
SoundPaint – Painting Music

Jürgen Reuter
Karlsruhe
Germany

http://www.ipd.uka.de/˜reuter/

Abstract

We present a paradigm for synthesizing electronic
music by graphical composing. The problem of map-
ping colors to sounds is studied in detail from a
mathematical as well as a pragmatic point of view.
We show how to map colors to sounds in a user-
definable, topology preserving manner. We demon-
strate the usefulness of our approach on our proto-
type implementation of a graphical composing tool.

Keywords

electronic music, sound collages, graphical compos-
ing, color-to-sound mapping

1 Introduction

Before the advent of electronic music, the west-
ern music production process was clearly di-
vided into three stages: Instrument craftsmen
designed musical instruments, thereby playing
a key role in sound engineering. Composers
provided music in notational form. Performers
realized the music by applying the notational
form on instruments. The diatonic or chromatic
scale served as commonly agreed interface be-
tween all participants. The separation of the
production process into smaller stages clearly
has the advantage of reducing the overall com-
plexity of music creation. Having a standard set
of instruments also enhances efficiency of com-
posing, since experience from previous compo-
sitions can be reused.

The introduction of electro-acoustic instru-
ments widened the spectrum of available in-
struments and sounds, but in principle did not
change the production process. With the intro-
duction of electronic music in the middle of the
20th century however, the process changed fun-
damentally. Emphasis shifted from note-level
composing and harmonics towards sound engi-
neering and creating sound collages. As a re-
sult, composers started becoming sound engi-
neers, taking over the instrument crafts men’s
job. Often, a composition could not be no-
tated with traditional notation, or, even worse,

the composition was strongly bound to a very
particular technical setup of electronic devices.
Consequently, the composer easily became the
only person capable of performing the compo-
sition, thereby often eliminating the traditional
distinction of production stages. At least, new
notational concepts were developed to alleviate
the problem of notating electronic music.

The introduction of MIDI in the early 80s was
in some sense a step back to electro-acoustic,
keyed instruments music, since MIDI is based
on a chromatic scale and a simple note on/off
paradigm. Basically, MIDI supports any instru-
ment that can produce a stream of note on/off
events on a chromatic scale, like keyed instru-
ments, wind instruments, and others. Also,
it supports many expressive features of non-
keyed instruments like vibrato, portamento or
breath control. Still, in practice, mostly key-
boards with their limited expressive capabilities
are used for note entry.

The idea of our work is to break these limi-
tations in expressivity and tonality. With our
approach, the composer creates sound collages
by visually arranging graphical components to
an image, closely following basic principles of
graphical notation. While the graphical shapes
in the image determine the musical content of
the sound collage, the sound itself is controlled
by color. Since in our approach the mapping
from colors to actual sounds is user-definable
for each image, the sound engineering process is
independent from the musical content of the col-
lage. Thus, we resurrect the traditional separa-
tion of sound engineering and composing. The
performance itself is done mechanically by com-
putation, though. Still, the expressive power of
graphics is straightly translated into musical ex-
pression.

The remainder of this paper is organized as
follows: Section 2 gives a short sketch of image-
to-audio transformation. To understand the
role of colors in a musical environment, Section



3 presents a short survey on the traditional use
of color in music history. Next, we present and
discuss in detail our approach of mapping col-
ors to sounds (Section 4). Then, we extend our
mapping to aspects beyond pure sound creation
(Section 5). A prototype implementation of our
approach is presented in Section 6. We already
gained first experience with our prototype, as
described in Section 7. Our generic approach is
open to multiple extensions and enhancements,
as discussed in Section 8. In Section 9, we com-
pare our approach with recent work in related
fields and finally summarize the results of our
work (Section 10).

2 Graphical Notation Framework

In order to respect the experience of tradition-
ally trained musicians, our approach tries to
stick to traditional notation as far as possi-
ble. This means, when interpreting an image
as sound collage, the horizontal axis represents
time, running from the left edge of the image
to the right, while the vertical axis denotes the
pitch (frequency) of sounds, with the highest
pitch located at the top of the image. The verti-
cal pitch ordinate is exponential with respect to
the frequency, such that equidistant pitches re-
sult in equidistant musical intervals. Each pixel
row represents a (generally changing) sound of
a particular frequency. Both axes can be scaled
by the user with a positive linear factor. The
color of each pixel is used to select a sound. The
problem of how to map colors to sounds is dis-
cussed later on.

3 Color in Musical Notation History

The use of color in musical notation has a long
tradition. We give a short historical survey in
order to show the manifold applications of color
and provide a sense for the effect of using colors.

Color was perhaps first applied as a purely no-
tational feature by Guido von Arezzo, who
invented colored staff lines in the 11th century,
using yellow and red colors for the do and fa
lines, respectively. During the Ars Nova period
(14th century), note heads were printed with
black and red color to indicate changes between
binary and ternary meters(Apel, 1962). While
in medieval manuscripts color had been widely
applied in complex, colored ornaments, with the
new printing techniques rising up in the early
16th century (most notably Petrucci’s Odhe-
caton in 1501), extensive use of colors in printed
music was hardly feasible or just too expen-

sive and thus became seldom. Mozart wrote a
manuscript of his horn concert K495 with col-
ored note heads, serving as a joke to irritate the
hornist Leutgeb – a good friend of him(Wiese,
2002). In liturgical music, red color as con-
trasted to black color remained playing an ex-
traordinary role by marking sections performed
by the priest as contrasted to those performed
by the community or just as a means of read-
ability (black notes on red staff lines). Slightly
more deliberate application of color in music
printings emerged in the 20th century with tech-
nological advances in printing techniques: The
advent of electronic music stimulated the devel-
opment of graphical notation (cp. e.g. Stock-

hausen’s Studie II (Stockhausen, 1956) for the
first electronic music to be published(Simeone,
2001)), and Wehinger uses colors in an au-
ral score(Wehinger, 1970) for Ligeti’s Artic-

ulation to differentiate between several classes
of sounds. For educational purposes, some au-
thors use colored note heads in introductory
courses into musical notation(Neuhäuser et al.,
1974). There is even a method for training ab-
solute hearing based on colored notes(Taneda
and Taneda, 1993). Only very recently, the use
of computer graphics in conjunction with elec-
tronic music has led to efforts in formally map-
ping colors to sounds (for a more detailed dis-
cussion, see the Related Work Section 9).

While Wehinger’s aural score is one of the
very few notational examples of mapping col-
ors to sounds, music researchers started much
earlier to study relationships between musical
and aural content. Especially with the upcom-
ing psychological research in the late 19th cen-
tury, the synesthetic relationship between hear-
ing and viewing was studied more extensively.
Wellek gives a comprehensive overview over
this field of research(Wellek, 1954), including
systems of mapping colors to keys and pitches.
Painters started trying to embed musical struc-
tures into their work (e.g. Klee’s Fugue in

Red). Similarly, composers tried to paint im-
ages, as in Mussorgsky’s Pictures at an Exhi-

bition. In Jazz music, synesthesis is represented
by coinciding emotional mood from acoustic
and visual stimuli, known as the blue notes in
blues music.

4 Mapping Colors to Sounds

We now discuss how colors are mapped to
sounds in our approach.

For the remainder of this discussion, we define



a sound to be a 2π-periodic, continuous func-
tion s : R 7→ R, t → s(t). This definition meets
the real-world characteristic of oscillators as the
most usual natural generators of sounds and the
fact that our ear is trained to recognize periodic
signals. Non-periodic natural sources of sounds
such as bells are out of scope of this discus-
sion. We assume normalization of the periodic
function to 2π periodicity in order to abstract
from a particular frequency. According to this
definition, the set of all possible sounds – the
sound space – is represented by the set of all
2π-periodic functions.

Next, we define the color space C following
the standard RGB (red, green, blue) model: the
set of colors is defined by a three-dimensional
real vector space R3, or, more precisely, a sub-
set thereof: assuming, that the valid range of
the red, green and blue color components is
[0.0, 1.0], the color space is the subset of R3 that
is defined by the cube with the edges (0, 0, 0),
(1, 0, 0), (0, 1, 0), and (0, 0, 1). Note that the
color space is not a vector space since it is not
closed with respect to addition and multiplica-
tion by scalar. However, this is not an issue
as long as we do not apply operations that re-
sult in vectors outside of the cube. Also note
that there are other possibilities to model the
color space, such as the HSB (hue, saturation,
brightness) model, which we will discuss later.

Ideally, for a useful mapping of colors to
sounds, we would like to fulfill the following con-
straints:

• Injectivity. Different colors should map
to different sounds in order to utilize the
color space as much as possible.

• Surjectivity. With a painting, we want to
be able to address as many different sounds
as possible – ideally, all sounds.

• Topology preservation. Most impor-
tant, similar colors should map to similar
sounds. For example, when there is a color
gradation in the painting, it should result
in a sound gradation. There should be no
discontinuity effect in the mapping. Also,
we want to avoid noticeable hysteresis ef-
fects in order to preserve reproducibility of
the mapping across the painting.

• User-definable mapping. The actual
mapping should be user-definable, as re-
search has shown that there is no general
mapping that applies uniquely well to all
individual humans.

Unfortunately, there is no mapping between
the function space of 2π-periodic functions and
R3 that fulfills all of the three constraints.
Pragmatically, we drop surjectivity in order
to find a mapping that fulfills the other con-
straints. Indeed, dropping the surjectivity con-
straint does not hurt too much, if we assume
that the mapping is user-definable individually
for each painting and that a single painting does
not need to address all possible sounds: rather
than mapping colors to the full sound space, we
let the user select a three-dimensional subspace
S of the full sound space. This approach also
leverages the limitation of our mapping not be-
ing surjective: since for each painting, a differ-
ent sound subspace can be defined by the com-
poser, effectively, the whole space of sounds is
still addressable, thus retaining surjectivity in a
limited sense.

Dropping the surjectivity constraint, we now
focus on finding a proper mapping from color
space to a three-dimensional subset of the sound
space. Since we do not want to bother the com-
poser with mathematics, we just require the ba-
sis of a three-dimensional sound space to be de-
fined. This can be achieved by the user sim-
ply defining three different sounds, that span
a three-dimensional sound space. Given the
three-dimensional color space C and a three-
dimensional subspace S of the full sound space,
a bijective, topology preserving mapping can be
easily achieved by a linear mapping via a matrix
multiplication,

M : C 7→ S, x → y = Ax, x ∈ C, y ∈ S (1)

with A being a 3 × 3 matrix specifying the ac-
tual mapping. In practice, the composer would
not need to specify this vector space homomor-
phism M by explicitly entering some matrix A.
Rather, given the three basis vectors of the color
space C, i.e. the colors red, green, and blue,
the composer just defines a sound individually
for each of these three basis colors. Since each
other color can be expressed as a linear combi-
nation of the three basis colors, the scalars of
this linear combination can be used to linearly
combine the three basis sounds that the user
has defined.

5 Generalizing the Mapping

As excitingly this approach may sound at first,
as disillusioning we are thrown back to real-
ity: pure linear combination of sounds results in
nothing else but cross-fading waveforms, which



quickly turns out to be too limited for serious
composing. However, what we can still do is
to extend the linear combination of sounds onto
further parameters that influence the sound in a
non-linear manner. Most notably, we can apply
non-linear features on sounds such as vibrato,
noise content, resonance, reverb, echo, hall, de-
tune, disharmonic content, and others. Still,
also linear aspects as panning or frequency-
dependent filtering may improve the overall ca-
pabilities of the color-to-sound mapping. In
general, any scalar parameter, that represents
some operation which is applicable on arbitrary
sounds, can be used for adding new capabilities.
Of course, with respect to our topology preser-
vation constraint, all such parameters should re-
spect continuity of their effect, i.e. there should
no remarkable discontinuity arise when slowly
changing such a parameter.

Again, we do not want to burden the com-
poser with explicitly defining a mapping func-
tion. Instead, we extend the possibilities of
defining the three basis sounds by adding scalar
parameters, e.g. in a graphical user interface
by providing sliders in a widget for sound defi-
nition.

So far, we assumed colors red, green and blue
to serve as basis vectors for our color space.
More generally, one could allow to accept any
three colors, as long as they form a basis of the
color space. Changing the basis of the color
space can be compensated by adding a basis
change matrix to our mapping M :

M ′ : C’ 7→ S, x → y = AφC′
→Cx = A′x, (2)

assuming that φC′
→C is the basis change matrix

that converts x from space C’ to space C.
Specifically, composers may want to prefer

the HSB model over the RGB model: tradition-
ally, music is notated with black or colored notes
on white paper. An empty, white paper is there-
fore naturally associated with silence, while a
sheet of paper heavily filled with numerous mu-
sical symbols typically reminds of terse music.
Probably more important, when mixing colors,
most people think in terms of subtractive rather
than additive mixing. Conversion between HSB
and RGB is just another basis change of the
color space.

When changing the basis of the color space,
care must be taken with respect to the range
of the vector components. As previously men-
tioned, the subset of the R3, that forms the
color space, is not a vector space, since the sub-

set is not closed with respect to addition and
multiplication by scalar. By changing the basis
in R3, the cubic shape of the RGB color space in
the first octant generally transforms into a dif-
ferent shape that possibly covers different oc-
tants, thereby changing the valid range of the
vector components. Therefore, when operating
with a different basis, vectors must be carefully
checked for correct range.

6 SoundPaint Prototype
Implementation

In order to demonstrate that our approach
works, a prototype has been implemented in
C++. The code currently runs under Linux,
using wxWidgets(Roebling et al., 2005) as GUI
library. The GUI of the current implementation
mainly focuses on providing a graphical front-
end for specifying an image, and parameterizing
and running the transformation process, which
synthesizes an audio file from the image file. An
integrated simple audio file player can be used
to perform the sound collage after transforma-
tion.

Figure 1: Mapping Colors to Sounds

Currently, only the RGB color space is sup-
ported with the three basis vectors red, green,
and blue. The user defines a color-to-sound
mapping by simply defining three sounds to be
associated with the three basis colors. Figure
1 shows the color-to-sound mapping dialog. A
generic type of wave form can be selected from
a list of predefined choices and further param-
eterized, as shown in Figure 2 for the type of
triangle waves. All parameters that go beyond
manipulating the core wave form – namely pan,
vibrato depth and rate, and noise content – are
common to all types of wave forms, such that
they can be linearly interpolated between dif-
ferent types. Parameters such as the duty cycle
however only affect a particular wave form and
thus need not be present for other types of wave
forms.

Some more details of the transformation are
worth mentioning. When applying the core
transformation as described in Section 2, the



Figure 2: Parameterizing a Triangle Wave

resulting audio file will typically contain many
crackling sounds. These annoying noises arise
from sudden color or brightness changes at pixel
borders: a sudden change in sound produces
high-frequency peaks. To alleviate these noises,
pixel borders have to be smoothened along the
time axis. As a very simple method of anti-
aliasing, SoundPaint horizontally divides each
image pixel into sub-pixels down to audio reso-
lution and applies a deep path filter along the
sub-pixels. The filter characteristics can be con-
trolled by the user via the Synthesize Options

widget, ranging from a plain overall sound with
clearly noticeable clicks to a smoothened, al-
most reverb-like sound.

Best results are achieved when painting only
a few colored structures onto the image and
leaving the keeping the remaining pixels in the
color that will produce silence (i.e., in the RGB
model, black). For performance optimization,
it is therefore useful to handle these silent pix-
els separately, rather than computing a complex
sound with an amplitude of 0. Since, as an effect
of the before mentioned pixel smoothing, often
only very few pixels are exactly 0, SoundPaint
simply assumes an amplitude of 0, if the am-

plitude level falls below a threshold value. This
threshold value can be controlled via the gate

parameter in the Synthesize Options widget.

7 Preliminary Experience

SoundPaint was first publically presented in
a workshop during the last Stadtgeburtstag
(city’s birthday celebrations) of the city Karl-

sruhe(Sta, 2004). Roughly 30 random visitors
were given the chance to use SoundPaint for a
30 minutes slot. A short introduction was pre-
sented to them with emphasis on the basic con-
cepts from a composer’s point of view and basic
use of the program. They were instructed to
paint on black background and keep the paint-
ing structurally simple for achieving best re-
sults. For the actual process of painting, XPaint
(as default) and Gimp (for advanced users) were
provided as external programs.

Almost all users were immediately able to
produce sound collages, some of them with very
interesting results. What turned out to be most
irritating for many users is the additive interpre-
tation of mixed colors. Also, some users started
with a dark gray rather than black image back-
ground, such that SoundPaint’s optimization
code for silence regions could not be applied, re-
sulting in much slower conversion. These obser-
vations strongly suggest to introduce HSB color
space in SoundPaint.

8 Future Work

Originally stemming from a command-line tool,
SoundPaint still focuses on converting image
files into audio files. SoundPaint’s GUI mostly
serves as a convenient interface for specifying
conversion parameters. This approach is, from
a software engineering point of view, a good ba-
sis for a clean software architecture, and can
be easily extended e.g. with scripting purposes
in mind. A composer, however, may prefer a
sound collage in a more interactive way rather
than creating a painting in an external appli-
cation and repeatedly converting it into an au-
dio file in a batch-style manner. Hence, Sound-
Paint undoubtedly would benefit from integrat-
ing painting facilities into the application itself.

Going a step further, with embedded paint-
ing facilities, SoundPaint could be extended
to support live performances. The performer
would simply paint objects ahead of the cursor
of SoundPaint’s built-in player, assuming that
the image-to-audio conversion can be performed
in real-time. For Minimal Music like perfor-



mances, the player could be extended to play
in loop mode, with integrated painting facili-
ties allowing for modifying the painting for the
next loop. Inserting or deleting multiple objects
following predefined rhythmical patterns with a
single action could be a challenging feature.

Assembling audio files generated from multi-
ple images files into a single sound collage is de-
sired when the surjectivity of our mapping is an
issue. Adding this feature to SoundPaint would
ultimately turn the software into a multi-track
composing tool. Having a multi-track tool, in-
tegration with other notation approaches seems
nearby. For example, recent development of
LilyPond’s(Nienhuys and Nieuwenhuizen, 2005)
GNOME back-end suggests to integrate tradi-
tional notation in separate tracks into Sound-
Paint. The overall user interface of such a multi-
track tool finally could look similar to the ar-
range view of standard sequencer software, but
augmented by graphical notation tracks.

9 Related Work

Graphical notation of music has a rather long
history. While the idea of graphical compos-
ing as the reverse process is near at hand, prac-
tically usable tools for off-the-shelf computers
emerged only recently. The most notably tools
are presented below.

Maybe Iannis Xenakis was the first one who
started designing a system for converting im-
ages into sounds in the 1950’s, but it took him
decades to present the first implementation of
his UPIC system in 1978(Xenakis, 1978). Like
SoundPaint, Xenakis uses the coordinate axes
following the metaphor of scores. While Sound-
Paint uses a pixel-based conversion that can be
applied on any image data, the UPIC system
assumes line drawings with each graphical line
being converted into a melody line.

Makesound(Burrell, 2001) uses the following
mapping for a sinusoidal synthesis with noise
content and optional phase shift:

x position phase
y position temporal position
hue frequency
saturation clarity (inv. noise content)
luminosity intensity (amplitude)

In Makesound, each pixel represents a section
of a sine wave, thereby somewhat following the
idea of a spectrogram rather than graphical no-
tation. Color has no effect on the wave shape
itself.

EE/CS 107b(Suen, 2004) uses a 2D FFT of

each of the RGB layers of the image as basis for
a transformation. Unfortunately, the relation
between the image and the resulting sound is
not at all obvious.

Coagula(Ekman, 2003) uses a synthesis
method that can be viewed as a special case
of SoundPaint’s synthesis with a particular set
of color to sound mappings. Coagula uses a si-
nusoidal synthesis, using x and y coordinates
as time and frequency axis, respectively. Noise
content is controlled by the image’s blue color
layer. Red and green control stereo sound
panning. Following Coagula’s documentation,
SoundPaint should show a very similar behav-
ior when assigning 100% noise to blue, and pure
sine waves to colors red and green, with setting
red color’s pan to left and green color’s pan to
right.

Just like Coagula, MetaSynth(Wenger and
Spiegel, 2005) maps red and green to stereo pan-
ning, while blue is ignored.

Small Fish(Furukawa et al., 1999), presented
by the ZKM(ZKM, 2005), is an illustrated book-
let and a CD with 15 art games for control-
ling animated objects on the computer screen.
Interaction of the objects creates polytonal se-
quences of tones in real-time. Each game de-
fines its own particular rules for creating the
tone sequences from object interaction. The
tone sequences are created as MIDI events and
can be played on any MIDI compliant tone gen-
erator. Small Fish focuses on the conversion of
movements of objects into polytonal sequences
of tones rather than on graphical notation; still,
shape and color of the animated objects in some
of the games map to particular sounds, thereby
translating basic concepts of graphical notation
into an animated real-time environment.

The PDP(Schouten, 2004) extension for the
Pure Data(Puckette, 2005) real-time system fol-
lows a different approach in that it provides a
framework for general image or video data pro-
cessing and producing data streams by serializa-
tion of visual data. The resulting data stream
can be used as input source for audio process-
ing.

Finally, it is worth mentioning that the vi-
sualization of acoustic signals, i.e. the op-
posite conversion from audio to image or
video, is frequently used in many systems,
among them Winamp(Nullsoft, 2004) and
Max/MSP/Jitter(Cycling ’74, 2005). Still,
these species of visualization, which are of-
ten implemented as real-time systems, typically



work on the audio signal level rather than on
the level of musical structures.

10 Conclusions

We presented SoundPaint, a tool for creating
sound collages based on transforming image
data into audio data. The transformation fol-
lows to some extent the idea of graphical no-
tation, using x and y axis for time and pitch,
respectively. We showed how to deal with the
color-to-sound mapping problem by introduc-
ing a vector space homomorphism between color
space and sound subspace. Our tool mostly
hides mathematical details of the transforma-
tion from the user without imposing restric-
tions in the choice of parameterizing the trans-
formation. First experience with random users
during the city’s birthday celebrations demon-
strated the usefulness of our tool. The re-
sult of our work is available as open source at
http://www.ipd.uka.de/~reuter/

soundpaint/.

11 Acknowledgments

The author would like to thank the Faculty of
Computer Science of the University of Karl-
sruhe for providing the infrastructure for devel-
oping the SoundPaint software, and the depart-
ment for technical infrastructure (ATIS) and
Tatjana Rauch for their valuable help in or-
ganizing and conducting the workshop at the
city’s birthday celebrations.

References

Willi Apel. 1962. Die Notation der polyphonen
Musik 900-1600. Breitkopf & Härtel, Wies-
baden.

Michael Burrell. 2001. Makesound, June. URL:
ftp://mikpos.dyndns.org/pub/src/.

Cycling ’74. 2005. Max/MSP/Jitter. URL:
http://www.cycling74.com/.

Rasmus Ekman. 2003. Coagula. URL:
http://hem.passagen.se/rasmuse/Coagula.htm.

Kiyoshi Furukawa, Masaki Fujihata, and Wolf-
gang Münch. 1999. Small fish: Kammer-

musik mit Bildern für Computer und Spieler,
volume 3 of Digital arts edition. Cantz, Ost-
fildern, Germany. 56 S. : Ill. + CD-ROM.

Meinolf Neuhäuser, Hans Sabel, and
Richard Rudolf Klein. 1974. Bunte Za-

ubernoten. Schulwerk für den ganzheitlichen
Musikunterricht in der Grundschule. Di-
esterweg, Frankfurt am Main, Germany.

Han-Wen Nienhuys and Jan Nieuwenhuizen.
2005. LilyPond, music notation for everyone.
URL: http://lilypond.org/.

Nullsoft. 2004. Winamp. URL:
http://www.winamp.com/.

Miller Puckette. 2005. Pure Data. URL:
http://www.puredata.org/.

Robert Roebling, Vadim Zeitlin, Stefan Cso-
mor, Julian Smart, Vaclav Slavik, and
Robin Dunn. 2005. wxwidgets. URL:
http://www.wxwidgets.org/.

Tom Schouten. 2004. Pure Data Packet. URL:
http://zwizwa.fartit.com/pd/pdp/
overview.html.

Nigel Simeone. 2001. Universal edition history.
2004. Stadtgeburtstag Karlsruhe, June. URL:

http://www.stadtgeburtstag.de/.
Karl-Heinz Stockhausen. 1956. Studie II.
Jessie Suen. 2004. EE/CS 107b. URL:

http://www.its.caltech.edu/˜chia/EE107/.
Naoyuki Taneda and Ruth Taneda. 1993.

Erziehung zum absoluten Gehör. Ein neuer
Weg am Klavier. Edition Schott, 7894. B.
Schott’s Söhne, Mainz, Germany.

Rainer Wehinger. 1970. Ligeti, Gyorgy: Ar-

ticulation. An aural score by Rainer We-
hinger. Edition Schott, 6378. B. Schott’s
Söhne, Mainz, Germany.

Albert Wellek. 1954. Farbenhören. MGG –
Musik in Geschichte und Gegenwart, 4:1804–
1811.

Eric Wenger and Edward Spiegel.
2005. Methasynth 4, January. URL:
http://www.uisoftware.com/
DOCS PUBLIC/MS4 Tutorials.pdf.

Henrik Wiese. 2002. Preface to Concert for
Horn and Orchestra No. 4, E flat ma-

jor, K495. Edition Henle, HN 704. G.
Henle Verlag, München, Germany. URL:
http://www.henle.de/katalog/
Vorwort/0704.pdf.

Iannis Xenakis. 1978. The UPIC system. URL:
http://membres.lycos.fr/musicand/
INSTRUMENT/DIGITAL/UPIC/UPIC.htm.

2005. Zentrum für Kunst und Medientechnolo-
gie. URL: http://www.zkm.de/.


