Applying Process Simulation to Software Project Scheduling

Frank Padberg
Fakultat fiir Informatik
Universitat Karlsruhe, Germany
padberg@ira.uka.de

1. Introduction

Good project scheduling is an essential yet extremely
hard task in software management practice. The time
needed to complete a development activity usually is
known only roughly. Often, the completion of an ac-
tivity is delayed due to unanticipated rework.

In this paper, we show how process simulation can
be utilized in order to support software managers in
finding good schedules for their projects. We present a
novel, discrete simulation model for software projects
which explicitly takes a scheduling policy as input.
The model represents task assignments, staff skill lev-
els, component coupling, and rework caused by design
changes. The simulation model is implemented in the
ModL language of the general-purpose graphical simu-
lation tool EXTEND [4].

As a first application of our project simulation
model, we systematically study the performance of var-
ious so-called list policies for a sample project. The
simulations quickly show what impact each list policy
has on the expected progress and completion time of
the sample project. We also provide a detailed analy-
sis of the task assignments which actually occur in the
simulations. The analysis clearly identifies the reasons
why the list policies perform as observed.

2. Scheduling Model

The simulation model is an implementation of the
stochastic scheduling model for software projects which
we have presented earlier [7, 9].

2.1. Project dynamics

In the model, the software product is developed by
several teams. The teams work in parallel. Based on
some early high-level design, the software is divided
into components. At any time during the project, each
team works on at most one component, and, vice versa,
each component is being worked on by at most one

team. It is not required that there are enough teams to
work simultaneously on all uncompleted components.
The assignment of the components to the teams may
change during the project.

The teams do not work independently. From time
to time some team might detect a problem with the
software’s high-level design. To eliminate the problem,
the high-level design gets revised. Since the compo-
nents are coupled, for example, through common in-
terfaces, such a design change is likely to affect more
than one component and team. This is the way how
feedback between the different activities in the project
occurs in the scheduling model: all components which
are affected by the design change will have to be re-
worked, not only the component where the problem
was detected.

2.2. Scheduling actions

In the model, a software project advances through a
sequence of phases. By definition, a phase ends when
staff becomes available or when the software’s high-
level design changes. In particular, staff becomes avail-
able when some team completes its component. Note
that our definition of phases is different from classical
waterfall models.

Scheduling actions take place only at the end of the
phases. Possible scheduling actions are: assigning a
component to a team; starting a team; stopping a
team. Scheduling at arbitrary points in (discrete) time
is not modeled. The rationale behind this restriction
is that is does not make sense to re-schedule a project
as long as nothing unusual happens. At the end of a
phase though, staff is available again for allocation, or
re-scheduling the project might be appropriate because
of some design change.

2.3. Strategies

The decision which team to allocate to which com-
ponent at the end of a phase is made by the manager’s
scheduling strategy. The strategy specifies for each

possible state of the project which scheduling action
to take. The state of the project includes the develop-
ment time spent on each component so far, the project
duration up to this point, the amount of rework left for
each component, and the current task assignment.

There is a huge number of possible different strate-
gies that can be applied to a project. The simulation
model makes no assumptions about the strategy, ex-
cept that the information used by the strategy when
choosing an action must be contained in the project
state and the model input data. The strategy is imple-
mented as a separate block in the simulation model;
thus, the strategy can be easily replaced.

2.4. Probabilities

The scheduling model is probabilistic: events will
occur only with a certain probability at a particular
point in time. In particular, the following events are
subject to chance: the point in time at which some
component is completed; the points in time at which
design changes occur; the set of components which
must be reworked due to a design change; the amount
of rework caused by a design change.

2.5. Input data

In order to compute the probabilities in the schedul-
ing model, respectively, simulate a project path, the
model requires the following input data: the base prob-
abilities and the dependency degrees.

The base probabilities are a measure for the pace
at which the teams have made progress in previous
projects. For each team and component, there is a
set of base probabilities which specify how likely it is
that the team will need a prescribed amount of time to
finish the component, report a high-level design prob-
lem, or finish reworking the component after a design
change. The base probabilities must be computed from
empirical data collected during previous projects.

The dependency degrees are a probabilistic measure
for the strength of the coupling between the compo-
nents. The stronger the coupling is the more likely it
is that high-level design problems which originate in
one component will propagate to other components,
leading to rework. The dependency degrees must be
computed from the high-level design of the software.

3. Sample Project

As an example, we use the simulation model to study
the performance of a well-known class of scheduling
strategies, list policies, for a small sample project.

3.1. Architecture

The sample project consists of four components and
two teams. The teams work in parallel. The complex-
ity of the components and the productivity of the teams
are reflected in the probability distributions which are
used as input for the simulations. The base probabili-
ties are chosen such that: team Two has a lower pro-
ductivity than team One; components A and B have a
similar complexity; components C and D require much
more effort than components A and B. The dependency
degrees are chosen to reflect that components C and D
are strongly coupled. Please refer to [9] for details on
the input data.

3.2. List policies

A list policy uses a fixed priority list for the compo-
nents to prescribe an order in which the components
must be developed. When a team finishes its current
component, it is allocated to the next unprocessed com-
ponent in the list. A list policy keeps all teams busy
all the time. As opposed to policies which prescribe for
each component which team exactly must work on this
component, a list policy does not have to wait for ”the
right” team to become available before development of
the next component can start.

In a probabilistic setting, the task completion times
are not known in advance. Thus, a priority list does
not completely pre-determine to which team a partic-
ular component will actually get assigned; the actual
schedule (task assignments and their timing) depends
on the order in which the teams finish their tasks, which
is subject to chance.

Since the sample project has four components, there
are fac(4) = 24 different list policies for the sample
project. For example, the list policy CDAB initially
assigns component C to team One and component D
to team Two. Whichever team finishes its task first
will work on component A. Finally, the next team to
finish will work on component B.

4. Simulation Results

Even for the small sample project it is not obvious
which list policy a manager should prefer because of
the probabilistic nature of the development process.
To find the best list policy for the sample project, we
run 1000 full project simulations for each of the 24
possible list policies and compare the results.

4.1. List policy performance

For each simulation, we observe the project comple-
tion time as a measure for the performance of the pol-

icy. TABLE 1 gives the mean of the project completion
times for each list policy.

Table 1. Mean simulated project completion time
for the sample project with different list policies.

[policy | mean o | [policy | mean o |
ABCD 31.5 6.1 CABD 31.3 7.5
ABDC 28.4 5.4 CADB 30.3 5.8
ACBD 32.2 6.3 CBAD 31.9 7.5
ACDB 27.4 4.9 CBDA 30.4 6.0
ADBC 28.7 5.5 CDAB 28.3 5.2
ADCB 28.4 4.9 CDBA 28.1 5.1
BACD 30.1 6.0 DABC 30.8 7.0
BADC 28.2 5.4 DACB 27.1 5.0
BCAD 31.8 6.2 DBAC 30.7 7.1
BCDA 27.4 5.0 DBCA 27.6 5.0
BDAC 29.0 5.5 DCAB 27.6 4.8
BDCA 27.8 5.0 DCBA 26.9 4.5

There is a considerable performance gap between the
best policies, which have a mean project completion
time of 27 time units, and the worst policies, which
have a mean of over 31 time units. In particular, the
mean for the best policy DCBA is about 16 percent
shorter than for the worst policy ACBD.

For all interesting cases, a difference in the mean
project completion time of 0.4 or larger is statistically
significant (two-sample Wilcoxon test). Most impor-
tantly, the performance advantage of the best policy
DCBA over the other list policies is highly significant.

From the 1000 simulated project completion times
for each list policy, we can compute a histogram for the
project completion time. FIGURES 1 AND 2 show the
histogram for the worst policy ACBD, respectively, the
best policy DCBA.

Figure 1. Histogram of simulated project completion
times for policy ACBD.

0.08F

0.06

0.04}

0.02}

0.0

The histograms make the difference in performance
between the two list policies apparent. From the histo-
grams, a manager can also compute the risk that a
given deadline will be missed. For example, with policy

Figure 2. Histogram of simulated project completion
times for policy DCBA.

0.08] DCBA i

0.06 i

0.04} 1

0.02} i

DCBA the risk of not completing the project within 30
time units equals 22 percent; with policy ACBD, this
risk is much higher, namely, 57 percent.

4.2. Actual task assignments

To gain some understanding why a particular list
policy shows the performance observed in the simula-
tions, the task assignments which actually occur in the
simulated projects are of central importance. Recall
that the actual schedule in a simulation depends on
the order in which the teams finish their tasks, which
is subject to chance. Therefore, we observe for each
simulation and component which team was allocated
to that component.

To specify an assignment for the sample project, we
use a 4-digit notation. The first digit is the number
of the team which was allocated to component A, the
second digit is the number of the team which was al-
located to component B, and so on. For example, to
specify that team One was allocated to components B
and D, while team Two was allocated to components
A and C, we use the notation 2121.

TABLE 2 shows for the list policies ACBD, CDAB,
and DCBA the actual task assignments and the rel-
ative frequency with which the assignments have oc-
cured among the 1000 simulations for that list policy.
Only assignments with a frequency of more than 10
percent are listed. For each policy and assignment,
TABLE 2 also shows the mean simulated project com-
pletion time corresponding to that assignment.

For example, list policy CDAB results in the assign-
ment 1112 in 56 percent of the simulated projects,
with a mean project completion time of 27.2 units.
In 43 percent of the simulations, policy CDAB results
in the assignment 1212, with a longer mean project
completion time of 29.8 units. The performance of
policy CDAB is a mixture of the peformance for the
two assignments 1112 and 1212.

Table 2. Actual assignments, mean net component development times, and mean component rework times for the

sample project with selected list policies.

project time mean net develop time mean rework time
policy assign freq mean o A B C D A B C D
ACBD 1121 0.71 31.2 6.2 58 6.5 14 122 | 09 09 49 52
1122 0.29 34.7 6.1 6.4 7.1 12 17.1 | 0.6 1.1 27 43
CDAB 1112 0.56 27.2 4.9 59 6.6 9.8 175 | 0.6 1 36 5.2
1212 0.43 29.8 5.2 6.5 9.2 10.7 16.1 1 0.8 45 4
DCBA 1221 0.36 26.8 4.5 6.3 9.1 124 126 | 0.7 1 35 55
2121 0.58 26.9 4.6 83 6.9 13.8 114 | 0.7 0.8 4 3.7

Figure 3. Average schedule for policy CDAB with
assignment 1112.

One | C ‘ A B
13.4 6.5 7.0
Two | D
22.7

4.3. Average schedules

For a given list policy, each actual assignment corres-
ponds to a typical path of the project, or scenario. A
project scenario can be visualized using an ”average
schedule,” that is, a Gantt chart computed from the
mean net development times and mean rework times
for each component. These numbers are computed
from the simulation traces for the policy and are listed
in TABLE 2 for the sample project and the list policies
ACBD, CDAB, and DCBA.

For example, when applying list policy CDAB, the
sample project can proceed in two different ways. At
the project start, component C is assigned to team
One and component D is assigned to team Two. Since
team One is faster than team Two and component C is
smaller than component D, in both scenarios compo-
nent C is completed faster than component D. Thus,
component A (which is next on the list) gets assigned
to team One.

The two scenarios for policy CDAB differ in the next
scheduling action, as is shown by the average schedules
in FIGURES 3 AND 4. The numbers below the bars
are the mean development times for the components,
including all rework. The shaded area of each bar is
proportional to the rework spent on the component.

In FIGURE 3, the mean development time includ-
ing rework for component C (9.8 + 3.6 = 13.4) plus

Figure 4. Average schedule for policy CDAB with
assignment 1212.

One C A

15.2 7.5

Two D B

20.1 10.0

component A (5.9 + 0.6 = 6.5) is shorter than for
component D (17.5 + 5.2 = 22.7). Therefore, com-
ponent B also gets assigned to the fast team One.
In FIGURE 4, component D is completed earlier than
component A. Thus, component B gets assigned to the
slow team Two, and the project takes longer.

4.4. Good and bad policies

The best policy DCBA in many simulated projects
leads to the assignment 2121, see TABLE 2. With
this assignment, the fast team works on the largest
component and the slow team on the second largest
component; furthermore, each team works on one of
the remaining small components. Such an assignment
is called balanced, because the size of the components is
balanced by the productivity of the teams. The other
balanced assignment for the sample project is 1221.
Balanced assignments are favorable, as can also be seen
from the average schedules for other list policies (not
listed in the table).

An assignment, where each team works on one large
and one small component, but where the slow team
works on the largest component, in general is much less
preferable. Also, policies which assign both large com-
ponents to the fast team in general are a bad choice,
as are policies which assign the largest component and
both small components to the same team.

An alternative to a balanced assignment is revealed
by policy CDAB. In about half of the projects, CDAB
leads to the assignment 1112, see FIGURE 3. With this
assignment, the slow team works on the largest compo-
nent, but all the remaining components are assigned to
the fast team. Policy CDAB does not rank as high as
the best policy DCBA, though, since in the other half
of the projects it leads to the less favorable assignment
1212.

5. Conclusions

In this paper, we have presented a stochastic
scheduling model for software projects and its imple-
mentation as a EXTEND simulation model. Using a
small project and the class of list policies as example,
we have shown how to use simulation for analyzing
the performance of scheduling strategies for software
projects.

A stochastic model is more realistic for software
projects than a deterministic model. In our model,
the development time for some software component is
the sum of the net development time and all the rework
time for that component. The net development time
and the amount of rework are subject to chance. The
rework in a project also depends on the strength of the
coupling between the components.

In a stochastic setting, the duration and final sched-
ule of the project cannot be forecast exactly; we must
rely on probability distributions and expected values
instead. As a consequence, the best we can achieve is
a strategy which minimizes the expected project dura-
tion. We have used the concept of average schedule as
a tool for visualizing and analyzing the performance of
a scheduling strategy in a stochastic setting.

Process simulation is an established technique for
evaluating the impact of process changes. A stochastic
simulation model for part of the software process which
is related to our work is presented in [10]. That model
uses statecharts to describe the code error detection
and correction loop in the software process. The dura-
tion of the activities in the loop is stochastic and de-
pends on number of residual errors in the code, which
decreases with each iteration through the loop. Al-
though this model does not aim at scheduling, it is
similar to our model by showing individual activities
and allowing feedback in the process to have an im-
pact on the stochastic activity durations.

Some system dynamics models also address the
problem of project staffing [1, 2]. Yet, by modeling in-
dividual teams and components as well as explicit task
assignments, our model is much more fine-grained than
system dynamics models, which operate at the level of

developer pools, task pools, and overall schedule.

The particular way in which our model describes
feedback between activities is novel not only in soft-
ware engineering, but also in operations research
[8, 11]. Closest to the dynamics of software projects are
stochastic project networks [5, 6]. A stochastic project
network can model parallel execution of activities and
repeated execution of activities. The duration of an ac-
tivity must not depend on any other activity which runs
at the same time, nor on the duration of an activity
which was performed earlier. In other words, different
threads of execution are stochastically independent, as
are different activities belonging to the same thread.
These assumptions do not hold for software projects.

Our stochastic scheduling model is not limited to
list policies. The scheduling strategy is implemented
as a separate block in our EXTEND simulation model.
Therefore, the list policies used in this paper can be
easily replaced by other, more dynamic strategies. The
performance of the dynamic strategies then can be an-
alyzed using the same simulation techniques as we have
used for list policies. This is work in progress.

References

[1] Abdel-Hamid, Madnick: Software Project Dynamics.
Prentice Hall, 1991

[2] Collofello, Houston, e.a.: ”A System Dynamics Simulator
for Staffing Policies Decision Support” , Proceedings of the
Annual Hawaii International Conference on System Sciences
31 (1998) 103-111

[3] El Emam, Madhavji: Elements of Software Process
Assessment and Improvement. IEEE Computer Society
Press 1999

[4] EXTEND, http://www.imaginethatinc.com/

[5] Neumann: Stochastic Project Networks. Lecture Notes in
Economics and Mathematical Systems 344, Springer 1990

[6] Neumann: ”Scheduling of Projects with Stochastic Evol-
ution Structure”, see [11] 309-332

[7] Padberg: ”Scheduling Software Projects to Minimize
the Development Time and Cost with a Given Staff”,
Proceedings of the Asia-Pacific Software Engineering Con-
ference APSEC 8 (2001) 187-194

[8] Padberg: ” A Stochastic Scheduling Model for Software
Projects”, Dagstuhl Seminar on Scheduling in Computer
and Manufacturing Systems, June 2002, Dagstuhl Report
No. 343

[9] Padberg: ”Using Process Simulation to Compare Schedul-
ing Strategies for Software Projects”, Proceedings of the
Asia-Pacific Software Engineering Conference APSEC 9
(2002) 581-590

[10] Raffo, Kellner: ”Modeling Software Processes Quan-
titatively and Evaluating the Performance of Process
Alternatives”, see [3] 297-341

[11] Weglarz: Project Scheduling. Recent Models, Algorithms,
and Applications. Kluwer, 1999

