Analyzing the Cost and Benefit

of Pair Programming

Frank Padberg
Fakultat fiir Informatik
Universitat Karlsruhe, Germany
padberg@ira.uka.de

Abstract. We use a combination of metrics to un-
derstand, model, and evaluate the impact of Pair Pro-
gramming on software development. Pair Program-
ming is a core technique in the hot process paradigm
of Extreme Programming. At the expense of increased
personnel cost, Pair Programming aims at increasing
both the team productivity and the code quality as com-
pared to conventional development. In order to evalu-
ate Pair Programming, we use metrics from three dif-
ferent categories: process metrics such as the pair speed
advantage of Pair Programming; product metrics such
as the module breakdown structure of the software; and
project context metrics such as the market pressure.
The pair speed advantage is a metric tailored to Pair
Programming and measures how much faster a pair
of programmers completes programming tasks as com-
pared to a single developer. We integrate the various
metrics using an economic model for the business value
of a development project. The model is based on the
standard concept of net present value. If the market
pressure is strong, the faster time to market of Pair
Programming can balance the increased personnel cost.
For a realistic sample project, we analyze the complex
interplay between the various metrics integrated in our
model. We study for which combinations of the mar-
ket pressure and pair speed advantage the value of the
Pair Programming project exceeds the value of the cor-
responding conventional project. When time to market
is the decisive factor and programmer pairs are much
faster than single developers, Pair Programming can
increase the value of a project, but there also are real-
istic scenarios where the opposite is true. Such results
clearly show that we must consider metrics from differ-
ent categories in combination to assess the cost-benefit
relation of Pair Programming.

Keywords. Pair Programming, Net Present Value,
Cost-Benefit Analysis, Extreme Programming.

Matthias M. Miiller
Fakultat fur Informatik
Universitat Karlsruhe, Germany
muellerm@ira.uka.de

1. Introduction

Pair Programming is a core technique in Extreme
Programming [1, 2]. With Pair Programming, all tasks
must be performed by pairs of programmers using only
one display, keyboard, and mouse. Proponents of Pair
Programming claim that their development paradigm
brings strong advantages over conventional processes,
including higher team productivity and improved soft-
ware quality.

Pair Programming is a technique which aims at
making software development more efficient and life
easier for the practicing software engineer. In such a
case, software engineering research must provide the
metrics and models which are necessary to analyze
both the benefit and cost of applying the technique.
For industrial projects, the decision whether to use the
technique for the next project can then be supported
by a cost-benefit analysis which builds upon the results
of research.

In view of the hype about Extreme Programming
and other lightweight process paradigms, Pair Pro-
gramming clearly requires a cost-benefit analysis which
is based on objective measures from economics. Soft-
ware can be and has been written successfully with-
out applying Pair Programming. Pair Programming
involves a classical economic tradeoff. When program-
ming in pairs, the personnel cost basically is doubled
— that’s the cost. On the other hand, first empirical
evidence [4, 10, 14] indicates that:

e A pair of programmers has a higher development
speed than a single programmer. This is called the
pair speed advantage.

e The code produced by a pair of programmers has a
reduced defect density as compared to the code of
a single programmer. This is called the pair defect
advantage.

The pair speed and defect advantage are the potential
benefits of Pair Programming. The question is whether
the extra cost of Pair Programming is balanced by the
potential benefits.

The potential speed and defect advantage of Pair
Programming are usually explained as follows. Pair
programming allows developers to share their ideas im-
mediately. This allows to get down to solutions more
quickly and also helps to eliminate defects early. In ad-
dition, Pair Programming leads to an ongoing review
of the program code by the second developer, which
reduces the defect density of the code.

In this paper, we construct a mathematical model
for the economic value of software development
projects. The model can be adapted to both con-
ventional projects and Pair Programming projects by
suitably choosing the model parameters. The model
focuses on development cost, not on operation cost.
We apply the model to a hypothetical, but realistic
software project in two different scenarios: the first
scenario corresponds to conventional development, the
second scenario uses Pair Programming. This way we
can compare the economics of Pair Programming with
the economics of conventional development. We give
a comprehensive and detailed analysis of how efficient
Pair Programming must be in order to break even with
the conventional process.

Our economic project model is based on the con-
cept of net present value. With net present value, the
returns of a project are discounted back at a certain
rate. The discount rate models the fact that returns
which are realized sooner are more valuable than re-
turns which are realized later. The Extreme Program-
ming community considers their special techniques to
be most beneficial if the requirements are unstable and
time to market is a decisive factor. Therefore, we use
the discount rate in the formula for a project’s net
present value to explicitly take into account market
pressure.

In our study, we systematically vary model parame-
ters for the sample project to see how sensitive the cost-
benefit relation of Pair Programming is to changes in
the project setting. As expected, we find that the cost-
benefit relation depends on how large the pair speed
and defect advantage actually are.

We also find that in many cases the pair and defect
advantage do not completely determine the cost-benefit
relation of Pair Programming: the market pressure, as
modelled by the discount rate, plays a decisive role.
For many reasonable values of the pair speed and de-
fect advantage, Pair Programming only pays off under
strong market pressure. With strong market pressure,

the increased personnel cost is balanced by a gain in
market share resulting from a shorter time to market.
We use the concept of break-cven discount rate to an-
alyze how strong the market pressure must be for Pair
Programming to break even when the other model pa-
rameters are kept fixed. The break-even discount rate
turns out to be a useful tool for this kind of analysis.

The results of our study have direct implications for
software management practice. Our most important
findings are as follows:

e Qur study indicates that a manager should con-
sider using Pair Programming given that the mar-
ket pressure is very strong and his programmers are
much faster when working in pairs as compared to
working alone.

e On the other hand, if the size of the workforce
does not allow to run the project with enough pairs
to exploit the degree of parallelism possible in the
project, a manager should consider adding to the
workforce of single programmers instead of using
Pair Programming.

As becomes clear from the preceding discussion, it
is not sufficient to study the pair speed and defect
advantage alone in order to understand, model, and
evaluate the impact of Pair Programming on software
development: we need a combination of metrics from
different categories to get the full picture.

Besides process metrics such as the pair speed ad-
vantage, we must take into account product metrics,
such as the module breakdown structure of the soft-
ware. The module breakdown structure determines the
maximum number of tasks that can be worked on at
the same time in the project, which in turn is a limit
for adding developers in a conventional project, respec-
tively, pairs in a Pair Programming project. If the task
limit has been reached, adding developers to a conven-
tional project in order to form pairs still can be bene-
ficial since this might speed up the project due to the
pair speed advantage. Note that in this study we treat
programmer pairs as entities; hence, the communica-
tion overhead in a project which uses Pair Program-
ming is assumed to increase with the number of pairs
and not with the number of individuals.

In addition, when evaluating Pair Programming we
must take into account project context metrics, such as
the market pressure. Adding developers to form pro-
grammer pairs only pays off when the market pressure
is high. Finally, the various metrics are integrated by
our economic model for the business value of a project.
The model not only allows to study the cost-benefit
relation of Pair Programming, but also the relative
strength of the impact of the metrics on the result.

The interplay between the metrics turns out to be in-
teresting and fairly complex.

We have presented and discussed an earlier version
of our model at a workshop [9]. The comprehensive
break-even analysis for the market pressure which we
present here is completely new.

2. Related Work

We are aware of only two empirical studies which
provide some quantitative evidence for the benefits of
Pair Programming. Both studies indicate that the pair
speed advantage (one programmer pair versus a single
developer) actually does exist, but the authors come
to different numbers. Nosek [10] reports about a study
with software professionals where the pairs on average
had a 29 percent shorter time to completion than the
single programmers. Williams [4, 14] reports about
a study with undergraduate students where the pairs
required between 20 and 40 percent less time for com-
pleting their task than single developers. Williams [4]
also reports that pair programming led to 15 percent
fewer defects in the final product as compared to sin-
gle developers. An early paper by Bisant and Lyle [3]
already indicated that working in pairs during a re-
view can save total development effort despite having
doubled personnel cost during the review.

The results of our previous workshop paper [9] have
been independently replicated and confirmed by Smith
and Menzies [11]. Smith and Menzies are motivated
by the question whether lightweight methods should
be adopted by NASA, or not.

Williams and Erdogmus [13] present a different
study about the economic feasibility of pair program-
ming which is also based on the concept of net present
value. There are a number of major differences be-
tween their work and ours, though. In the study of
Williams and Erdogmus, Pair Programming is run un-
der a software factory model where code is not only de-
veloped, but also delivered and paid for in very small
increments. This assumption is unrealistic even for Ex-
treme Programming projects, which typically are small
scale. Williams and Erdogmus adopt the most opti-
mistic figures about the speed and defect advantage of
pairs reported earlier by Williams. In particular, pairs
are assumed to work almost twice as fast as individ-
uals. No sensitivity analysis with respect to the pair
speed and defect advantage is provided. As opposed
to our study, the break-even analysis of Williams and
Erdogmus focuses on unit value, that is, the amount
of dollars earned per line of code, instead of market
pressure.

Erdogmus and Williams conclude that there is an
overall economic advantage of 40 percent for pairs
over single programmers. Due to their modelling ap-
proach, this figure is independent of the actual discount
rate, product size, project deadline, and labor cost. We
doubt that such a global figure is valuable as a basis
for management decisions in a given project setting. In
addition, their result depends on their particular choice
of the pair speed and defect advantage.

In contrast, we use a more realistic project model.
Our sensitivity analysis shows how strongly the eco-
nomic value of the Pair Programming project depends
on the pair speed advantage and pair defect advantage.
Our study also makes clear that even when adopting
the most optimistic figures reported in the literature
to date about the speed and defect advantage of pairs,
market pressure must be rather strong in order for Pair
Programming to break even.

3. Input Metrics

In this section, we describe in detail the different
metrics that we use as input for our economic project
model. Some of the metrics are tailored to Pair Pro-
gramming, such as the pair speed advantage, others
come from software engineering economics and stan-
dard economics, such as the product size and the dis-
count rate. The connection between the different met-
rics will be made clear in the next section.

3.1. Process Metrics

We use the following process metrics for the conven-
tional process and for Pair Programming:

e the productivity of a single developer;
e the pair speed advantage;
o the defect density of code;
e the pair defect advantage;

e the defect removal time.

The average Productivity of a single developer is
measured in lines of code per month. Figures in the
literature for the average productivity range between
250 and 550 lines of code per month, including de-
sign, coding, and unit testing, but excluding regression
testing [12].

A central claim of Pair Programming is that a pair
of programmers has a much higher development speed
than a single programmer. To measure the difference
in development speed, we use a process metric which is

tailored to Pair Programming: the pair speed advan-
tage. The PairSpeedAdvantage is defined as the ratio
between the time required by a single developer and
the time required by a pair of programmers for some
given task.

For example, Nosek [10] reports that programmer
pairs on average require a 29 percent shorter time to
completion for their tasks than single programmers.
For this data, we have

100
PairSpeedAdvantage = —— = 1.4.

100 — 29

From the few existing empirical studies we know that
the pair speed advantage can reasonably be expected
to range between 1.3 and 1.8 [4, 10, 14].

A programmer typically inserts 100 defects per
thousand lines of code [8]. A good conventional soft-
ware process eliminates up to 70 percent of these
defects [8]. Therefore, the code produced with conven-
tional development is assumed to have an average de-
fect density of

100 30

x —— = 0.03

DefectDensity = 1000 100

defects per line of code.

Pair Programming claims to lead to fewer defects in
the code as compared to conventional development. To
measure the difference in code quality, we use another
process metric which is tailored to Pair Programming:
the pair defect advantage. The PairDefectAdvantage
is defined as 100 percent minus the ratio between the
defect density of the Pair Programming process and the
defect density of the conventional process. The existing
empirical studies indicate that the PairDefectAdvantage
ranges about 15 percent; that is, Pair Programming
on average leaves 15 percent fewer defects in the code
than conventional development [4, 14].

The time needed to remove a defect in quality as-
surance is denoted as DefectRemovalTime. Figures in
the literature for the defect removal time vary between
5 and 20 hours per defect [7, §].

3.2. Product Metrics

We use the following product metrics of the software
to be developed as input:

e the product size;

e the module breakdown structure of the software.

The ProductSize is measured in lines of code. The
product size is the same for conventional development
and Pair Programming.

The module breakdown structure of the software de-
termines the maximum number of tasks that can rea-
sonably be worked on simultaneously in the project.
Splitting tasks any further doesn’t make sense due to
the size and structure of the software. The maximum
number of tasks is denoted by TaskLimit. The max-
imum number of tasks is an upper limit for adding
developers to a conventional project. Instead of mea-
suring the module breakdown structure in detail, it
suffices for our purposes to directly use the metric
TaskLimit as input to our economic model.

3.3. Project Context Metrics

The business value of a software project depends on
a number of factors from the economic context of the
project. We use the following project context metrics
as input:

e the discount rate;

e the asset value;

e the number of single developers;
e the number of programmer pairs;
e the developer salary;

e the project leader salary;

e the monthly working hours.

We use the DiscountRate as a measure for the market
pressure, see the next section. In order to model strong
market pressure, we use discount rates between 25 and
100 percent a year. Such a high discount rate means
that time to market is a decisive factor for the business
value of the project.

The AssetValue is the amount of dollars returned by
the customer once the software is complete and opera-
tional.

The number of single developers in the conventional
project is denoted by NumOfDevelopers. The number of
programmer pairs in the Pair Programming project is
denoted by NumOfPairs. For some computations, we’ll
assume that the number of pairs equals half the num-
ber of single developers; for other computations, we’ll
assume that workforce has been added to form addi-
tional programmer pairs.

We’ll assume that the DeveloperSalary is 50,000
dollars per year and the project LeaderSalary 60,000
dollars per year. A reasonable figure for the monthly
working hours WorkTime of a developer is 135 hours.

4. Economic Model

In this section, we describe in detail our model for
the economic value of a software development project.
The model can be applied to both conventional projects
and Pair Programming projects by suitably choosing
the values of the model parameters. The model takes
the metrics which we have described in the preceding
section as input.

4.1. Net Present Value

Our model for the economic value of a development
project is based on the concept of net present value.
The net present value of a project is defined as [5, 6]

AssetValue
NPV = — DevCost.

(1 + DiscountRate) DevTime

With net present value, the dollar returns of a
project (AssetValue) are discounted at a certain rate,
the DiscountRate. The rationale behind discounting is
that an investment worth one dollar today is worth

(1 4+ DiscountRate)”

dollars in T periods. With this rationale, the present
value of the project must be calculated by discounting
back the asset value from the time of project comple-
tion (DevTime) to time zero, and then deducing the
development cost (DevCost). A project has business
value only if its net present value is positive. Other-
wise, the project leads to a financial loss.

Time to market can be the decisive factor for the
success of a project. For such a project, a delay of the
project’s completion leads to a loss of market share,
which drastically decreases the business value of the
whole project. To take strong market pressure into ac-
count, it is common in economics to choose high values
for the discount rate in the formula for the net present
value.

Factors such as the development time, development
cost, and net present value of the project are some sort
of ”output” metrics which are derived from the input
metrics described in the preceding section.

4.2. Development Time

For conventional projects, the development time
(measured in years) is calculated as

. 1 ProductSize
DevTimec = — X
12 Productivity x NumOfDevelopers

+ QATime.

Since the Productivity is measured in lines of code per
month instead of per year, we have to divide by 12 to
get the unit right.

The time needed for additional quality assurance
(QATime) is special: it’s the time needed to compen-
sate the defect advantage which Pair Programming is
assumed to have over the conventional process. The
quality assurance time is computed in the next subsec-
tion.

For a project which uses Pair Programming, no
additional time for quality assurance is required
(QATime = 0), but the fact that developers work in
pairs must be taken into account:

. 1 ProductSize
DevTimepp = —= X
12 Productivity x NumOfPairs

1

PairSpeedAdvantage .

In particular, the pair speed advantage enters the for-
mula for the development time of the Pair Program-
ming project.

In our model, we make the simplifying assumption
that the productivity of the developers, respectively,
programmer pairs, adds up. We do not take into ac-
count any increase in the team communication over-
head as the team size increases.

4.3. Quality Assurance
Using conventional development, there are

DefectsLeft = ProductSize x DefectDensity

defects left in the software after coding. Pair Program-
ming claims to produce code which has a reduced defect
density. The difference in code quality is measured by
the pair defect advantage. The conventional project
must make up for the quality difference of

DefectDifference = DefectsLeft x PairDefectAdvantage

defects in a separate quality assurance phase before
entering the market. With Pair Programming, no sep-
arate quality assurance phase is required.

The length of the separate quality assurance phase
for the conventional process depends on the defect

difference and the average time needed to remove a
single defect:

) 1 DefectRemovalTime
QATime = — X
12 WorkTime x NumOfDevelopers

x DefectDifference.

4.4. Development Cost

For simplicity, our model assumes that the develop-
ment cost of a project only consists of the salaries for
the developers and the project leader. The model does
not take into account project startup cost, nor product
installation cost.

For the cost of the conventional project, we get:

DevCostc = DevTimec
X (NumOfDevelopers x DeveloperSalary

+ LeaderSalary).
For the Pair Programming project, we get:

DevCostpp = DevTimepp
X (2 x NumOfPairs x DeveloperSalary

+ LeaderSalary).
5. Numerical Results

In this section, we compute the net present value
of a hypothetical, but realistic sample project for vari-
ous project settings. We distinguish between two main
scenarios: In the first scenario, the project is run us-
ing a conventional process. In the second scenario,
the project is run using Pair Programming. For dif-
ferent values of the pair speed advantage, pair de-
fect advantage, and discount rate we compare the net
present value NPVpp of the Pair Programming project
against the net present value NPV¢ of the conven-
tional project.

5.1. Sample Project

We keep some model parameters fixed for the sample
project, see TABLE 1.

To get some impression how large the sample project
actually is, assume that we have eight developers who
follow a conventional process. In this case, the for-
mula given in the preceding section for the development

Table 1. Fixed model parameters for sample
project.

parameter value
350 LOC/ month

Productivity

DefectDensity 0.03 defects/LOC
DefectRemovalTime | 10 hours/ defect
ProductSize 16,800 LOC
TaskLimit 8 tasks
AssetValue 1,000,000 dollars

50,000 dollars/ year
60,000 dollars/ year
135 hours/ month

DeveloperSalary
LeaderSalary
WorkTime

time of conventional projects tells us that it would take
about half a year to finish the project. In addition, if we
assume a moderate annual discount rate of 10 percent,
the formula for the net present value of conventional
projects yields

NPVc = 723,463 dollars.

5.2. Strong Market Pressure

Suppose that the sample project is subject to strong
market pressure. Also assume that there is a fairly
large pool of developers available who could work on
the project. Since the number of tasks which can rea-
sonably be worked on simultaneously is bounded by
eight (TaskLimit = 8) for this project, the manager
has two options:

e He could run the project with up to eight single
developers.

e He could run the project with up to sixteen devel-
opers who work in pairs.

Clearly, with Pair Programming the personnel cost
of the project basically would double. On the other
hand, granted that pairs have a speed advantage
over single developers, the Pair Programming project
should deliver faster than the conventional project.
Under strong market pressure, earlier time to market
will result in a gain in market share. Thus, the in-
creased personnel cost of Pair Programming should be
more than covered for by the gain in market share.

To make a decision which way the project should
go, we apply our economic model assuming a high an-
nual discount rate of 75 percent, which corresponds
to strong market pressure. We then compare the con-
ventional project with the maximum workforce of eight
single developers against Pair Programming with the

maximum workforce of eight pairs, using different val-
ues of the pair speed advantage PSA and the pair de-
fect advantage PDA, see TABLE 2.

Table 2. Net present value of sample project
under strong market pressure.

PSA PDA | NPV NPVpp
14 5% | 508803 511,700
14 25% | 441,177 511,700
18 5% | 508803 617,141
18 25% | 441,177 617,141

TABLE 2 leads to the following conclusions. Given
that the speed advantage of pairs is significant — say,
equal to Nosek’s value of 1.4 — Pair Programming
outperforms the conventional project if the pair de-
fect advantage is not too small. If the pair speed
advantage is large — say, equal to Williams’ value of
1.8 — Pair Programming outperforms the conventional
project even when the pair defect advantage is small.

As a management guideline, a manager should con-
sider using Pair Programming if the market pressure
is really strong and his programmers are much faster
when working in pairs as compared to working alone,
given that there is a sufficiently large workforce avail-
able. For high discount rates, the speed and defect
advantage of pairs come into full play.

5.3. Limited Workforce

Suppose that the workforce available for the project
is strictly limited to eight developers. The manager
then has two options:

¢ He could run the project with eight single program-
mers.

e He could run the project with four programmer
pairs.

Even when assuming that pairs have a considerable
speed advantage over single developers, it is doubtful
whether the speed advantage suffices to compensate
the fact that four pairs do not exploit the maximum
degree of parallelism possible in the project.

To study the setting with a limited workforce, we
apply our economic model assuming a moderate an-
nual discount rate of 25 percent. We then compare
the conventional project with eight single developers
against Pair Programming with four pairs, using dif-
ferent values of the pair speed advantage PSA and the
pair defect advantage PDA, see TABLE 3.

Table 3. Net present value of sample project
with limited workforce.

PSA PDA [NPV(NPVpp
14 15% | 626,026 524,093
18 15% | 626,026 627,851
18 25% | 600,509 627,851

TABLE 3 shows that for reasonable values of the
pair speed advantage and pair defect advantage the
net present value of the conventional project will exceed
the net present value of the Pair Programming project.
Recall that a value for the pair speed advantage of 1.8
means that pairs work almost twice as fast as single
developers, and we have only very limited empirical
evidence to date in favor of such a large advantage.

The picture does not change much when the mar-
ket pressure is strong. Even for a discount rate of 75
percent, a large pair speed advantage of 1.8, and a
significant pair defect advantage of 15 percent, the
Pair Programming project just breaks even with the
conventional project given that the workforce is lim-
ited to eight developers.

As a management guideline, a manager should add
to the workforce of single programmers to maximize
the degree of parallelism in the project instead of using
Pair Programming if the size of the workforce does not
allow to run the project with the maximum number of
pairs. This holds in particular if the market pressure
is only moderate. In such a setting, the speed and
defect advantage of pairs do not compensate the lack
of parallelism in the Pair Programming project.

6. Market Pressure Analysis

Last section’s computations for the sample project
have shown that adding developers to a project in or-
der to form programmer pairs can be rewarding if the
market pressure is high. Thus, it is natural to ask:

How strong must the market pressure be for
the Pair Programming project to break even
with the conventional project?

Certainly, the answer depends on the values of other
model parameters such as the pair speed advantage.

In this section, we introduce the concept of break-
even discount rate and analyze for our sample project
how the break-even point changes when important
model parameters vary.

We always compare the Pair Programming project
— with a possibly varying number of pairs — against the
conventional project with eight developers. We also
use the model parameters specified in TABLE 1.

6.1. Break-Even Discount Rate

The discount rate for which the net present value of
the Pair Programming project breaks even with the net
present value of the conventional project is called the
break-even discount rate. More formally, the break-
even discount rate is the solution to the equation

NPVpp (DiscountRate) = NPV (DiscountRate).

Here, we view the net present value as a function with
the discount rate as the independent variable.

The break-even discount rate depends on the values
of the other model parameters. In FIGURE 1, we sys-
tematically vary the pair speed advantage and the pair
defect advantage for the sample project while retain-
ing the other model parameters. The number of pairs
is equal to 6. We have cut off the surface in FIGURE 1
at a z-level of 200 percent.

BreakEvenDiscountRate

1.1 1.25 1.5

1.75 1.9
PairSpeedAdvantage

Figure 1. Break-even discount rate dependent
on the pair speed advantage and pair defect
advantage.

As could be expected, for a large pair speed advan-
tage or a large pair defect advantage Pair Programming
can break even with the conventional project already
for moderate market pressure. On the other hand, for
small values of the pair speed advantage and pair de-
fect advantage, high or even excessive market pressure
is required for Pair Programming to break even.

6.2. Impact of Pair Speed Advantage

It is worthwhile to study the impact of the pair speed
advantage on the break-even discount rate when all

other model parameters are fixed, including the pair
defect advantage. For example, if we fix the pair defect
advantage at 15 percent and compute the break-even
discount rate while varying the pair speed advantage
in steps of 0.01, we get the curve' in FIGURE 2.

1.2

0.8

%o

BreakEvenDiscountRate
0.4

| Y N
o

o
%o
%o
©C0000, Cooo
©oo
T T T T T
1.45 1.50 155 1.60 1.65 1.70

0.0

PairSpeedAdvantage

Figure 2. Break-even discount rate dependent
on the pair speed advantage.

This curve looks much like an exponential function.
Indeed, if we take log values and perform a linear re-
gression, we get an almost perfect fit when we leave
out those points where the break-even discount rate is
below 5 percent, see FIGURE 3.

Q
%050
Qo

-4 -3 -2 -1 0

- o

log(BreakEvenDiscountRate)

o
T T T T T T

1.45 1.50 155 1.60 1.65 1.70

PairSpeedAdvantage

Figure 3. Logarithm of break-even discount rate
depends linearly on the pair speed advantage.

It is much easier to compare the slopes and in-
tercepts of straight lines than to compare non-linear
curves. The fact that we can view the logarithm of the
break-even discount rate as a linear function of the
pair speed advantage simplifies the sensitivity analy-
sis for the break-even discount rate. Note that this
(approximate) log-linear relationship is not obvious
from the model equations.

For our present study, it makes sense to disregard

values of the discount rate below 5 percent, since small
discount rates do not correspond to market pressure.

IThis curve is the intersection of the surface in FIGURE 1 with
the hyperplane PairDefectAdvantage = 15.

The slight deviation of some of the points from the
regression line has no impact on our results.

6.3. Impact of Pair Defect Advantage

To study the impact of the pair defect advantage
on the break-even discount rate, we take advantage of
the (approximate) log-linear relationship between the
pair speed advantage and the break-even discount rate.
For example, FIGURE 4 shows the different regression
lines that we get when the pair defect advantage varies
between 5 and 25 percent. The number of pairs is
assumed to be 6. The picture looks similar for other
values for the numbers of pairs.

—— 17.7-11.4*x PDA 0.05
rrrrrr 18.2 -12.6 * x PDA 0.15
18.5-13.7 *x PDA 0.25

2
|

4 -2 0
|

log(BreakEvenDiscountRate)

1.0 1.2 1.4 1.6 1.8 2.0

PairSpeedAdvantage

Figure 4. Regression lines for different values of
the pair defect advantage.

The regression lines for small values of the pair de-
fect advantage lie above the regression lines for large
values of the pair defect advantage. In addition, the
slope of the regression line increases as the pair defect
advantage increases.

FIGURE 4 provides interesting conclusions:

e The larger the pair defect advantage, the smaller
the pair speed advantage and discount rate which
are required for Pair Programming to break even.
This follows from the relative position of the re-
gression lines.

e The impact of the pair speed advantage on the
break-even discount rate is stronger for large values
of the pair defect advantage. This follows from the
slopes of the regression lines.

TABLE 4 lists for different values of the pair defect
advantage the range of the pair speed advantage where
the break-even discount rate lies between 5 and 150
percent. The number of pairs is assumed to be 6. One

can see how the relevant range shifts to the left as the
pair defect advantage increases.

Table 4. Relevant range of pair speed advan-
tage for different pair defect advantages.

PairDefectAdvantage | PairSpeedAdvantage
5 1.53... 1.78
10 1.48... 1.72
15 143 ... 1.66
20 1.38... 1.60
25 1.34 ... 1.55
30 1.30... 1.50
35 1.26 ... 1.46
40 1.23... 1.41

6.4. Impact of the Number of Pairs

Another important model parameter is the number
of pairs in the Pair Programming project. Recall that
the number of developers in the conventional project
is fixed at eight, but the number of pairs in the Pair
Programming project may vary.

Again, we can exploit the linear relationship be-
tween the logarithm of the break-even discount rate
and the pair speed advantage to study the impact of
the number of pairs. FIGURE 5 shows the different re-
gression lines we get when the number of pairs varies
from five to eight. The pair defect advantage is fixed at
15 percent. The picture looks similar for other values
of the pair defect advantage.

—— 33-20.9 *x Pairs 5
"""" 18.2 -12.6 * x Pairs 6

13.1 -9.8 * x Pairs 7
- 10.6 -8.3 * x Pairs 8

-5

log(BreakEvenDiscountRate)

1.0 1.2 1.4 1.6 1.8 2.0

PairSpeedAdvantage

Figure 5. Regression lines for varying number
of pairs.

The regression lines for small numbers of pairs lie
above the lines for large numbers of pairs. The slope of

the regression line decreases as the number of pairs in-
creases. The intersection point of the lines in FIGURE 5
must be disregarded, since it occurs in an area where
the break-even discount rate drops below 5 percent.

Again, we can draw interesting conclusions from
FIGURE 5:

e The larger the workforce of programmer pairs, the
smaller the pair speed advantage and discount rate
which are required to break even.

e The impact of the pair speed advantage on the
break-even discount rate is stronger for small num-
bers of pairs.

TABLE 5 lists for different numbers of pairs the
range of the pair speed advantage where the break-
even discount rate lies between 5 and 150 percent.
The pair defect advantage is assumed to be 15 percent.
One can see how the relevant range shifts to the left as
the number of pairs increases.

Table 5. Relevant range of pair speed advan-
tage for varying number of pairs.

NumOfPairs | PairSpeedAdvantage
4 1.80 ... 2.00
5 1.58...1.71
6 143 ... 1.66
7 1.32... 1.62
8 1.24 ... 1.60

6.5. Impact of Other Parameters

We have repeated our computations using different
values for other model parameters such as the average
productivity of a developer or the defect removal time.
Although the numbers change, the overall picture re-
mains the same.

For example, we have systematically varied the pro-
ductivity from 250 to 450 lines of code per month.
FIGURE 6 shows the corresponding regression lines.
The pair defect advantage is fixed at 15 percent and
the number of pairs at 6.

The higher the productivity, the lower the break-
even discount rate for a given pair speed advantage.
Since the regression lines for the different productivity
values have a similar slope, the strength of the impact
of the pair speed advantage on the break-even discount
rate is by and large independent of the value for the
productivity.

—— 19.7 -13.1 * x Prod 250
,,,,,, 18.2 -12.6 * x Prod 350
17.2 -12.4 * x Prod 450

-2 0 2 4 6
|

-6

log(BreakEvenDiscountRate)

1.0 1.2 1.4 1.6 1.8 2.0

PairSpeedAdvantage

Figure 6. Regression lines for varying developer
productivity.

FIGURE 7 shows the regression lines we get when
we vary the defect removal time from 5 to 20 hours.
The pair defect advantage is fixed at 15 percent, the
productivity at 350 lines of code per month, and the
number of pairs at 6.

— 17.9-11.7 *x DRT 5h

""" 18.2 -12.6 * x DRT 10h
18.6 -13.5 * x DRT 15h
18.8 -14.3 * x DRT 20h

log(BreakEvenDiscountRate)

1.0 1.2 1.4 1.6 1.8 2.0

PairSpeedAdvantage

Figure 7. Regression lines for varying defect re-
moval time.

Recall that the defect removal time has a negative
impact on the net present value of the conventional
project only if the pair defect advantage is non-zero.
The longer the time needed to eliminate a defect, the
more time the conventional project must spend in the
separate quality assurance phase to catch up with the
higher quality code of the Pair Programming project.
Thus, the potential benefit of Pair Programming in-
creases with the defect removal time. In particular,
the impact of the pair speed advantage on the break-
even discount rate increases with the defect removal
time, see the slope of the regression lines.

6.6. Alternative Approach

Instead of studying the relationship between the
break-even discount rate and the pair speed advan-
tage, one might as well fix the pair speed advantage
and study the break-even discount rate as a function
of the pair defect advantage. Again, it turns out that
the logarithm of the break-even discount rate can be
approximately viewed as a linear function of the pair
defect advantage. FIGURE 8 shows the corresponding
regression lines for different values of the pair speed ad-
vantage. The number of pairs was set to 6. As before,
points where the break-even discount rate falls below
5 percent were left out.

g o —— 25-124*xPSAl4

x T T~ e 1.3-13.1*xPSA 15

§ e R 0.1-135*xPSA 1.6

5 1o -0, - -1-14.6*xPSA 17

a ° oOoOOOO O%o% - -2-20*xPSA 18

S o | ¢}

g T gy Pong, g

X g OOOO %o

g g, s

a 7 o

j=2

= \ \ i \ \ \
0.0 0.1 0.2 0.3 0.4 0.5

PairDefectAdvantage

Figure 8. Logarithm of break-even discount rate
depends linearly on the pair defect advantage.

One could repeat the break-even analysis given in
the preceding subsections using the pair defect advan-
tage as the independent variable instead of the pair
speed advantage. The results remain the same, but
one can gain additional insight into the dependencies
among the model parameters. For example, FIGURE 9
makes the strong relationship between the pair defect
advantage and the defect removal time apparent. The
pair speed advantage has been set to 1.6 and the num-
ber of pairs is equal to 6.

7. Conclusions

We have shown how to combine different metrics to
evaluate the cost and benefit of Pair Programming. We
have integrated process metrics, product metrics, and
process context metrics into a model for the business
value of a project. The model is based on the concept of
net present value, which allows to consider the impact
of time to market on the value of a project.

n

g S — 0.1-68*xDRT5
g - oo, 0.1-13.5*x DRT 10
5 o 0.1-20.3*x DRT 15
8 4 4 Ly 0y

£ ! Qo

a - Q0

§ o 5 %

T]

X o]

S 4 %,

=3 o

D 6 N

g

- I I I I I I

PairDefectAdvantage

Figure 9. Relationship between pair defect
advantage and defect removal time.

We have applied our model to different project sce-
narios and provided a detailed sensitivity analysis with
respect to the model parameters. The pair speed
advantage, pair defect advantage, discount rate, and
number of pairs each have a strong impact on the value
of a project which uses Pair Programming.

The results of our computations provide clear man-
agement guidelines when to use Pair Programming or
better not. Given that a short time to market is deci-
sive for the success of a project, adding developers to
form programmer pairs can speed up the project and
increase its business value despite the increased person-
nel cost. This is due to the fact that programmer pairs
can be expected to have a higher productivity and code
quality as compared to single programmers.

We feel that it is valuable to see the complex inter-
play between the different metrics and to understand
that the software process metrics tailored to Pair Pro-
gramming alone do not suffice to properly assess the
value of Pair Programming. We consider techniques
from economics to be the right vehicle to combine soft-
ware engineering metrics in order to assess the tradeoffs
involved in a new development paradigm such as Pair
Programming.

One important task for future research about Pair
Programming is to collect reliable empirical data about
how large the pair speed and defect advantage actually
are; currently, empirical evidence is very limited.

References

[1] K. Beck. Embracing change with extreme program-
ming. [FEE Computer, pages 70-77, Oct. 1999.

[2] K. Beck. Extreme Programming Ezplained. Addison
Wesley, 1999.

3]

(4]

(5]

(6]

(10]

(11]

(12]

(13]

(14]

D. Bisant and J. Lyle. A two-person inspection
method to improve programming productivity. IEEE
Transactions on Software Engineering, 15(10):1294—
1304, Oct. 1989.

A. Cockburn and L. Williams. The costs and benefits
of pair programming. In eXtreme Programming and
Flexible Processes in Software Engineering XP2000,
Cagliari, Italy, June 2000.

H. Erdogmus. Comparative evaluation of software de-
velopment strategies based on net present value. In In-
ternational Workshop on Economics-Driven Software
Engineering Research EDSER, Los Angeles, USA,
May 1999.

W. Harrison, D. Raffo, and J. Settle. Measuring
the value from improved predictions of software pro-
cess improvement outcomes using risk-based discount
rates. In International Workshop on FEconomics-
Driven Software Engineering Research EDSER, Los
Angeles, USA, May 1999.

W. Humphrey. Managing the Software Process.
Addison-Wesley, 1989.

W. Humphrey. A Discipline for Software Engineering.
Addison-Wesley, 1997.

M. M. Miiller and F. Padberg. Extreme programming
from an engineering economics point of view. In In-
ternational Workshop on Economics-Driven Software
Engineering Research EDSER, Orlando, Florida, May
2002.

J. Nosek. The case for collaborative programming.
Communications of the ACM, 41(3):105-108, Mar.
1998.

J. Smith and T. Menzies. Should NASA embrace agile
processes, 2002. preprint, West Virginia University,
Morgantown, USA.

I. Sommerville. Software Engineering. Addison-
Wesley, 1996.

L. Williams and H. Erdogmus. On the economic feasi-
bility of pair programming. In International Workshop
on Economics-Driven Software Engineering Research
EDSER, Orlando, Florida, May 2002.

L. Williams, R. Kessler, W. Cunningham, and R. Jef-
fries. Strengthening the case for pair-programming.
IEEE Software, pages 19-25, July/Aug. 2000.

