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Abstract: We performed semi-
structured, open-ended interviews with 
11 professional developers of parallel, 
scientific applications to determine how 
their programming time is spent and 
where tools could improve productivity. 
The subjects were selected from a 
variety of research laboratories, both 
industrial and governmental.  The major 
findings were that programmers would 
prefer a global over a per-processor view 
of data structures, struggle with load 
balancing and optimizations, and need 
interactive tools for observing the 
behavior of parallel programs. 
Furthermore, handling and processing 
massive amounts of data in parallel is 
emerging as a new challenge. 
 
1 Introduction 
 
Programmer productivity has been 
improving, but at a much lower rate than 
processor speeds [4]. This disparity has 
led to a shift of bottlenecks in the 
supercomputer community consisting of 
the computer and human. 
 
In many cases, the bottleneck for 
achieving results is no longer compute 
time but programmer time. To explore 
the phenomena, questions in our survey 
were therefore aimed at obtaining a time 
and task breakdown for development 
work and eliciting suggestions of where 
tool support might improve programmer 
productivity. 

 
 
 
2 Method 
 
2.1 Survey Sampling 
 
The sample size of participants in this 
study is in keeping with the techniques 
for purposive sampling. Purposive 
sampling is used for exploration or pilot 
studies when the demographics of the 
participants are clear but the unit of 
analysis or important questions are 
unknown [1]. In qualitative studies of 
nonrandom cases typical of a class of 
participants, such as programmers of 
parallel machines, purposive sampling 
can be “sufficient to display something 
of substantive importance” [2]. For such 
surveys experienced researchers 
recommend sampling at least 6 to 7 
participants to document core 
experiences that can generate questions 
for follow-up quantitative studies (see 
for example [5], [6], [8]). 
 
2.2 Interview Construction 
 
Semi-structured, open-ended interviews 
follow a set of well-understood rules. 
They build rapport in the first segment 
and then look for deeper information. 
The interviewers summarize information 
in order to confirm the data with the 
respondent. 
 
While open-ended conversations are 



allowed, interviewers make sure all 
questions are eventually addressed. They 
listen for native language: words, terms 
and descriptions to fully understand the 
world of the respondent. Techniques 
such as reflecting back help the 
interviewer achieve a deeper emphatic  
understanding [6], [8]. 
 
An interview guide was initially 
designed with the aid of a social scientist 
and tested with two subjects. The 
feedback was used to clarify the 
statement of purpose and modify the 
questions. Since part of the interview 
was to elicit time and task breakdown, 
and these estimates are most reliable 
when done within the context of a step-
by-step description of an actual project, 
the interviewer asked the subject to 
identify a parallel programming project 
that he/she remembered well. The  
project might involve writing new code 
or adapting existing code. The 
respondent was asked to describe the 
project in detail and to identify phases 
that the project went through and how 
much time the phases took. The phases 
suggested were: 

1. understanding the problem 
and/or existing software; 

2. studying documentation; 
3. designing a solution; 
4. writing new code or adapting 

existing code; 
5. testing, debugging and checking; 
6. correctness of the results; 
7. optimizing the code; and 
8. scheduling production runs. 

 
Respondents were, of course, free to 
specify different phases, for instance 
those of a prototype workflow. 
Respondents were asked to identify the 
most difficult and time-consuming 
phase. Furthermore, we included a 

specific question to estimate the amount 
of communication and synchronization 
code in the application. 
 
The next block of questions centered on 
tools. First, respondents were asked what 
programming languages, communication 
libraries, debuggers, version control, or 
other tools they used. Second, the 
interviewer probed explicitly for tools 
that might speed up the development if 
the programmers had to do the same 
project again. In this part of the 
interview, summarization of the ideas 
expressed was particularly important. 
 
In closing, the interviewer asked whether 
the respondent would like to add 
anything or had any questions. The 
interviewer finally expressed thanks and 
left the conversation open for quick 
follow-up calls or emails. 
 
2.3 Respondents 
 
Candidates were initially approached to 
participate in the study based on their 
senior status and experience. In all, 16 
candidates were identified and 11 of 
them participated in the survey. The 
remaining five did not reply to e-mail. 
All respondents were professionals with 
a PhD in a scientific discipline, and their 
main work was developing parallel 
applications or benchmarks.  The 11 
respondents came from both industrial 
and governmental research labs in the 
US and Germany. No claims are made 
that the sample is representative, but the 
areas in which they have experience is 
found  widely scattered,  with 4 of the ll 
were in the area of computational 
physics called Lattice Quantum 
Chromodynamics (QCD). Six of the 
respondents worked in teams while the 
other five worked alone when 



developing the application discussed. All 
candidates were male. 
 
Table 1: Areas and Number of 
Respondents 

Area # of Respondents 

Lattice QCD 4 

Particle Physics 
Data Analysis 1 

Gravitational Wave 
Analysis 1 

Quantum Chemistry 1 

Interval Arithmetic 2 

Reengineering 1 

Illumination 
modelling 1 

Total 11 

 

3 Findings 
 
3.1 Application Classes 
 
We found three different application 
classes: computation-bound with regular 
structure, computation-bound with 
irregular structure, and I/O-bound. 
Importantly, we noted that developers 
approach these classes in markedly 
different ways and face different 
challenges. 
 
Computation-bound with Regular 
Structure  (4 Respondents) 
 
This class is characterized by large, 
multi-dimensional arrays that are 
distributed over multiple compute nodes 
and processed in parallel. Developers for 

this class struggle with the per-processor 
view imposed by MPI and similar 
communication packages on distributed 
memory machines. A per-processor view 
of an array means that programmers 
divide the array in chunks that are stored 
on individual computer nodes and write 
their programs for these chunks rather 
than for the array as a whole. The 
undesirable side effect of this approach 
is that whenever data needs to be fetched 
from, or stored on, another chunk, 
special communication code, typically in 
MPI, must be inserted. The extra MPI 
code was typically 50-60% of the entire 
code.  
 
In one reengineering project, where the 
respondent described how he took 
existing benchmarks written with MPI 
and rewrote them with a global or 
shared-memory view, the code became 
dramatically shorter: it shrank to one 
fifth to one tenth of the original. This 
respondent spent extra effort writing 
code in as clear a way as possible and 
eschewed all optimizations that might 
obfuscate the intent of the algorithm. 
The differences in code bloat observed 
by this individual may be due to the per-
processor view requiring code in 
addition to the MPI code. Optimizations 
and sloppy coding may also account for 
some extra code. 
 
MPI code is not easy to write; some 
respondents called it the most difficult 
aspect of a parallel application. A global 
view of arrays, as in HPF or ZPL [3], 
was deemed far superior. One 
respondent said: “If we had this, a lot of 
programmers could do something more 
meaningful than writing MPI.”  
 
One-sided communication was seen as 
mitigating the problems that MPI causes, 



without going all the way to a global 
view. With two-sided communication as 
in MPI, the programmer must write two 
statements for a single communication: 
one to send the data, and one to receive 
and store it into the target variable. In 
addition, sender and receiver must be 
synchronized in such a manner that the 
sent message is received by the correct 
receiving statement, not an earlier or 
later one. In contrast, one-sided 
communication allows the sender to 
deposit a datum into a target variable at 
the receiver without the cooperation of 
the receiver. Thus, the communication 
code is roughly half as long and 
synchronization is needed less often. 
 
In large applications, the problem often 
is to redistribute data from one step to 
the next, in order to be able to process it 
in parallel. Redistribution is costly on 
current machines. 
 
Computation-bound with Irregular 
Structure  (5 Respondents) 
 
This class of applications is 
characterized by many sub-problems to 
be solved, whose number and 
distribution over the computation nodes 
is unpredictable. One typically finds 
irregular tree structures or parameter 
space searches in this class of problems. 
Each processor maintains a list of sub-
problems that need to be processed. 
During processing, new sub-problems 
may get added to the list. When the list's 
length falls below a certain threshold, 
the processor obtains additional work 
from neighboring nodes (work stealing). 
Alternatively, an overloaded node can 
spread its work to less loaded nodes. 
Other problems are irregular meshes that 
are subdivided dynamically. N-body 
problems also have the characteristic of 

unbalanced load, but in order to 
redistribute the load, the data structure (a 
space-dividing oct-tree) needs to be 
redistributed.  
 
One respondent reported that 
parallelizing a serial version of an 
irregular problem took as long as writing 
the sequential version, even though the 
computational kernels remained 
unchanged. Another respondent reported 
that the statistical distribution of sub-
computations in his application was 
reasonable so no load balancing was 
necessary. 
 
It is not clear whether load-balancing in 
irregular applications can be done by 
libraries (providing, for instance, 
distributed work queues) or by language 
constructs, or is highly application 
dependent. It appears to be a neglected 
area. Three respondents worked on this 
type of problem. 
 
I/O-bound (2 Respondents) 
 
This class of applications is 
characterized by massive data files that 
need to be processed in parallel. 
Examples are the interpretation of 
detector data in high-energy physics or 
the analysis of gravitational wave data. 
Here, the problem is not parallelism or 
synchronization. These applications are 
“embarrassingly parallel” in that they are 
easily split in many sub-computations 
that do not communicate. The problem, 
however, is to stream the data through 
the machine in parallel and collect and 
merge the results at the end. Truly 
parallel file systems and sufficient I/O 
bandwidth are essential. Since scalable 
parallel file systems, in which a single 
file can be accessed concurrently are 
rare, developers end up splitting the files 



manually and storing the pieces on 
different file servers. An additional 
problem is bookkeeping: knowing which 
data sets have been processed. This task 
can become very important because 
detectors may deliver Terabytes of data 
per day and do this for several years. 
System administrators are quickly 
overwhelmed with the task of keeping 
track what data was and what was not 
analyzed. 
 
A second problem with massive data 
handling has to do with how to skip 
errors in the data. Erroneous records can 
cause the analysis program to fail. A 
smart analysis tool should be able to 
identify erroneous records and skip them 
on the next run. 
 
Though physics has the most data to 
process, other scientific areas may soon 
have similar requirements. Biologists 
already handle large amounts of data. 
 
 
3.2 Work and Time Breakdown 
 
Respondents were asked to identify 
phases in their development work and 
estimate the time they spent for each. 
Most of them thought that a raster of 
problem understanding, designing 
algorithms, followed by implementation 
and debugging and optimization 
reflected their work adequately. One 
respondent followed a prototype model, 
characterized by an initial prototype 
followed by a complete rewrite with 
successive releases.  
 
Table 2 provides an overview of the time 
breakdown. Problem understanding 
varied – around 20% of total effort, with 
the exception that the reengineering 
effort consumed 50%. The bulk of the 

time went into implementation and 
debugging. Only Lattice QCD 
researchers spent significant time on 
optimizing the computational kernels 
(writing assembly code for them). Other 
respondents said their programming was 
permanent optimization (parallelization 
and communication). Nobody mentioned 
that reading documentation was an issue. 
 
MPI use varied widely. For instance, the 
data analysis problems needed little 
MPI, since only data scattering and 
gathering needed to be implemented. 
 
 
Table 2: Percent of Time in Task for 
Each Respondent 

% of Time in Task Area  
of Re-
spon-
dent 

Under- 
stand-

ing 

Design Imple-
men-
tation 

Opti-
miza-
tion 

Runs 

QCD1 22 10 56 12 0 

QCD2 0 30 60 10 0 

QCD3 0 0 0 100 0 

QCD4 0 20 30 50 0 

Data 
Anal1 

0 20 80 0 0 

Data 
Anal2 

Prototyping process used is not 
consistent with a linear model of time 
usage. 

Chem 20 20 40 0 20 

Inter-
val 

Arith1 

20 50 25 5 0 

Inter-
val 

Arith2 

40 0 60 0 0 

Reeng-
ineer-

ing 

50 25 25 0 0 

Illumi-
nation 

25 0 50 0 25 

 
 
 



 
3.3  Tools 
 
Respondents used C/C++/Fortran 
compilers, editors, MPI libraries, and 
problem specific libraries. A few also 
used version control tools (SCCS, RCS, 
CVS). 
 
GDB or DBX was used by a few to 
debug serial programs. Surprisingly, 
only one respondent was using a parallel 
debugger (TotalView). The rest used 
print statements that produced trace files 
for later analysis.  
 
The reasons given for using print 
statements with trace files varied. Some 
stated they were unwilling to learn a new 
debugger that might disappear again in a 
short time.  They felt that tools should be 
in the public domain to improve the 
chances that the tools survived the ups 
and downs of vendors. 
 
For other respondents, there was simply 
no interactive debugger available, 
because they were working in a batch 
environment. Several also said that 
debuggers were not helpful because they 
tended to produce too much trace data. It 
was simply easier to implant output 
statements or output macros that could 
be turned on and off than “taming” a 
debugger. 
 
Finally, those who spent a lot of time on 
optimization thought that they were 
more interested in execution profile data, 
because logic errors weren't that frequent 
or difficult to detect. However, 
debuggers are meant for detecting logic 
bugs and are not good profiling. In any 
case, debuggers and profilers should 
introduce very little overhead. 
 

One team, the Graviational Analysis 
team, switched from C/MPI to Matlab. 
In the first iteration, the application took 
ten months to build using C/MPI and the 
resulting program, running on a PC 
cluster, was disappointingly slow – three 
weeks to process one week of data. 
 
Further, the programming environment 
for the cluster was poor and awkward, 
since interactive debugging was 
impossible. 
 
In a second attempt, the Gravitational 
Analysis Team rebuilt the entire system 
using Matlab only. Even though the 
team was learning Matlab, the entire 
project was completed in 3 months. The 
respondent liked Matlab, because it was 
possible to run scaled down versions on 
a workstation and the interpreted mode 
of Matlab made it possible to watch the 
computation in detail. 
 
Using Matlab, the team was able to 
reduce the time to program the 
computational kernel: from 2-3 weeks to 
3 days. In the process, however, a 
number of additional changes were 
made. First, rather than feeding the data 
from a single file server, filtering it and 
passing suitable subsets to the worker 
nodes, the Matlab version simply passed 
all the data to all the worker nodes. The 
filtering was then done by the worker 
nodes themselves. Second, the data was 
split up and distributed over nine file 
servers. This change both eliminated the 
I/O bottleneck and also MPI. The worker 
nodes simply opened files to get their 
data. In essence, the team simulated 
manually what a scalable parallel file 
system should do automatically. A 
special program later collected the files 
produced by the worker nodes and 
merged the data. The result was a 



dramatic speed-up. Instead of three 
weeks it took less than a day to process 
the data for a week. 
 
Respondents suggested the following list 
of tools. Almost half of them (5) asserted 
that a global view language would 
improve productivity greatly. Parallel 
I/O, load balancing libraries, debuggers, 
and profilers were mentioned twice each, 
the rest once. 

1. Programming languages with 
global arrays, such as Fortran 90, 
HPF, ZPL, or a global array 
toolkit (5 citations). 

2. Scalable, parallel I/O (2 
citations). 

3. Libraries for load balancing (2 
citations). 

4. High- level parallel debuggers 
and profilers (CM-5's parallel 
debugger was mentioned as a 
good one.) (2 citations). 

5. Low-level profilers or simulators 
to see what goes on in the 
processor for optimization 
purposes (cache misses, TLB 
misses, pipeline stalls) (2 
citations).  

6. Communication profilers. 
Presently, communication 
optimization is done by trial and 
error (1 citation). 

7. Prettyprinters for the various 
Fortran versions (1). 

8. Translator from Fortran 77 to 
Fortran 90 (1). 

9. Smart source browsers that have 
static analysis capability, for 
instance for tracing variable use, 
checking initialization, indexing 
and pointers; highlighting dead 
variables and dead code, etc. (1). 

10. Tools to simplify/rewrite/clean 
up formulas (1). 

11. Automated regression testing (a 

la Junit) (1). 
12. Comparative debuggers: suppose 

there are successive versions of a 
program. At a certain point, a 
bug is noticed. In which of the 
versions was the bug introduced? 
This could be solved with a 
technique called delta debugging 
(run the revealing test case on all 
versions automatically) [9] (1). 

13. Distributed versions of basic data 
structures, such as lists, queues, 
priority queues, etc. (1). 

14. A tool that visualizes the status 
of all processors in a time line 
(idle, running, I/O) (1). 

15. For SMP-clusters: compilers 
should make sure shared memory 
communication is used where 
possible; message exchange only 
when going outside of the SMP 
node (1). 

16. One-sided communication 
primitives (1). 

17. Aids for deciding whether 32-bit 
accuracy is enough. Without it, 
everybody uses 64-Bit accuracy 
everywhere, doubling the cost in 
memory bandwid th and cache 
usage (and energy) (1). 

18. Aids for handling erroneous 
input data. The massive data sets 
to be processed are never perfect. 
A faulty data record can lead to a 
program crash. Need a way to 
identify the faulty data record 
and skip it on the next run 
automatically (1) 

 
4. Conclusions  
 
In conclusion the most pressing needs 
we observed seem to be: 

1. A program model based on a 
global view or virtual shared 
address space, combined with 



compilers that produce efficient 
communication code. Although 
early experience with HPF 
compilers was disappointing, 
more recent work in HPF [7] and 
ZPL compilers [3] showed that 
compilers can produce 
communication code competitive 
with hand-written code. 

2. Scalable, truly parallel I/O for 
handling massive data sets. 

3. Libraries for load balancing and 
distributed versions of basic data 
structures. 

4. Fancy parallel debuggers and 
profilers (at the levels of 
algorithm, communication 
operations, and processor 
internals). 
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