
Scheduling Software Projects to Minimize the

Development Time and Cost with a Given Staff

Frank Padberg
Fakultät für Informatik

Universität Karlsruhe, Germany
padberg@ira.uka.de

Abstract

A probabilistic scheduling model for software projects
is presented. The model explicitly takes a schedul-
ing strategy as input. When the scheduling strategy
is fixed, the model outputs a probability distribution
for the project completion time or cost. By applying
stochastic optimization techniques, schedules for soft-
ware projects can be computed which minimize the de-
velopment time or cost with a given staff.

1 Introduction

Staff is the most valuable resource today in software
development. In view of the shortage of software devel-
opers, it is even more important than ever that software
project managers plan and schedule their development
projects in such a way that the available developers are
deployed as effectively as possible. Scheduling means to
bind developers to activities on a time scale, answering
the question : who must do what, and when? Planning
and scheduling a software project is especially difficult
though, for a number of reasons.
• Software is an immaterial product. Thus, tracking

the actual progress of a software project is difficult,
making it hard for a manager to tell when it’s time
to take controlling action such as reassigning tasks.

• The time needed to complete a particular software
development activity is known only roughly. The
time needed depends on technical factors such as
the complexity of the piece of code to develop, but
also on human factors such as the skill and experi-
ence of the developers. The human factors are hard
to measure.

• It is typical for software projects that activities
which run in parallel interfere with each other. For
example, when an interface between some of the
components in a software system gets extended, all

components which use that interface and which are
under development must be reworked. Because of
the unanticipated rework, the completion time for
the components is delayed. It is extremely hard
to foresee at what times during a project this sort
of feedback between development activities will oc-
cur and how much impact on the progress of the
project it will have.

When assigning tasks to the developers, the manager
must also keep in mind that certain staff might be avail-
able only during certain periods of time. In addition,
there are various precedence relations among the tasks
of a project. For example, a module must be designed
before it can be coded.

Software engineering currently offers little help to
software project managers how to find good schedules
for their projects. On the one hand, effort estimation
models do not support scheduling. They only provide
an estimate for the total development effort required
for a project, expressed in man-days, and an estimate
for the project duration. Some models also provide
a distribution over time of the manpower needed for
a project. Both the curve-fitting models and the more
recent models, which use machine learning [19] , neural
networks [22] , and analogy [18] , do not show individ-
ual tasks and developers. Thus, deriving a schedule is
not possible. For an overview of effort estimation see
[8] .

On the other hand, the process-centered software
engineering environments which have emerged during
the last decade do not support finding good schedules,
too. Such an environment guides and supports project
managers and developers during real software projects.
Each software engineering environment comes with a
process modelling language (often more than one) to
formally describe the software development process in
detail. The description captures the activities to be
carried out, the staff involved, the products to be devel-

oped, the tools available, and the relationships between
all those. Although it is possible for a project manager
to assign tasks to developers, software engineering envi-
ronments do not assist the manager in making that as-
signment best possible in order to meet a given deadline
and budget. The manager also can specify a duration
(and cost) for each activity, but the impact of feedback
in the software process on the duration of activities is
not modelled. An exception is [16] . One would like to
see the assignment of tasks to the developers and the
duration of tasks automatically changed by the soft-
ware engineering environment in the best possible way
whenever the state of the project has changed. For
an overview of software engineering environments see
[2] [5] [7] .

What do we need in order to address the schedul-
ing problem for software projects? First, we need a
model for software projects which quantifies the im-
pact of scheduling decisions on the development time
and cost of a project. Therefore, scheduling actions
such as stopping a task or reassigning a task must be
part of the model. Feedback in the software process
and its impact on activity durations must be modelled.
The uncertainty inherent to the software process con-
cerning the duration of activities and the occurence of
events must be modelled. Thus, it is natural for the
model to be probabilistic. In the model, events will oc-
cur only with a certain probability at particular points
in time. Scheduling constraints such as precedence re-
lations between tasks must be included in the model,
too.

Second, we need techniques to compute optimal
scheduling strategies for software projects, using the
software project model. A scheduling strategy specifies
which scheduling action to take in view of the current
project situation. An optimal strategy minimizes the
project duration (or cost). Since the underlying project
model will be probabilistic, an optimal strategy will be
stochastically optimal, minimizing the expected dura-
tion (or cost). The optimization techniques must be
computationally efficient; a full search for an optimal
strategy in the huge set of all scheduling strategies is
not feasible.

To accomplish the first step, this paper presents a
generic model for software projects which explicitly
takes a scheduling strategy as input. No process mod-
elling language is used, just standard mathematical no-
tations. The model is probabilistic. When the schedul-
ing strategy is fixed, the model outputs a probability
distribution for the project completion time and a com-
pletion time estimate. The model describes the soft-
ware process at a high level of abstraction : teams work
on software components. The intention is to keep the
model as lean as possible for the time being. Classi-
cal process phases such as coding or testing are not

modelled. By modelling individual components the
model does go below the level of system dynamics mod-
els [1] [9] [20] . It captures much of the dynamics of
software projects, representing varying staff skill levels,
rework caused by design changes, component coupling,
and task assignments.

The software project model presented here substan-
tially extends a previous model described in [12] . The
previous model made some simplifying assumptions
with respect to scheduling. It was assumed that there
are as many teams as there are components in the soft-
ware, that the teams all start working at the same time,
and that a team keeps working on its component until
it is finished. Instead of scheduling, the previous model
focused on the feedback which is so typical for software
projects : changes in the software’s design lead to re-
work. The new model describes feedback the same way,
but adds scheduling. An earlier version of the schedul-
ing model has been presented at a workshop [14] . The
model is described in section 2 of the paper.

The model defines a Markov decision process. This
mathematical setting points out how to accomplish
the second step : we can apply stochastic optimiza-
tion techniques from operations research. These tech-
niques are collectively referred to as stochastic dynamic
programming [3] [4] [17] . An outline of how to ap-
ply these techniques to the software project scheduling
model is given in section 3 of the paper.

Although operations research provides optimization
techniques that we can apply, the particular stochas-
tic models studied there are not appropriate to de-
scribe the software process. Closest to what we need
are stochastic project networks [10] [11] . A stochastic
project network can model parallel execution of activi-
ties and repeated execution of activities; but the dura-
tion of an activity must not depend on any other activ-
ity which runs at the same time, nor on the duration
of an activity which was performed earlier. In other
words, in a stochastic project network different threads
of execution are stochastically independent, as are dif-
ferent activities belonging to the same thread. These
assumptions clearly do not hold for software projects.
Thus, a new approach to the scheduling problem for
software projects is required.

2 Process model

2.1 Software projects
A software project consists of several development

teams and a project manager. Based on some early
high-level design, the software product is divided into
components. At any time during the project, each team
works on at most one component, and, vice versa, each
component is being worked on by at most one team.
It is not assumed that all teams work all the time, nor
that there are enough teams to work simultaneously

on all the uncompleted components. The assignment
of components to the teams may change during the
project. Thus, a team usually will work on several dif-
ferent components during the project. It is not required
that a team has completed its component before it is
assigned some other component to work on; a team
may be interrupted and re-allocated to another com-
ponent by the manager.

Usually, several teams work at the same time, each
on a different component. The teams do not work in-
dependently. From time to time a team might detect a
problem with the software’s high-level design. Since the
components are coupled, for example, through common
interfaces, such a problem is likely to affect other com-
ponents and teams as well. To eliminate the problem,
the high-level design gets revised. If there are addi-
tional problems reported by other teams while the de-
sign is being revised, they are taken into account, too.
When the redesign is completed, some of the compo-
nents will have to be reworked because of the design
changes while others are not affected. To sum up, the
progress that a team makes developing its component
depends on the progress of the other teams.

When all components have been completed, they are
put together and the software gets integration tested.
If errors are detected, a new development cycle begins.
The model describes a development cycle probabilisti-
cally.

2.2 Time
Time is discrete in the model. The time axis gets

subdivided into periods of equal length, called time
slices. Think of a time slice as corresponding to, say,
one week in real time. In addition, there is a deadline
for completing the project. If the deadline is exceeded,
the project will be cancelled as a failure.

2.3 Phases
In the model, a project advances through phases†.

Each phase lasts for some number of time slices which
may vary from phase to phase. By definition, a phase
ends
• when staff becomes available, or,
• when the software’s high-level design changes.

Staff becomes available when some team completes its
component. Staff also becomes available when some
team completes all rework on a component which al-
ready had been completed earlier in the project but
had to be reworked because of changes to the software’s
design. Changes to the software’s design might be nec-
essary to fix design errors or because of changes in the
requirements.

† not to be confused with the development phases in other
process models such as the waterfall model

Scheduling actions take place only at the end of a
phase. Scheduling at arbitrary points in (discrete) time
is not modelled. The rationale behind this restriction
is that is does not make sense to re-schedule a project
as long as nothing unusual happens. At the end of a
phase though, staff is available again for allocation, or
re-scheduling the project might be appropriate because
of some design changes. At that time, the manager
may also interrupt some of the teams and re-allocate
them to other components. For example, the manager
might decide to re-schedule a team to rework a central
component which had been completed earlier but must
be changed according to the revised design.

2.4 States
The state of a project changes at the end of each

phase. The state ζ of a project by definition consists
of four parts :
• a progress vector ζ p ;
• a rework vector ζ r ;
• an assignment vector ζ a ;
• a countdown ζ c .

The progress vector has one entry for each compo-
nent. The progress ζ p

k of component k is defined as
the net development time that has been spent working
on the component. The net development time is ob-
tained from the total development time by substract-
ing all rework times spent for adapting the component
to high-level design changes. As a special case, the
progress entry for a component is set to ∞ to indicate
that the component is completed.

The progress made developing a component must
be measurable in practice. A metric such as ”x percent
completed ” would be hard to measure and thus is not
suitable. Development times can be measured though.

The rework vector has one entry for each component,
too. Rework is caused by changes to the software’s
high-level design. The rework time ζ r

k for component
k is the time that yet must be spent with adapting the
component to high-level design changes. As soon as
a component’s rework time has been counted down to
zero, development of the component can be resumed as
planned. If the software’s design is changed again while
a component is being reworked, leading to even more
rework for that component, the extra rework is added
to the component’s rework time. That is, the impact of
high-level design changes on a component is assumed to
add up. Once a component has been completed, only
rework may occur for the component in the sequel.

The assignment vector also has one entry for each
component. Entry ζ a

k is the number of the team which
has worked on component k most recently. As a spe-
cial case, the entry equals 0 if none of the teams has
worked on the component yet.

Each entry in the assignment vector is given a lead-
ing plus or minus sign to indicate whether the specified
team has been working on the component during the
last phase or not. If the work on a component is not yet
completed, which can be seen from the progress vector
and the rework vector, a leading minus sign means that
the specified team has been interrupted by the manager
in an earlier phase while working on the component. A
leading plus sign means that the last phase has ended
while the specified team was still working on the com-
ponent. For example, an entry ζ a

2 = − 5 means that
team number five was the last team to work on the
second component and has been re-scheduled to work
on some other component in the second-last or some
earlier phase. In most cases, it will make sense for
the manager to have the specified team continue work-
ing on the component during the next or some later
phase. Any other team might need considerable time
to become familiar with the component. For the same
reason, it does not make much sense to record the num-
bers of all teams that have worked on the component
at some time during the project, because the compo-
nent will probably have changed considerably in the
meantime.

The countdown ζ c is the time left until the project’s
deadline of, say, x0 slices will be reached. The develop-
ment cycle begins with the initial state σ, which is de-
fined by σ p

k = σ r
k = σ a

k = 0 for all k and σ c = x0 .
The cycle ends when a termination state is reached.
In a termination state τ , the deadline has not been
exceeded (τ c ≥ 0), all components are completed
(τ p

k = ∞), and there is no rework left (τ r
k = 0).

The termination states differ in the value of the count-
down and the values in the assignment vector. The de-
velopment cycle also ends when the deadline is passed.

2.5 Actions and strategies
Scheduling takes place at the end of the phases. Pos-

sible scheduling actions are :
• assigning a component to a team;
• starting a team;
• stopping a team.

A scheduling action is modelled as an action vector
which has one entry for each team. The action a i for
team i is the number of the component the team is
scheduled to work on during the next phase. The entry
is set to −1 if the team is stopped.

Actions may depend on the current state of the
project, but also on the number of phases completed so
far†. In most cases, several actions are possible for a
given state and phase. A scheduling strategy or policy

† Dependence of the action on the number of phases completed
makes sense for ”finite horizon” optimization, because in a late
phase the action must take into account that time is running out.

is a function which (deterministically) specifies an ac-
tion for each project state and phase. A strategy is
called stationary if the choice of the action depends on
the state only; in that special case, the strategy is a
function mapping states into actions.

A scheduling action is admissible only if it satisfies
the precedence relations between the components. At
the current level of abstraction, the model considers
precedence relations between whole components only,
not between single development activities such as de-
signing and coding a module. The precedence relations
resemble the task net of other models for the software
process. The relations are specified as a graph or ta-
ble which serves as input to the scheduling strategies.
It is assumed that the relations contain no cycles. The
precedence relations can force some re-scheduling at the
end of a phase if a component has to be reworked which
must precede another component that is currently un-
der development.

Besides possible precedence relations among compo-
nents, an action must satisfy additional constraints to
be admissible :
• Each team must work on a different component.
• An action must schedule at least one team to work

if the project has not yet terminated.
• If a component has been completed during an ear-

lier phase and there is no rework for that compo-
nent, no team may be scheduled to work on the
component.

The set of all actions which are admissible if the project
is in state ζ is denoted by A (ζ).

An example of a simple scheduling strategy is to use
a fixed priority list for the components. An available
team is allocated to the next unprocessed component in
the list. If several teams are available at the same time,
the next unprocessed component in the list is assigned
to the available team with the highest team number,
the second next unprocessed component in the list is
assigned to the available team with the second highest
team number, and so on. The priority list must satisfy
all precedence relations. A team works on its compo-
nent without interruptions until the component is com-
pleted, except when the team has to rework one of its
previous components because of a design problem. If a
team has to rework several of its previous components,
the components are reworked according to their prior-
ities. Immediately after having finished all rework, the
team resumes working on the uncompleted component.
Note that which team has completed a particular com-
ponent can be read off the project state’s assignment
vector.

Currently, the model assumes that all teams can
work during the whole project. Any team may be
scheduled to work on any component, but the teams

need not be equally well-prepared for that. Different
skill levels of the teams are modelled using the base
probabilities of the teams, see subsection 2.7. The base
probabilities may be taken into account when choosing
a scheduling action. For example, in the strategy given
in the preceding paragraph the available team with the
shortest expected net development time for the next
unprocessed component in the list could be allocated
to that component (instead of the available team with
the highest team number). The expected net develop-
ment time for team i and component k is equal to
E [P (D i

k (t))], see subsection 2.7.

2.6 Transition probabilities
Given a project state ζ and a scheduling action a ,

the next state η of the project is not completely de-
termined since the different events which will end the
next phase will occur only with a certain probability.
Define the transition probability

P (ζ , a ; η)

to be the probability for ending the next phase with
state η given that the previous phase had ended with
state ζ and scheduling action a was taken.

The transition probability P (ζ , a ; η) does not de-
pend on any information about the project’s history
except its current state, the action chosen, and the
number of phases completed so far (since the action
depends on this). For such a modelling to make sense
the state must contain all relevant information about
the project’s past. The resulting process

ζ (0) , a (0) , ζ (1) , a (1) , . . .

is called a Markov decision process [3] [4][17] . If the
scheduling strategy is fixed, the process

ζ (0) , ζ (1) , . . .

is a Markov process. Since the actions may depend on
the number of phases completed, that Markov process
is stationary only if the scheduling strategy is.

To compute the transition probabilities, statistical
data about past projects and high-level design data are
required as input, as described in the next two subsec-
tions.

2.7 Statistical data
The statistical data required as input to the model

are a measure of the pace at which the teams have made
progress in past projects. Define the base probabilities

P (E i
k (t)) and P (Di

k (t))

to be the probabilities that team i will report a prob-
lem (event E i

k (t)) or will complete its component

(event Di
k (t)) after a net development time of t

slices when working on component k . As another sta-
tistical input to the model, define the probability of
rework time

P (Rk (t))

to be the probability that it will take t slices to adapt
component k to the latest design changes.

The base probabilities depend upon various human
and technical factors, for example, the software process
employed by the team, the complexity of the compo-
nent, and the skills and the experience of the team. The
base probabilities are computed from empirical data
collected during past projects. If the database is suffi-
ciently large, a manager will distinguish between differ-
ent team productivity levels and component complexity
classes when computing the base probabilities. For a
particular team and component, a manager will
• look at all components developed by the team in

past projects;

• classify the components according to their complex-
ity, using a complexity measure of his choice;

• in each complexity class, look at the records to find
out the development times and rework times;

• in each complexity class, compute the net times
and the probability distributions;

• choose the probability distributions which are best
suited for the given component.

The empirical database reflects the specific develop-
ment environment and process in a company, since
the data are taken directly from a company’s software
projects. An example how to compute the base prob-
abilities and the probabilities of rework time from em-
pirical data is given in [15] .

2.8 Design data
The design data required as input to the model are

a measure for the strength of the coupling between the
software’s components. The stronger the coupling is
the more likely it is that problems originating in one
component will lead to rework in other components.
For example, when an interface offered by some com-
ponent is extended, all components which use that in-
terface must be reworked. Often there is more than
one link between two components in a design.

For nonempty subsets K and X of the set of com-
ponents, the dependency degree

α
(
K, X

)

by definition is the probability that changes in the soft-
ware’s design will extend over exactly the components
X given that the problems causing the redesign were

detected in the components K . At least one com-
ponent must be changed when design problems occur.
Thus, X must be nonempty. For example,

α
({ 3 }, { 1, 2, 3 })

is the probability that a problem detected in the third
component will lead to changes in the first three com-
ponents of the software.

The dependency degrees are computed from the
high-level design of the software. This way, the model
explicitly takes the design of the software as input,
which allows to quantify the impact of design decisions
on the delivery date and cost of a project, see [13] .

2.9 Transition probabilities (continued)
Suppose that a state ζ and an admissible action

a ∈ A(ζ) are given. The next state of the project
then is partially determined. For example, if a team is
scheduled by the action to work on a particular com-
ponent, the entry for the component in the next state’s
assignment vector must be set accordingly. Many com-
binations of ζ and a with a state η as the next state
will be inconsistent. As a result, many transition prob-
abilities will be equal to zero and need not be consid-
ered in computations.

To compute the transition probability P (ζ , a ; η)
for some state η the following steps must be taken :
• compute the length d of the phase which passes

between ζ and η as the difference ζ c − η c of the
countdowns;

• check whether the action a and the two assignment
vectors ζ a and η a are consistent;

• check whether the progress vector η p and the re-
work vector η r are valid;

• compute the set X of components which must be
changed as part of the latest redesign, and the
amount of additional rework for these components;

• determine the set K of components where the re-
design comes from;

• multiply the right base probabilities, dependency
degrees, and probabilities of rework time.

For details on how the base probabilities, probabilities
of rework times, and dependency degrees enter the for-
mula for the transition probabilities, see [14] and the
previous model [12] .

3 Optimization

3.1 Cost functions
Associate with the transition from a state ζ to some

state η the transition cost

g (ζ , a ; η) .

The cost of a transition depends on the schedul-
ing action a taken. For example, in the software
project model the transition cost may be the length
d = ζ c − η c of the phase which passes between ζ and
η . The transition cost also may be the staffing cost for
the phase, which depends on the length of the phase,
the set of teams scheduled to work during the phase,
the cost per week for teams which work, and the cost
per week for teams which wait to be scheduled.

Each state ζ is also assigned a terminal cost

g (ζ)

which is incurred when ending the process in state ζ .
For example, in the software project model the terminal
cost of a state which corresponds to the project being
cancelled as a failure might be some financial penalty.
Termination states, which correspond to a successful
outcome of the project, have zero terminal cost.

Using the transition costs, one can assign to any fi-
nite sequence

ω = ζ (0) , a (0) . . .

. . . ζ (m − 1) , a (m− 1) , ζ (m)

of state-action pairs its cost

g (ω) =
m−1∑

i =0

g (ζ (i) , a (i); ζ (i + 1))

by summing up the costs of all the transitions in the
sequence †. The sequence ω can be viewed as the path
or the course of the project when observed for a period
of m phases from state ζ (0) on. For the software
project model, the first state ζ (0) in a sequence ω
need not be equal to the initial project state σ .

Given a state ζ and an action a , the next state of
the process will be η only with a certain probability.
Therefore, the expected cost for the next transition is

∑

η

P (ζ , a ; η) · g (ζ , a ; η) .

The probability that the process will proceed from state
ζ according to a sequence ω is equal to the product

P (ω) =
m−1∏

i =0

P (ζ (i) , a (i); ζ (i + 1))

of the corresponding transition probabilities. Thus,
given a strategy π the expected n-stage cost-to-go for
state ζ is computed as

Gπ
n (ζ) =

∑

Ω π
n (ζ)

P (ω) · (
g (ω) + g (ζ (n))

)
.

† We are a bit sloppy with the notation here, using g with
transitions, states, and state-action sequences as parameters.

The set Ωπ
n (ζ) consists of all sequences ω of state-

action pairs which start with state ζ , have n stages,
and are controlled by the strategy π, that is, for which
a (i) = π (i, ζ (i)). The functions Gπ

n are called
the cost-to-go functions of the strategy π.

For the software project model, a stage is the same
as a phase. A project starts in the initial state σ .
Since a project must succeed before the deadline of x0

time slices is exceeded, a project will last for at most
x0 phases. The expected project cost when scheduling
according to π then is

E cost = Gπ
x0

(σ) .

It is understood here that a sequence which terminates
successfully before the deadline is exceeded has zero
transition costs afterwards.

3.2 Optimal strategies
Optimizing the schedule of software projects with

respect to development time or cost amounts to solving
the following stochastic optimization problem :

Find a scheduling strategy which has minimal
cost-to-go functions in the Markov decision model
for software projects.

A strategy π has minimal cost-to-go functions if

Gπ
n (ζ) ≤ G µ

n (ζ)

for all strategies µ, number of stages n , and states
ζ . An optimal strategy will be stochastically optimal,
minimizing the expected cost. The cost function g for
the software project model is either the development
time function or the staffing cost function described at
the beginning of subsection 3.1.

The search space for the optimization problem con-
sists of all possible scheduling strategies. The search
space is far too huge to perform a full search. The key
to finding an optimal strategy is the observation that
an optimal action for state ζ with n stages to go must
minimize the sum of
• the expected cost for the next transition and

• the expected optimal cost with n− 1 stages to go.

The optimal expected cost is achieved when always
choosing an optimal action in the remaining stages.
Denote by G �

n (ζ) the optimal expected cost for state
ζ with n stages to go. Formally, the observation says :

G �
n (ζ) =

min
a∈A (ζ)

∑

η

P (ζ , a ; η) ·(
g (ζ , a ; η) + G �

n−1 (η)
)
.

This is Bellman’s equation of stochastic dynamic pro-
gramming [3] [4] [17] . The proof of Bellman’s equa-
tion relies on the Markov property of the transition
probabilities for the underlying stochastic process.

Once the optimal cost-to-go functions have been
computed, an optimal strategy is obtained by choosing
the actions in such a way that the minimum in Bell-
man’s equation is attained for all stages n and states
ζ . The optimal cost-to-go functions are unique, but
there might be more than one strategy achieving the
optimal cost.

Bellman’s equation gives an iterative algorithm to
compute the optimal cost and an optimal strategy for
a Markov decision process. The algorithm is known
as backwards dynamic programming. Start with the
terminal costs of the states as the optimal zero-stage
costs,

G �
0 (ζ) = g (ζ) .

Then, compute the optimal one-stage costs from Bell-
man’s equation for all states ζ . Then, compute the
optimal two-stage costs, and so on. For the software
project model, the terminal cost of a state which corre-
sponds to the project being cancelled as a failure should
be set to some high value to make that state look bad
to the optimization algorithm as a last state.

3.3 Policy iteration
Computing the optimal expected cost and an opti-

mal strategy using backwards dynamic programming is
increasingly expensive as the number of states grows.
For the software project model, the number of states
will be huge, growing exponentially with the number
of components.

Based on Bellman’s equation, another algorithm
for computing an optimal strategy has been devel-
oped, called policy iteration, which computationally is
more efficient [3] [4] [17] . Policy iteration generates a
sequence

π1 , π2 , . . .

of policies and terminates after finitely many iterations
with an optimal policy. The sequence of policies gen-
erated is improving in the sense that the cost-to-go
functions improve with each iteration :

Gπr+1
n (ζ) ≤ Gπr

n (ζ)

for all stages n to go, states ζ , and iterations r . The
policy iteration algorithm alternates between a policy
evaluation step and a policy improvement step.
• Policy Evaluation Step. Evaluate policy πr by

computing all its cost-to-go functions Gπr
n .

• Policy Improvement Step. Obtain the next policy
πr+1 by performing the minimization of Bellman’s

equation, but using the cost-to-go functions Gπr
n

of the last policy πr instead of the yet to be de-
termined optimal cost-to-go functions G �

n .

Formally, the improvement step determines the actions
of the next policy πr+1 in such a way that the equation

Gπr+1
n (ζ) =

min
a∈A(ζ)

∑

η

P (ζ , a ; η) ·(
g (ζ , a ; η) + Gπr

n−1 (η)
)

holds for all n and ζ . The equation means that πr+1

chooses the action with n stages to go best possible
when assuming that the following actions will be cho-
sen according to πr . The algorithm stops if the new
policy does not improve the last one for at least one
state, whence both policies are optimal. The algorithm
gets initialized by choosing some policy π0 . The closer
the cost of the initial policy π0 is to the optimum, the
fewer iterations are necessary before the algorithm ter-
minates with an optimal strategy.

4 Conclusions

We are currently implementing the model and the
optimization techniques. Using the model and tech-
niques presented in the paper, a number of interesting
research questions can be tackled, including :
• How far away from the optimum are the scheduling

strategies that managers use in real projects?

• Should we develop components which are strongly
coupled to several other components early or late
in a project?

• Can we derive good, practical scheduling ”rules”
from the properties of optimal strategies?

The model’s use can be extended beyond schedule
optimization. By using the staffing cost for a phase
instead of the phase duration as the transition cost (see
subsection 3.1), the model can be used to analyse trade-
offs between schedule and effort. This is another topic
for future research using the model.

References

1. Abdel-Hamid, Madnick : Software Project Dynamics .
Prentice Hall 1991

2. Ambriola, Conradi, Fuggetta : ”Assessing Process-
Centered Software Engineering Environments”, ACM
Transactions on Software Engineering and Methodol-
ogy 6:3 (1997) 283-328

3. Bertsekas : Dynamic Programming and Optimal Con-
trol . Athena Scientific 1995

4. Derman : Finite State Markovian Decision Processes .
Academic Press 1970

5. Derniame, Ali Kaba, Wastell : Software Process : Prin-
ciples, Methodology, and Technology. Lecture Notes in
Computer Science 1500, Springer 1999

6. El Emam, Madhavji : Elements of Software Process
Assessment and Improvement. IEEE Computer Soci-
ety Press 1999

7. Finkelstein, Kramer, Nuseibeh : Software Process Mod-
elling and Technology. Research Studies Press 1994

8. Gray, MacDonell : ”A Comparison of Techniques for
Developing Predictive Models of Software Metrics”,
Information and Software Technology 39 (1997) 425-
437

9. Madachy : ”System Dynamics Modeling of an In-
spection-Based Process”, Proceedings ICSE 18 (1996)
376-386

10. Neumann : Stochastic Project Networks . Lecture Notes
in Economics and Mathematical Systems 344, Springer
1990

11. Neumann : ”Scheduling of Projects with Stochastic
Evolution Structure”, see [21] 309-332

12. Padberg : ”A Probabilistic Model for Software Pro-
jects”, Proceedings ESEC/ FSE 7 (1999) 109-126, Lec-
ture Notes in Computer Science 1687, Springer 1999

13. Padberg : ”Linking Software Design with Business Re-
quirements – Quantitatively”, 2nd International Work-
shop on Economics-Driven Software Engineering Re-
search EDSER (2000)

14. Padberg : ”Towards Optimizing the Schedule of Soft-
ware Projects with Respect to Development Time
and Cost”, International Software Process Simulation
Modeling Workshop ProSim (2000)

15. Padberg : ”Estimating the Impact of the Program-
ming Language on the Development Time of a Software
Project”, Proceedings International Software Develop-
ment and Management Conference ISDM/AP-SEPG
(2000) 287-298

16. Raffo, Kellner : ”Modeling Software Processes Quan-
titatively and Evaluating the Performance of Process
Alternatives”, see [6] 297-341

17. Ross : Introduction to Stochastic Dynamic Programm-
ing. Academic Press 1983

18. Shepperd, Schofield, Kitchenham : ”Effort Estimation
Using Analogy”, Proceedings ICSE 18 (1996) 170-178

19. Srinivasan, Fisher : ”Machine Learning Approaches
to Estimating Software Development Effort”, IEEE
Transactions on Software Engineering 21:2 (1995) 126-
137

20. Tvedt, Collofello : ”Evaluating the Effectiveness of
Process Improvements on Software Development Cycle
Time via System Dynamics Modeling”, Proceedings
COMPSAC 19 (1995) 318-325

21. Weglarz : Project Scheduling. Recent Models, Algo-
rithms, and Applications. Kluwer 1999

22. Wittig, Finnie : ”Using Artificial Neural Networks and
Function Points to Estimate 4GL Software Develop-
ment Effort”, Australian Journal of Information Sys-
tems 1 (1994) 87-94

