
Integrating logical and physical file models in the MPI-IO implementation for
“Clusterfile”

Florin Isailă, David Singh,
Jesús Carretero, Félix Garcia

Departement of Computer Science
University Carlos III of Madrid - Spain

{florin,desingh,jcarrete,fgarcia}@arcos.inf.uc3m.es

Gábor Szeder,
Thomas Moschny

Departement of Computer Science
University of Karlsruhe - Germany

{szeder,moschny}@ipd.uni-karlsruhe.de

Abstract

This paper presents the design and implementation of the
MPI-IO interface for the Clusterfile parallel file system. The
approach offers the opportunity of achieving a high corela-
tion between the file access patterns of parallel applications
and the physical file distribution. First, any physical file
distribution can be expressed by means of MPI data types.
Second, mechanisms such as views and collective I/O oper-
ations are portably implemented inside the file system, uni-
fying the I/O scheduling strategies of the MPI-IO library
and the file system. The experimental section demonstrates
performance benefits of more than one order of magnitude.

1 Introduction

The ever increasing gap between I/O subsystems and
processor speeds has driven researchers to look for a
portable standard that allows a direct comparison and eval-
uation of different solutions. The result of their effort was
the MPI-IO standard [10], defined as an application pro-
gramming interface. Besides portability, MPI-IO follows
the declared goal of offering the programmers routines for
efficient parallel I/O access. Characterization of I/O inten-
sive parallel scientific applications [12, 15] have revealed
that the parallel I/O access might be seriously hurt by the
mismatch between the physical (disk) layout of the parallel
file and the I/O access pattern. However, the MPI-IO stan-
dard does not offer the possibility of describing an arbitrary
physical file distribution.

This paper presents an implementation of the MPI-IO
standard inside the popular ROMIO distribution. The ap-
proach differs from existing implementations in following
ways:

• The applications can declare any desired physical file
distribution by means of MPI data types.

• The view is implemented inside the file system, a de-
sign decision that allows considering the relationship
between the potential access pattern and the file phys-
ical layout [4].

• The collective I/O operations are implemented as well
inside the file system, an approach which unifies the
I/O scheduling strategies of the file system and the
MPI-IO library.

• ROMIO’s existing view and collective I/O optimiza-
tions can alternatively be employed.

The paper is structured as follows. Sections 2 and 3
shortly overview Clusterfile and ROMIO. Section 4 presents
the mapping between MPI and Clusterfile data types. The
conversion of MPI file model into the Clusterfile file model
is described in section 5. Section 6 contains implementation
details. The experimental results are presented in section 7.
Related work is subject of section 8. Finally, we summarize
in section 9.

2 Parallel file system overview

Clusterfile (CLF) [3] is a parallel file system for clus-
ters of commodity computers. The architecture is based
on the classical parallel file system model, in which the
files are declustered over several I/O nodes managed by
I/O servers. Disk data layout is flexible, in that the user
can specify an arbitrary file distribution over several I/O
nodes. The applications run on compute nodes and access
the file system through a POSIX-like proprietary interface
or a classical UNIX interface after mounting the file sys-
tem. Each individual process may declare a file view, i.e. a
logical contiguous window mapped onto a non-contiguous
file region. An example is shown in the upper part of Fig-
ure 1, where Compute nodes 1 and 2 have declared two non-
overlapping views on a file. After declaration, a view can

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Logical file partitioning

Physical file partitioning

M
PI

−
IO

Compute node 1 Compute node 2

Views

Disks/Subfiles Fi
le

 s
ys

te
m

Figure 1. Views and disk partitioning

...

Parallel application

GPFSPVFSUnixFS CLF

ADIO

MPI−IO
ADIO interface

FS interface

MPI−IO interface

Figure 2. ROMIO software architecture

be accessed like a regular file. Clusterfile performs efficient
non-contiguous I/O through a method called view I/O [4].

3 ROMIO architecture

The most wide-spread implementation of MPI-IO stan-
dard is ROMIO [20]. In ROMIO, the MPI-IO interface is
implemented portably on top of an abstract device interface
called ADIO [18]. ADIO is file-system independent. Inside
ADIO, ROMIO implements mechanisms such as views and
file access optimizations such as collective caching [6], data
sieving and collective two-phase I/O [19].

The ADIO interface contains typical functions for han-
dling files: open, close, fcntl, read, write, etc. In
ROMIO, the MPI view mechanism is implemented in the
ADIO layer, as illustrated in Figure 1 (indicated by the ac-
colades on the left-hand side). The view is mapped on the
linear file space by ADIO and, in turn, the linear file space
on subfiles or disks by the file system. The two mappings
are explicitly performed, even when the view maps contigu-
ously on a subfile/disk.

ROMIO contains an implementation of two-phase col-
lective I/O method, which consists of a shuffle and an I/O
phase. At file writing, the shuffle phase gathers data from
several compute nodes into a collective buffer residing at a
compute node (the upper part of Figure 1 shows an exam-
ple for compute nodes 1 and 2). The shuffle phase is im-
plemented in the ADIO layer. The I/O phase transfers the
collective buffer from the compute node to the file system.
The I/O phase is implemented through an ADIO function
call, which in turn calls file system access functions. Con-

Application

MPI−IO

ADIO

CLF

ADIO interface

FS interface

MPI−IO interface

data sieving, collective caching
MPI view, two−phase I/O (shuffle),

collective I/O, cooperative caching
CLF view, physical partitioning,

Figure 3. Optimizations in ROMIO hierarchy

sequently, the shuffle scheduling, including the mapping be-
tween the view and the file, is executed by the ADIO layer,
whereas the file system scheduling, including the mapping
between the file and the disk is performed by the file system.
For instance, in Figure 1 a collective I/O operation does not
necessarily have to be performed, because the view maps
contiguously on the disk and, therefore, the shuffle costs
can be spared.

In our approach, the view and the collective I/O are fully
integrated into the the file system, as seen in Figure 3. Clus-
terfile computes the direct mapping between a view and the
disks (shown with the dashed line in Figure 1) and thus may
avoid an unnecessary shuffle operation.

4 Data types

The data types play an important role in both MPI and
Clusterfile file models. In order to extend the MPI data type
definitions to the physical partitioning of files in Clusterfile
and to be able to estimate the relationship between logical
and physical file distribution, we need to map an MPI data
type onto a Clusterfile data type.

4.1 MPI data types

MPI data types are patterns of data access in memory
or in a file. They can express regular or irregular patterns
with or without gaps. Consequently, they are well suited
for non-contiguous file access. The basic data types corre-
spond to those of traditional programming languages such
as C: character (MPI_CHAR), integer (MPI_INT), float
(MPI_FLOAT), etc. Derived data types are constructed
from basic data types or recursively from other derived data
types. Examples of derived data types are vectored and
structured types.

A vector data type can be constructed with the routine:

int MPI_Type_vector(int count, int n,
int stride, MPI_Datatype oldtype,
MPI_Datatype *newtype);

The count parameter represents the number of blocks
of n consecutive elements of type oldtype. In the con-
structed type newtype the distance between two consec-

utive blocks is given by stride. The old type can be a
basic data type or any derived data type.

A structure data type is built by the following function:

int MPI_Type_struct(int count,
int *blocklen_array,
int* array_of_displs,
MPI_Datatype *array_of_types,
MPI_Datatype *newtype);

The count parameter represents the number of blocks
in the structure, array_of_blocklength[i]
specifies the number of elements in block i,
array_of_displacements[i] contains the dis-
placement of block i, relative to the first byte of the
structure, while array_of_types[i] gives the types
of the elements from block i.

We restrict our description to these two types, because
of their resemblance with Clusterfile’s types. All the other
data types can be found in the MPI specification [9].

4.2 Clusterfile data types

Clusterfile’s data types, introduced in [4], are based
on a representation for regular data distributions
called Processor Indexed Tagged FAmily of Line Seg-
ments(PITFALLS) [14]. Although they bear resemblance
with MPI data types, Clusterfile data types are at a higher
abstraction level than those of MPI. There are no corre-
spondents of basic programming language types such as
int, char, float. The only basic type is CLF_BYTE. The
derived types can be built by using solely three functions.
We show here two of them.
CLF_Type_vector builds strided data types. It de-

clares count or file regions, located between offsets left
and right and spaced by stride bytes. The embedded
data type (i.e. oldtype) is located between left and
right offsets.

CLF_Datatype CLF_Type_vector(int left,
int right, int stride, int count,
CLF_Datatype oldtype);

CLF_Type_struct compacts count non-
overlapping data types that are identified by
array_of_types.

CLF_Datatype CLF_Type_struct(int count,
CLF_Datatype *array_of_types);

4.3 Data type mapping

The basic MPI data types are simply mapped onto a
Clusterfile vector with count=1 with left=0 and right=
sizeof(type)-1. A CLF vector and a CLF structure are

file
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

displacement=6
filetype filetype filetype

etype filetype

holes

Figure 4. MPI file model

simplified versions of an MPI vector and an MPI structure,
respectively. Consequently, the mapping of an MPI vector
onto a Clusterfile vector is straightforward. Regarding MPI
structures, we have to consider as well the lower and upper
bounds of the types, which may define holes between data
type components. A derived MPI data type is internally rep-
resented by MPICH as a tree of derived or basic data types
and is mapped onto a CLF data type through a recursive
traversal of this tree.

5 File model

In this section we present the MPI and Clusterfile file
models and we discuss how they can be mapped onto each
other.

5.1 MPI file model

An MPI file is an ordered collection of typed data
items [10]. A file is opened collectively by a group of
processes represented by a communicator (a communicat-
ing group of processes). Collective I/O calls are to be per-
formed by all members of this group.

A file displacement is an absolute byte position relative
to the beginning of a file. The displacement defines the be-
ginning of a view.

An etype (elementary datatype) is the unit of data access
and positioning. It can be any predefined or derived MPI
datatype. Data access is performed in etype units, reading
or writing whole data items of type etype. An offset is
expressed as a count of etypes.

A filetype is the basis for partitioning a file among pro-
cesses and defines a template for accessing the file. A file-
type is either a single etype or a derived MPI datatype con-
structed from an etype.

A view defines a subset of data accessible from an open
file. Each process may have its own view on the file, defined
by three parameters: a displacement, an etype, and a file-
type. The pattern described by a filetype is repeated, begin-
ning at the displacement, to define the view. The view from
Figure 4 starts at displacement 6, has an etype of 1 byte and

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

file

displacement=6

...

etype P0 filetype P1 filetype P2 filetype

Figure 5. MPI views

a filetype of extent 5, out of which only 2 bytes are accessi-
ble. The default view is a linear byte stream (displacement
is zero, etype and filetype are equal to MPI_BYTE), i.e. the
view maps one-to-one to the file.

A group of processes can use complementary views in
order to achieve a global data distribution such as a scat-
ter/gather pattern (see Figure 5).

An offset is a view position, expressed as a count of
etypes. Holes in the view’s filetype are skipped when calcu-
lating this position. Offset 0 is the location of the first etype
visible in the view (after skipping the displacement and any
initial holes in the view). For example, an offset of 2 for
process 1 in Figure 5 is the position of the 8th etype in the
file after the displacement.

A file handle is created by MPI_File_open and
cleared by MPI_File_close. All operations on an open
file use the file handle as a reference to the file.

5.2 Clusterfile file model

The main advantage of Clusterfile file model over that of
MPI-IO is, that it can not only be used for the logical par-
titioning into views, but also for physical partitioning of the
files into subfiles stored over several disks or I/O servers. A
file partitioning into views and subfiles can be seen in the
upper and lower parts of Figure 1. Another important ad-
vantage of Clusterfile is the ability to perform direct map-
pings between different file partitionings (the dashed lines
in Figure 1).

A file in Clusterfile is a linear addressable sequence of
bytes, consisting of a displacement and a partitioning pat-
tern. The displacement is an absolute byte position rela-
tive to the beginning of the file. The partitioning pattern is
repeated throughout the file in the same manner as MPI’s
filetype. The partitioning pattern consists of the union of n
CLF data types, each of which representing a subset of a
file. For the logical distribution into views, these data types
may overlap. For the physical partitioning into subfiles, the
CLF data types must not overlap and their union must de-
clare a contiguous file region. The previous two conditions
insure that each file offset is uniquely assigned one offset of
exactly one subfile.

5.3 File model mapping

The two file models bear many similarities. The MPI dis-
placement maps onto CLF displacement and MPI’s filetype
maps onto a derived CLF type, as described in the previous
section. In both cases the pattern is repetitive.

An MPI view can be constructed in two ways: by using
the existing ROMIO implementation over a linear Cluster-
file file or by mapping it directly on the Clusterfile view. In
the second case, Clusterfile uses the mapped CLF type in
order to construct the view internally.

The MPI-IO file model is basically used for the logical
distribution of a file over the processors. MPI-IO offers a
limited degree of control over file data placement. For in-
stance, for the PVFS file system, the user can employ hints
for specifying attributes of file striping over several devices:
the first I/O device, the number of I/O devices and the strip-
ing unit. The very same hints can be used in Clusterfile.

Clusterfile’s file model is additionally employed for the
distribution of the file over the disks. In order to allow MPI-
IO to specify the physical file distribution, we have intro-
duced an MPI data type based hint which uses one MPI data
type for each subfile. The MPI data types are mapped onto
CLF data types and they have to fulfill the conditions im-
posed for physical file partitioning, as presented in subsec-
tion 5.2. Subsequently, each data type is used internally by
Clusterfile for constructing one subfile, in the same manner
as a view. The file region before the displacement is stored
in Clusterfile in a separate subfile.

By using a common file model for the two distributions,
Clusterfile can build the mapping of the views on the disks.
This direct mapping allows a unified parallel I/O scheduling
strategy for the data transfer.

6 Implementation details

In this section we describe details of the implementation
of the MPI-IO interface of Clusterfile. As discussed in sec-
tion 3, a new file system can be added by implementing the
ADIO interface. Almost all the functionality described in
this section is implemented in the software layer between
the ADIO and file system interface (see Figure 3) with two
exceptions for view declaration and file access, which we
will explain later. For simplicity, in this section we do not
show the ADIO calls and we explicitly specify when we
refer to functionality already implemented in ROMIO.

Setting the physical distribution. The physical dis-
tribution can be set by means of an MPI hint called
subfile_datatypes. The following pseudocode
shows how a physical distribution hint can be created. The
string subf should contain the values of the MPI data types
corresponding to the subfiles.

MPI_Info i;
char subf[] = "dt_0 dt_1 ... dt_(k-1)";
MPI_Info_set(i, "subfile_datatypes", subf);

Setting the optimization types. A file can be accessed
by using either Clusterfile native or ROMIO views and col-
lective I/O operations. This can be set through an MPI hint
called use_romio_optimizations, which may take
the values true or false.

File open. MPI_File_open opens the file by calling
the Clusterfile native CLF_open function. The returned
CLF file system descriptor is stored in a ROMIO file handler
structure fh for subsequent use. The physical distribution
of a file is declared by using a Clusterfile fcntl routine.
The physical distribution can be set only for a newly created
file. The whole functionality is implemented in the ADIO
layer.

int MPI_File_open(MPI_Comm comm, char *fname,
int amode, MPI_Info i, MPI_File *fh) {
fh->fd = CLF_open(fname, amode);
if (i contains ‘‘subfile datatype’’) {

clf_dt = convert(subf);
CLF_fcntl(fh->fd,CLF_FCNTL_SUBFILES,

clf_dt);}}

File close. MPI_File_close closes the file by using
the native CLF_close function.

int MPI_File_close(MPI_File *fh) {
CLF_close(fh->fd);}

View. The processes of a group may declare
a view by means of the MPI-IO collective function
MPI_File_set_view. Depending on the value of hint i,
the view parameters are either stored in ROMIO data struc-
tures (when the ROMIO view is to be employed) or are con-
verted to a CLF data type used for declaring the internal file
system view.

MPI_File_set_view(MPI_File fh,
MPI_Offset disp, MPI_Datatype etype,
MPI_Datatype filetype,..., MPI_Info i) {
if (‘‘use_romio_optimisations’’ in i)

store (disp,etype,filetype) in ROMIO
else {

clf_dt = convert(filetype);
fcntl(fh->fd, FCNTL_SETVIEW,

{clf_dt,displ});}}

File access. MPI-IO offers several flavors of file access
routines including collective versions. Here we describe
only the collective file read routine. The access method
implementation is chosen according to the value of the
use_romio_optimizations flag. If the flag is true,
the ROMIO native collective implementation is used (as de-
scribed in section 3). Otherwise, the MPI data type is con-
verted to a Clusterfile data type and the non-contiguous file

read routine of Clusterfile is employed for reading the data
by using Clusterfile collective I/O method. The ROMIO
two-phase I/O is implemented partially in the ADIO layer
(shuffle phase), and partially in the file system (I/O phase,
not shown here).

MPI_File_read_all(MPI_File fh, void *buf,
int count, MPI_Datatype dt,...) {
if (‘‘use_romio_optimisations’’ in i)
use ROMIO two-phase I/O

else {
clf_dt= convert(dt,count);
CLF_ncread(fh->fd,buf,clf_dt); }}

7 Experimental results

We performed our experiments on a cluster of 16 dual
processors Pentium III 800MHz, having 256 KBytes L2
cache and 1024 MB RAM, interconnected by Myrinet
LANai 9 cards at 133 MHz, capable of sustaining a through-
put of 2 GB/s in each direction. The machines are equipped
with IDE disks and are running LINUX kernels version
2.4.19 with the ext2 local file system. We used TCP/IP on
top of the 2.0.19 version of the GM [11] communication li-
brary. The ttcp benchmark delivered a TCP/IP node-to-node
throughput of 120 MB/sec. In all experiments we have used
four compute nodes and four I/O servers running on differ-
ent machines.

Our main goal was to evaluate the impact of the physical
file distribution as declared through the newly introduced
hint subfile_datatypes (presented in section 6) on
the performance of the MPI-IO file accesses. We compare
three file access scenarios implemented on top of the Clus-
terfile file system: (1) ROMIO-rr: ROMIO collective I/O
method for a file striped round-robin over the I/O servers of
the parallel file system. The round-robin file distribution is
the most commonly employed striping method in the paral-
lel file systems. (2) ROMIO-phys: ROMIO collective I/O
method with a perfect disk distribution, i.e. a distribution
in which each view maps contiguously on a disk. (3) CLF-
phys: Clusterfile collective I/O method with a perfect disk
distribution. In the first two scenarios the shuffle-phase of
the two-phase I/O is implemented in MPI-IO and the I/O
access is performed through the ADIO interface by the file
system (as discussed in subsection 3). In all experiments
the data is accessed from the buffer caches of the I/O nodes
(i.e. is not flushed to disks).

7.1 2D matrix synthetic benchmark

The goal of this experiment is to investigate the influ-
ence of physical file distribution and access granularity on
the performance of file read and write access. We wrote a
parallel MPI benchmark that reads from and writes to a file

Write aggregate throughput

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64 128 256 512 1024

Granularity

M
B

yt
es

/s
ec

o
n

d

CLF-phys

ROMIO-rr

ROMIO-phys

Read aggregate throughput

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64 128 256 512 1024

Granularity

M
B

yt
es

/s
ec

o
n

d

CLF-phys

ROMIO-rr

ROMIO-phys

Figure 6. Aggregate throughput for two-
dimensional matrix synthetic benchmark

a two-dimensional matrix of bytes. In each run, p com-
pute nodes, arranged in a

√
p × √

p grid declare a view
on the file by using CYCLIC(k),CYCLIC(k) distribu-
tions, for k = 1 − 1024. The access pattern resulting from
this distribution is nested-strided with striding depth 3. The
reason for this choice is that the parallel scientific applica-
tions were shown to employ nested-strided access patterns
of these depths [12]. The size of the matrix was 256 MB.

Figure 6 shows the aggregate write and read throughputs.
The results for granularities of 1 and 2 bytes are not shown
for ROMIO because the runs produced a ROMIO internal
“out of memory” error.

First of all we note that, as expected, the results of CLF-
phys do not depend on the granularity. Each view maps
directly on one subfile. Clusterfile detects this case by com-
puting the mapping at view declaration time as previously
shown in Figure 1. On the other hand, in ROMIO, two data
redistributions, view-file and file-subfile, are always per-
formed, as they are separated by the ADIO interface. The
penalty is especially large when the view and the subfile
data distributions are the same, as in the ROMIO-phys case.
The two redistributions are performed even though they are
not necessary.

For small granularities (upto 16), the aggregate through-

0

2

4

6

8

10

12

14

CLF-phys ROMIO-rr ROMIO-ph

T
im

e
(s

ec
o

n
d

s)

FS access

Shuffle

Figure 7. Breakdown of write access time for
16 byte granularity

put of CLF-phys is at least one order of magnitude larger
than the throughputs of ROMIO-phys and ROMIO-rr.
For instance for 16 byte granularity the CLF-phys write
throughput is 12 times larger than ROMIO-rr and 13 times
larger than ROMIO-phys. We have performed an in-
depth analysis of this case by using the MPE tracing fa-
cilities of MPICH and Jumpshot performance viewer [1].
The breakdown times are shown in figure 7. We re-
port the maximum times for four processes performing
MPI_File_write_all operations in parallel. The
ROMIO-phys write time is 11.60 seconds. Of this time,
87.5% (10.15 seconds) is spent in the shuffle phase and
12.5% (1.45 seconds) in I/O phase. The large ratio of shuf-
fle phase in total time is due to the small access granularity,
for which the amount of file offsets to be exchanged among
the compute nodes is large. For ROMIO-rr, the parallel
write time is 10.71 seconds, of which 94.4% (10.11 sec-
onds) are spent in shuffle phase and 5.6% (0.6 seconds) in
I/O phase. As expected, the shuffle phase takes approxima-
tively the same amount of absolute time for both ROMIO-
phys and ROMIO-rr, 10.15 and 10.11 seconds, respectively.
The difference comes from the I/O access phase, as the file
is accessed contiguously for two different file distributions.
However, the main performance problem comes from the
unexpectedly large overhead of the shuffle phase as com-
pared to the I/O phase. For CLF-phys almost the whole time
is spent in the file system access routine (0.82 seconds).

7.2 BTIO benchmark

NASA’s BTIO benchmark [22] solves the Block-
Tridiagonal (BT) problem, which employs a complex do-
main decomposition across a square number of compute
nodes. Each compute node is responsible for multiple
Cartesian subsets of the entire data set. The execution al-
ternates computation and I/O phases. Initially, all com-
pute nodes collectively open a file and declare views on the
relevant file regions. After each five computing steps the
compute nodes write the solution to a file through a collec-

tive operation. At the end, the file is collectively read and
the solution verified for correctness. In Figure 8 we report
the results for the MPI implementation of the benchmark,
which uses MPI-IO’s collective I/O routines. In order to al-
low the employment of the physical file distribution, we had
to add one subfile_datatypes file hint to the bench-
mark code, in order to specify the file layout.

Clusterfile used 4 I/O nodes. ROMIO’s two-phase I/O
employed 4 compute nodes for collective buffering and 4
Clusterfile I/O servers. We use 4 processes and three classes
of data set sizes: A (419.43 MBytes), B (1697.93 MBytes)
and C (6802.44 MBytes). For these classes the bench-
mark performs 200 compute steps and 40 I/O steps. Fig-
ure 8 shows the results for one I/O step writing and reading
10.5 MBytes (A), 42.2 MBytes (B) and 170 MBytes (C). In
the original implementation, each compute node splits the
large writes and reads in blocks of 1,000,000 bytes (or less
for the last block). The access patterns of all the classes are
nested-strided with a nesting depth of 2. The access gran-
ularities are 1280 bytes (A), 2040 bytes (B) and 3240 (C),
respectively.

As expected, the CLF-phys significantly outperforms
ROMIO-rr and ROMIO-phys. CLF-phys is 100% (A), 92%
(B), 96% (C) faster than ROMIO-rr for writing, and 200%
(A), 153% (B) and 159% (C) for reading. Additionally,
CLF-phys is 100% (A), 92% (B), 102% (C) faster than
ROMIO-phys for writing, and 175% (A), 165% (B) and
177% (C) for reading.

It can be noticed that the results of ROMIO-rr and
ROMIO-phys are similar. As the view mapping is the same,
the main difference between ROMIO-rr and ROMIO-phys
lays in the I/O phase. In this case, because the access gran-
ularity is large enough, the file system performs roughly the
same for the two different file physical distributions.

8 Related work

ADIO, the file system independent interface of ROMIO,
has been implemented for several file systems. The MPI-
IO/GPFS implementation [13] contains optimizations for
data shipping, file prefetching and collective data access op-
erations. Like in our case, the authors insist on the impor-
tance of efficiently mapping the MPI-IO functionality on
the mechanisms of the file system. For example the data
shipping of MPI-IO is well matched to the data shipping of
GPFS. An evaluation of MPI-IO/PVFS implementation of
ADIO is presented in [17].

Besides ROMIO, there are other MPI-IO implementa-
tions such as MPIIO/HPPS [5] and PMPIO [2]. These im-
plementation are among the first ones and have contributed
to the propagation of the MPI-IO standard. The MPI-IO
implementation of the VIPIOS parallel I/O run-time sys-
tem [16] maps MPI data types on the internal VIPIOS struc-

Class A

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

Write Read

T
im

e
(s

ec
o

n
d

s)

CLF-phys

ROMIO-rr

ROMIO-phys

Class B

0

0,1

0,2

0,3

0,4

0,5

0,6

Write Read

T
im

e
(s

ec
o

n
d

s)

CLF-phys

ROMIO-rr

ROMIO-phys

Class C

0

0,5

1

1,5

2

2,5

Write Read

T
im

e
(s

ec
o

n
d

s)

CLF-phys

ROMIO-rr

ROMIO-phys

Figure 8. BTIO file write and read times

tures. Like in our approach, VIPIOS uses data distribution
at two layers: problem layer analogous to the access pat-
tern and the view, and data layer, analogous to the physical
file distribution. The layout decisions are taken automati-
cally, an approach similar to that of Panda parallel I/O li-
brary [21].

MPIIO/DAFS [23] is an example of employing the Re-
mote Direct Memory Access (RDMA) capabilities of the
Virtual Interface Architecture for increasing remote file ac-
cess performance.

Several researches have contributed with optimizations
of MPI-IO data operations: data sieving [19], two-phase
I/O [19], collective caching [6], cooperating write-behind
buffering [7]. The file metadata performance has been eval-
uated in [8].

9 Conclusions

In this paper we presented an implementation of the
MPI-IO interface for the Clusterfile parallel file system.
The main difference between existing MPI-IO implemen-
tations and MPI-IO/CLF resides in the possibility of declar-
ing physical file distributions by using MPI data types and
hints. The implementation offers an alternative to ROMIO,
completely implementing the view, collective I/O opera-
tions and global caching inside the file system. The ap-
proach allows to correlate the potential access patterns of
a parallel application, as indicated by a view, with the file
physical distribution. For small access granularities we have
measured performance improvements of more than one or-
der of magnitude.

Acknowledgments

This work has been supported by the Spanish Ministry of
Education and Science under the TIN2004-02156 contract.

References

[1] MPICH website. http://www-unix.mcs.anl.gov/mpi/mpich/.

[2] S. A. Fineberg, P. Wong, B. Nitzberg, and C. Kuszmaul.
PMPIO - A Portable Implementation of MPI-IO. In FRON-
TIERS ’96: Proceedings of the 6th Symposium on the Fron-
tiers of Massively Parallel Computation, page 188, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[3] F. Isaila and W. Tichy. Clusterfile: A flexible physical layout
parallel file system. Concurrency and Computation: Prac-
tice and Experience, 15(7–8):653–679, 2003.

[4] F. Isaila and W. Tichy. View I/O:improving the performance
of non-contiguous I/O. In Third IEEE International Confer-
ence on Cluster Computing, pages 336–343, Dec. 2003.

[5] T. Jones, R. Mark, J. Martin, J. May, E. Pierce, and L. Stan-
berry. An MPI-IO interface to HPSS. In Proceedings of the
Fifth NASA Goddard Conference on Mass Storage Systems,
pages I:37–50, 1996.

[6] W. keng Liao, K. Coloma, A. Choudhary, L. Ward, E. Rus-
sel, and S. Tideman. Collective Caching: Application-Aware
Client-Side File Caching. In Proceedings of the 14th Inter-
national Symposium on High Performance Distributed Com-
puting (HPDC), 2005.

[7] W. keng Liao, K. Coloma, A. N. Choudhary, and L. Ward.
Cooperative Write-Behind Data Buffering for MPI I/O. In
PVM/MPI, pages 102–109, 2005.

[8] R. Latham, R. B. Ross, and R. Thakur. The Impact of File
Systems on MPI-IO Scalability. In PVM/MPI, pages 87–96,
2004.

[9] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard, 1995.

[10] Message Passing Interface Forum. MPI2: Extensions to the
Message Passing Interface, 1997.

[11] Myricom. GM: the low-level message-passing system for
Myrinet networks. http://www.myri.com/, 2000.

[12] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and
M. Best. File Access Characteristics of Parallel Scientific
Workloads. In IEEE Transactions on Parallel and Dis-
tributed Systems, 7(10), Oct. 1996.

[13] J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges.
MPI-IO/GPFS, an optimized implementation of MPI-IO on
top of GPFS. In Supercomputing ’01: Proceedings of the
2001 ACM/IEEE conference on Supercomputing (CDROM),
pages 17–17, New York, NY, USA, 2001. ACM Press.

[14] S. Ramaswamy and P. Banerjee. Automatic Generation
of Efficient Array Redistribution Routines for Distributed
Memory Multicomputers. In Proceedings of Frontiers ’95:
The Fifth Symposium on the Frontiers of Massively Parallel
Computation. McLean, February 1995.

[15] H. Simitici and D. Reed. A Comparison of Logical and Phys-
ical Parallel I/O Patterns. In International Journal of High
Performance Computing Applications, special issue (I/O in
Parallel Applications), 12(3), 1998.

[16] K. Stockinger and E. Schikuta. ViMPIOS, A ”Truly”
Portable MPI-IO Implementation. In PDP’2000 8th Euromi-
cro Workshop on Parallel and Distributed Processing. IEEE
Computer Society Press, 2000.

[17] H. Taki and G. Utard. MPI-IO on a Parallel File System
for Cluster of Workstations. In IWCC ’99: Proceedings of
the 1st IEEE Computer Society International Workshop on
Cluster Computing, page 150, Washington, DC, USA, 1999.
IEEE Computer Society.

[18] R. Thakur, W. Gropp, and E. Lusk. An abstract device inter-
face for implementing portable paralllel-I/O interfaces.

[19] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and Col-
lective I/O in ROMIO. In Proc. of the 7th Symposium on
the Frontiers of Massively Parallel Computation, pages 182–
189, February 1999.

[20] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-
IO Portably and with High Performance. In Proc. of the Sixth
Workshop on I/O in Parallel and Distributed Systems, pages
23–32, May 1999.

[21] M. Winslett, K. Seamons, Y. Chen, Y. Cho, S. Kuo, and
M. Subramaniam. The Panda library for parallel I/O of large
multidimensional arrays. In Proceedings of Scalable Parallel
Libraries Conference III, October 1996.

[22] P. Wong and R. der Wijngaart. NAS Parallel Benchmarks I/O
Version 2.4. Technical Report NAS-03-002, NASA Ames
Research Center, Moffet Field, CA, 2003.

[23] J. Wu and D. K. Panda. MPI/IO on DAFS over VIA: Imple-
mentation and Performance Evaluation. In IPDPS ’02: Pro-
ceedings of the 16th International Parallel and Distributed
Processing Symposium, page 199, Washington, DC, USA,
2002. IEEE Computer Society.

