Eclipse Modeling Framework Compare, 2010. URL
http://www.eclipse.org/emf/compare/. last visited: 05/07/2012.

Ehud Reiter and Robert Dale. Building Natural Language Generation Systems. Natural
Language Processing. Cambridge University Press, 2000. doi: 10.2277/052102451X.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen. Object-oriented modeling and design. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1991. ISBN 0-13-629841-9.

Chris Rupp and die SOPHISTen. Requirements-Engineering und Management. Carl Hanser
Verlag, 4 edition, 2006. ISBN 3-446-40509-7.

Motoshi Saeki. Ontology-based software development techniques. ERCIM News, 58:14–15,
2004. URL http://www.ercim.org/publication/Ercim_News/enw58/EN58.pdf.

Rachel L. Smith, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil. Propel: an
approach supporting property elucidation. In ICSE 2002: Proceedings of the 24rd Inter-
national Conference on Software Engineering, pages 11–21, 2002. ISBN 1-58113-472-X.

Volere. List of requirement engineering tools, 2009. URL http://www.volere.co.uk/tools.

htm.
Karl Eugene Wiegers. Software requirements : practical techniques for gathering and man-

aging requirements throughout the product development cycle. Microsoft Press, Redmond,
WA, 2. edition, 2003. ISBN 0-7356-1879-8 ; 978-0-7356-1879-4.

William M. Wilson, Linda. H. Rosenberg, and Lawrance E. Hyatt. Automated analysis of
requirement specifications. In ICSE ’97: Proceedings of the 19th International Conference
on Software Engineering, pages 161–171, May 1997. ISBN 0-89791-914-9.

Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented design differ-
encing. In Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, ASE ’05, pages 54–65, New York, NY, USA, 2005. ACM. ISBN
1-58113-993-4. doi: 10.1145/1101908.1101919.

Hui Yang, Anne de Roeck, Vincenzo Gervasi, Alistair Willis, and Bashar Nuseibeh. Ex-
tending nocuous ambiguity analysis for anaphora in natural language requirements. In
Proceedings of the 2010 18th IEEE International Requirements Engineering Conference,
RE ’10, pages 25–34, Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-
0-7695-4162-4. doi: 10.1109/RE.2010.14.

Yonggang Zhang, Ren Witte, Juergen Rilling, and Volker Haarslev. An ontology-based ap-
proach for traceability recovery. In 3rd International Workshop on Metamodels, Schemas,
Grammars, and Ontologies for Reverse Engineering (ATEM 2006). Jean-Marie Favre
Dragan Gasevic Ralf Lmmel Andreas Winter, 2006.

http://www.eclipse.org/emf/compare/
http://www.ercim.org/publication/Ercim_News/enw58/EN58.pdf
http://www.volere.co.uk/tools.htm
http://www.volere.co.uk/tools.htm

	Introduction
	Related Work
	RECAA Components
	Case Studies
	Conclusion
	Requirements Specifications

