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Abstract

The TCP connection endpoint migration allows arbi-
trary server-side connection endpoint assignments to server
nodes in cluster-based servers. The mechanism is client-
transparent and supports back-end level request dispatch-
ing. It has been implemented in the Linux kernel and can
be used as part of a policy-based software architecture for
request distribution. We show that the TCP connection end-
point migration can be successfully used for request dis-
tribution in cluster-based Web servers, both for persistent
and non-persistent HTTP connections. We present locality-
aware policies using TCP connection migration that out-
perform Round Robin by factors as high as 2.79 in terms of
the average response time for certain classes of requests.

1 Introduction

Cluster-based servers are common place nowadays in
the server industry. They employ front-end computers to
redirect the client requests to server computers (back-ends).
The requests are most of the time dispatched according to
back-end load balancing and/or content-aware hints. How-
ever, previous research results [9, 2] suggest moving the
request distribution at the back-end level in order to take
advantage of the back-end cooperation.

In this paper we describe the TCP connection endpoint
migration, a mechanism that helps build back-end level re-
quest routing policies by allowing a flexible assignment and
reassignment of server-side connection endpoints to par-
ticular back-end machines. It hides from the client the
distributed nature of the server, for the client sees only a
generic server-side endpoint to which it connects, irrespec-
tive of its actual physical server binding. The mechanism
has been implemented as a Linux kernel module.

To verify our mechanism, we used it in content-aware
request distribution policies both for persistent and non-
persistent HTTP connections for a popular stand-alone Web
server, namely Apache [1]. We run Apache transparently

on top of our cluster (one server instance per cluster node),
without any modifications to the server code. Only the un-
derlying kernels are aware of the inter-node cooperation,
while the user-level daemon serves requests as it would do
on a single machine.

2 Related work
Connection migration is a new request routing mecha-

nism lately put under scrutiny by Snoeren et al. [10, 11]
and Sultan et al. [15, 14]. The first solution is not a true mi-
gration protocol as it involves an user-level “wedge” that
intermediates between the connection endpoints. More-
over, that protocol is application-dependent (i.e., not a true
TCP-migration protocol). Both solutions describe client-
server migration protocols allowing either one of the par-
ties a graceful migration of their corresponding endpoint to
a third party conforming to the protocol. No front-ends are
needed between the client and the server.

However, there is little evidence that the client-server
connection migration could be used successfully in request
distribution for cluster servers mostly because of the in-
duced overhead. In fact, Snoeren et al. used it for fault-
tolerance purposes, as a fine-grain fail-over mechanism
for long-running connections switching across a distributed
collection of replica servers [11]. In a somewhat differ-
ent domain, they also used the connection migration to ap-
proach host mobility [10] (because the client endpoints can
migrate as well). With Server Continuations, Sultan et al.
[14] used the connection migration to migrate server ses-
sions (a particular form of process/thread migration). Our
protocol is client-transparent and allows server-side end-
point migrations only, in order to fully profit from the high
speed System Area Networks, whose latency and through-
put figures are better than those of the Internet.

A flexible and general one-to-many communication
model is offered by the Anypoint [17] system. Anypoint
uses application-layer policies to route the requests and op-
erates at the granularity of transport frames. Anypoint’s per-
formance has been tested for an NFS storage router.



Cardellini et al. [5] provide a broad survey on locally
distributed Web servers. The survey doesn’t mention con-
nection migration among the request routing mechanisms.

3 Server and request distribution architec-
ture

Our server relies on the capabilities of a System Area
Network (SAN) acting as a communication backplane
among the cluster nodes. The intra-cluster specific proto-
cols take place on the SAN, while the traditional commu-
nication to the “world” employs the LAN. The low latency
and high bandwidth figures of the SANs represent the incen-
tive for our connection endpoint migration protocol design.

Following the taxonomy proposed by Cardellini et al.
[5], our architecture employs features of both Cluster-based
and Virtual servers. Similar to Cluster-based servers, the
front-ends may route requests as TCP-layer switches. How-
ever, similar to Virtual servers, a Virtual IP server address
is assigned to each of the back-ends and not to the front-
end(s). A (Virtual IP, service port) pair defines a generic
TCP endpoint. The connections linked to this generic end-
point can migrate from one server node to another through
the connection endpoint migration mechanism.

The central point of the server software architecture is
a three-phase request distribution algorithm. One phase is
executed at the front-ends, while the other two take place at
the back-end level and express user-specified policies. The
design aims at a tight collaboration between the applica-
tions and the underlying kernel. Capitalizing on the exten-
sible/grafting kernels experience [4, 6], our design enables
the applications (in this particular case, the server programs)
to specify their own policies and to download them into the
kernel as phases in the request distribution algorithm. Our
request distribution is policy- and not service-oriented.

The first phase performs a blind (non-informed) distribu-
tion at the front-end. The distribution is hash-based in order
to dispatch the requests uniformly and is deliberately sim-
ple in order to offload the front-end. This first phase may be
circumvented if using a void policy. As a result, the connec-
tion routing is completely disregarded by the front-end(s).

The second phase concerns the load balancing and takes
place at the back-end level at the connection setup time. The
incoming SYN packets that target generic TCP endpoints
may trigger a TCP and CPU load check on that machine. If
the machine is heavily loaded, the SYN packet is redirected
to a lighter loaded node. The cost of the extra hop is the
SAN latency of a SYN packet, amortized over the cost of
the entire connection activity. This cost is negligible as it
happens only once at the connection setup time.

The third request distribution phase takes place at a back-
end machine already connected to the client, either as a re-
sult of a front-end or a back-end redirection. This phase is
entirely policy-driven and may cause connection endpoint

migrations. The normal application-level protocol (HTTP,
for instance) processing is carried out and steered through
hints provided by the distribution policy. A typical example
for the third phase is the content-aware routing.

4 TCP connection endpoint migration
overview

Our TCP connection endpoint migration is client-
transparent and targets locally-distributed server architec-
tures. It has two variants, one involving the front-end(s)
and a fully-distributed one. As a connection request (a SYN
packet, in fact) arrives at a front-end, it can be directed to
a given server according to a certain policy or it can pass
through to eventually hit a back-end server.

In the first case, the front-ends keep a mapping table
holding (connection ID, server ID) entries. Every packet
flowing in along the connection will be routed by the front-
end according to the mapping table. If a back-end server
chooses at some point to migrate its connection endpoint to
another back-end server, the corresponding mapping entry
at the front-end has to be updated as well. A single cluster
may use many front-ends in order to ensure the scalability
of the server. At the back-end level, a context associated
with each connection endpoint stores, among other infor-
mation, the identity of the front-end through which the con-
nection “came” first. This information helps clean up the
mapping table once the TCP connection has been closed.

In the second case, the requests reach back-ends with-
out front-end interference. If the back-end decides at a later
time to migrate its connection endpoint to another server
in the cluster, a (connection ID, server ID) entry will be in-
serted locally in a so called forwarding table. The migration
leaves no connection behind, so all the subsequent packets
of the migrated connection will be delivered to the usual
RST mechanism of TCP [13, 8]. The routine responsible
to send back an RST segment to the client looks up an en-
try corresponding to the packet in the forwarding table. If
found, no RST segment will be generated and, instead of
discarding the packet, it is sent further over the SAN ac-
cording to the information stored in the forwarding table.
When the new server closes the connection, it sends back a
cleanup message to the old server over the SAN in order to
flush out the corresponding forwarding entry.

Regardless whether the front-ends are involved or not,
the connection endpoint migration protocol takes place be-
tween two back-end server machines and has two main
stages. First, the back-end initiating the migration and the
new server fulfill a modified version of the normal TCP con-
nection setup protocol [8]. As a result, a new server-side
connection endpoint intended to be a duplicate of that of
the initiating server is set up at the new back-end. Then, in
a second step, this new endpoint truly becomes a duplicate
of the old server’s endpoint when the initiating back-end



transfers the entire connection endpoint status to the new
site. The old endpoint is deallocated and the client-server
communication resumes by using the new server-side end-
point. All this happens without the client’s knowledge.

5 The connection endpoint migration proto-
col

The operation of a server wishing to migrate one of its
connection endpoints is described in Figure 1. As soon as
a migration request is issued (i.e., a migration SYN is sent
to the remote server), the connection moves to a wait state.
While in the wait state, any incoming packet is stored in a
connection checkpoint.

TCP_CLOSE

TCP_ESTABLISHED

migration accept

flush checkpoint to remote site +

MIGRATION_WAIT

simulate receiving an RST segment +
optionally, set up forwarding entry

setup checkpoint + stop processing

migration request

store packet into checkpoint

incoming packet

clean up checkpoint + resume processing

migration reject

Figure 1. Connection migration operation at the ini-
tiator
Upon receiving a migration SYN, a server targeted by a

migration will duplicate locally the endpoint of the initia-
tor of the migration. This operation needs properly nego-
tiated initial sequence numbers (ISN) [8]. Packets flowing
between the client and the new server have to respect the
sequence numbers agreed upon with the old server by the
time of the migration. Since the new server-side endpoint
is set up by relying on the TCP connection setup protocol,
the migration requester has to choose a proper “client” ISN.
Additionally, it also has to impose the ISN that the target
node will use as its own ISN during the connection setup
protocol. Letting the target server choose its own ISN would
not permit matching the server sequence numbers currently
in use. The ISN of the new server is the next allowed send
sequence number (denoted by snd nxt in RFC 793 [8]) for
the old server.

The server initiating the migration chooses the “client”
ISN to be either the sequence number of the first packet
stored in the connection checkpoint or, if that checkpoint is
empty, the next sequence number usable by the client (de-
noted by rcv nxt in RFC 793 [8]), minus one. With the ISNs
chosen like that, the modified version of the TCP connec-
tion setup protocol looks like this:

• The initiator server sends to the new server a modified
SYN packet that carries the “client” and the “imposed”
ISNs presented before. At the remote TCP stack, the
imposed ISN is adopted as a “locally generated” ISN.

• The new server receives the SYN packet, carries out
the typical connection setup processing with the sup-
plied “imposed” ISN but drops the generated SYN -
ACK packet and issues locally the corresponding
ACK.

As it can be noticed, only one message is requested to set
up a new connection endpoint at the new site. This design
saves us one SAN message (namely the final ACK, since
a migration acknowledgment message is needed anyway)
and is part of our strategy to keep the migration overhead
as low as possible in order to be able to use the connection
endpoint migration in the request distribution.

When the new endpoint is fully set up at the remote site,
a migration acknowledgment is sent back to the old server.
In turn, the requester flushes out the connection checkpoint
and the write queue (containing packets sent by the server
but not yet acknowledged by the client) by sending them to
the new server site. For the back-end version, it also sets
up the appropriate forwarding entry. The remote site can
safely replay the checkpoint because of the properly set se-
quence numbers. In turn, the server program carries out the
application-level protocol. The machine that initiated the
migration simulates receiving an RST segment (see [8, 13])
and thus flushes its connection state and allocated resources.

The connection migration checkpoint is built at the con-
nection setup time and stores incoming packets. It is pe-
riodically cleaned up as the request processing is carried
out. It isolates the server from the client involvement dur-
ing the migration. During the replay of the checkpoint at
the remote site, the automatically generated ACKs of the
TCP engine are dropped locally for performance rather than
correctness reasons. Since some of the checkpoint packets
have been acknowledged once by the old server, the new
server doesn’t want to confuse the client by sending dupli-
cate ACKs as these may trigger on the client side the con-
gestion avoidance [13] algorithm. As a result of that, the
future data transfers will be erroneously penalized in terms
of performance, since, actually, no congestion took place.
Also, during the migration process, the node initiating the
migration suppresses all the packets that may be sent to the
client (including ACKs sent in response to the client packets
received after initiating the migration).

For the front-end version, as soon as the migration com-
pletes, each ACK sent by the new server is used to up-
date the corresponding front-end connection routing entry,
if any. If no entry for the connection exists, the front-end
registers the connection-to-Medium Access Control address
mapping of the outgoing packet. As soon as the first client
ACK arrives at the new server, the updating process stops
(i.e., server ACKs act no more as update messages).

Upon migration failure, a fall-back mechanism resumes
the execution at the old server. A migration reject message
is sent back and recognized by the old server as an error



condition. Normally, the request processing is continued
from where it was left, if not decided otherwise by the the
server policy that triggered the migration. Anyway, as soon
as the migration rejection is recognized, the connection is
again viewed as a regular, locally-bound connection.

Finally, a few words on time synchronization. TCP uses
time stamps to prevent either peer to receive stale packets.
These time stamps are usually taken from the local logical
clock (i.e., an integer counter) of the operating system (in
Linux, the so called jiffies). In a cluster, there is no way to
synchronize these internal counters because they have inter-
nal relevance only. When it comes to migration, if the old
server uses “newer” time stamps than the new server (i.e.,
the logical clock of the old server is greater than that of the
new one), the client TCP engine will refuse the packets of
the new server because they have “older” time stamps (i.e.,
smaller than those expected). Our solution piggybacks the
old server’s clock value on the migration SYN by using a
SYN option [8]. The new server stores the value in the envi-
ronment of the migrated connection. A filter installed on the
outgoing TCP kernel path uses then this value to adjust the
time stamps accordingly in every outgoing TCP segment.

6 Putting the policies and the connection end-
point migration to work

Technically speaking, writing a policy using connection
endpoint migration is simply a matter of changing the be-
havior of the kernel routine that handles the socket queue
which stores the incoming packets. This queue is part of
the checkpoint managed by the migratory connections. The
server applications access the data in this queue through
the read/readv or recv/recvfrom/recvmsg system calls. In-
side the Linux kernel, these routines call tcp recvmsg which
checks the receive queue and transfers the data to the user
space. The policy operates inside this method by avoiding
the data transfer to the local server in order to migrate the
connection endpoint.

We wrote two such policies, both locality-aware. They
exploit the knowledge gained by inspecting a Web request
distribution curve respecting a Zipf-like [18] law. The idea
is to identify classes of requests and to take advantage of the
data locality by migrating all the requests of one class to the
same server. As an example, we use for our experiments
the WebStone [12] data set and its default mix of request
classes: class0 (35% of the total number of requests), class1
(50%), class2 (14%) and class3 (1%).

7 Performance evaluation

The WebStone data set is replicated on local disks on
each back-end server. The general idea of the experiments
is depicted in Figure 2. The client machine C runs the Web-
Stone benchmark and generates requests that are redirected
by the front-end to one of the back-end servers (the machine

A). This server identifies the requests and decides whether
to serve them locally or to migrate them to the server B. In
turn, B serves the requests. The performance is always com-
pared to that of a similar server whose front-end dispatches
the requests according to a Round Robin policy.

7.1 Experimental setup

The back-end servers are 350 MHz Pentium II PCs with
256 MB of RAM. They run Linux 2.2.14 and are intercon-
nected through a Myrinet switch and LANai 7 cards. The
Myrinet cards have a 133 MHz processor on board. They
achieve 2 Gb/sec in each direction. The host interface is
a 64 bit/66 MHz PCI that can sustain a throughput of 500
MB/sec. The Myrinet cards are controlled by the GM 1.6.4
driver of Myricom [16]. Each back-end runs Apache 1.3.28
[1] as a Web server.

The client and the front-end are both PCs equipped with
Athlon AMD XP 1.5 Ghz processors and 512 MB of RAM.
Both systems run Linux 2.4.19. All the machines, includ-
ing the servers, are interconnected through regular 100Mb/s
Ethernet (with the front-end acting as an IP router between
the client and the servers).

Myrinet

DiskDisk

Request

Request migration

Ethernet

Ethernet

Response

Server A

Front−end

Server B

Client
C

Figure 2. Experimental setup for connection migra-
tion policies migrating requests from one back-end
server to another

7.2 Non-persistent HTTP connections evaluation

In a first round of experiments, our WebStone client is-
sues plain HTTP 1.0 [3] requests without using the “Keep
alive” feature of the protocol (see [7]) in order to ensure that
only one request is passed along any given TCP connection.
Otherwise said, we did not take advantage of persistent con-
nections to the server. This choice allows observing the
caching behavior of a two-node server using a policy that
migrates requests for the classes 0 and 1 (small and popular
documents) from the server A to the server B like in Figure
2. The overall results are presented in terms of average re-
sponse time and throughput in Table 1 (lower figures show
better response times, higher figures express better through-
put). A more refined analysis of the results is possible by
having a look at Figure 3, which breaks down the overall



# simultaneous connections 100 150 200 250 300

Avg. response time RR (msec) 310.3 332.7 370.3 453.4 1113.9
Avg. response time CM (msec) 301.2 311.9 341.8 747.5 1615.0

Avg. throughput RR (Kbits/sec) 385.0 359.5 323.7 264.5 107.6
Avg. throughput CM (Kbits/sec) 397.2 384.0 351.1 159.9 74.2

Table 1. WebStone overall performance figures for migrating non-persistent HTTP requests for small, popular Web
documents (classes 0 and 1) vs. Round Robin

average response time figure into the corresponding class
figures.

Figure 3 shows that reassigning the service of the class
0 and 1 documents through connection endpoint migration
improves the average response time for these classes. In-
deed, for class 0, for instance, the average response time
of the connection migration policy experiences reductions
of 35.69%, 43.77% and 39.28%, respectively, of the Round
Robin average response time. For class 1, the correspond-
ing improvements are smaller (8.55%, 16.43% and 18.56%,
respectively).

All these benefits come practically at no extra servicing
cost for the classes of large and unpopular files (class 2 and
3). In fact, the figures for class 2 show that the connection
migration policy slightly outperforms Round Robin. For
class 3, one can notice an insignificant degradation of the
response time figure, but no more than 0.03% of the corre-
sponding connection migration figure.
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Figure 3. Average class response times for Web-
Stone non-persistent HTTP requests
Overall, the individual improvements for the classes of

small and popular requests are somewhat smoothened out
as reflected in the average figures shown in Table 1. In-
deed, the overall improvements in the average response time
amount to 2.93%, 6.25% and 7.69%, respectively.

As soon as the WebStone load increases beyond 250 si-
multaneous connections, the performance of our connec-
tion endpoint migration policy worsens, as it can be inferred
from the last two columns of the Table 1. In order to pin-

point the problem, we decided to scale up the server setup to
three back-end servers and to investigate whether the server
A (the one initiating the migrations) doesn’t become a bot-
tleneck of the system as the load increases.

Myrinet

Server C

Front−end

Disk Disk

Disk

Server A Server B

class0, class1
request migration

class0, class1
request migration

Request
Class 0,1

Ethernet

Class 2,3
response

Class 2,3
response

Ethernet

Request

response

WebStone

Client C

Figure 4. Connection migration policy with three
servers

7.3 Non-persistent HTTP connections evaluation
of a three-node cluster-based server

In order to answer the question, we use a slightly dif-
ferent server setup in which the front-end routes requests
according to a Round Robin policy to two of the back-
end servers which in turn migrate the class 0 and 1 re-
quests to a third back-end server. A visual description of
the setup is provided in Figure 4. By distributing the migra-
tion task between two back-end servers, we attempt to bal-
ance the migration overhead between the two servers and to
see whether this solution improves the performance of the
cluster-based server. All the experimental results concern-
ing this policy are then compared to those of a policy that
dispatches requests to three severs on a Round Robin basis.
The comparison of the two policies can be seen in Table 2
and Figure 5.

By looking at these figures, one can infer that, indeed,
the problem of the previous connection migration policy
was that the server migrating the connections couldn’t cope
with the overhead of the connection endpoint migration
for large workloads. By distributing this overhead almost
equally over two servers, one gets a policy that performs
again significantly better than Round Robin.

The differences are not significant for 250 simultaneous
connections; for this load, the connection migration policy
does slightly better than Round Robin. However, as soon



as the load increases to 300 and 350 simultaneous connec-
tions, the connection migration policy clearly outperforms
Round Robin and copes better with the increased load. A
look at Figure 5 proves that, for 300 connections, the class
0 average response time of the connection migration policy
is 2.79 times smaller than the corresponding Round Robin
time, while for the class 1 the ratio is “only” 2.25. Even the
class 2 requests benefit significantly as the average response
time for the connection migration policy is 22.79% smaller
than that of Round Robin (see Figure 5). For class 3, the
gain is practically insignificant, 2.93%.
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Figure 5. Average class response times for Web-
Stone non-persistent HTTP requests in a three-node
cluster-based server

# simultaneous connections 250 300 350

Avg. response time RR (msec) 416.1 907.0 1150.6
Avg. response time CM (msec) 410.3 513.2 820.4

Avg. throughput RR (Kbits/sec) 288.1 132.2 104.0
Avg. throughput CM (Kbits/sec) 291.9 233.3 145.9

Table 2. Overall WebStone performance for three
servers when migrating non-persistent HTTP requests

A look at Table 2 gives us the overall improvement both
in terms of average response time and throughput. The av-
erage response time of the connection endpoint migration
policy is 1.76 times smaller than that of Round Robin while
its throughput is 1.76 times larger.

Similar conclusions hold for the 350 simultaneous con-
nections case, although both of the servers degrade rapidly
towards their saturation points. Still, in terms of the overall
performance, the average response time of the server op-
erating under the connection migration policy outperforms
the Round Robin time by a factor of 1.40.

7.4 Persistent HTTP connections evaluation

All the experiments described in the previous two sub-
sections considered non-persistent HTTP connections. Un-

der these circumstances, it is easy to reason about their
caching effects. A fair question asks however to assess
also TCP connection endpoint migration’s performance for
persistent connections. Unfortunately, the answer is hardly
foreseeable for simple policies like those used before. As
soon as the client passes multiple HTTP requests along a
given TCP connection, it is almost impossible to guaran-
tee any caching effectiveness for the requested documents.
The requests can target different classes and thus pollute the
cache of the node where the connection endpoint migrates.

A simple solution of the problem would be to migrate
the connection endpoint every time a new request comes
along the persistent connection to a server node that al-
ready caches the requested document. However, this so-
lution barely fits our small experimental setup. With only
two (or three) nodes, using such a policy results in thrash-
ing as the nodes spend most of their running time by hand-
ing each other connection endpoints. Therefore, we stuck
with the simple policies that we used in the previous two
subsections and we detected empirically which classes of
documents benefit at most from the caching as a result of a
connection endpoint migration in the case of the persistent
connections. We consider this approach sufficient for the
purposes of this paper, which aims to prove only that the
connection endpoint migration performs well for persistent
HTTP connections too.

Overall average response time

0

200

400

600

800

1000

1200

Number of simultaneous connections

A
v
e
ra

g
e
 r

e
s
p
o
n
s
e
 t
im

e
 (

m
s
e
c
)

RR CM

RR 415,2 517,8 657,2 825,8 978,5

CM 404,9 511 630,6 772,6 995,3

300 400 500 600 700

Overall throughput

0

50

100

150

200

250

300

350

Number of simultaneous connections

T
h
ro

u
g
h
p
u
t 
(k

b
it
s
/s

e
c
)

RR CM

RR 287,6 230,4 180,3 143 120,3

CM 296,2 234,7 188,7 153,2 117,9

300 400 500 600 700

Figure 6. Overall performance figures for WebStone
persistent HTTP requests
We use the policy described in Figure 2 to migrate class

2 requests (large and unpopular documents, 14% of the
total WebStone requests). The policy operates on a two-
node cluster-based server by migrating connection end-
points from one server node to the other one. The overall
results are presented in Figure 6. Figure 7 presents class-
based breakdowns that help understand easier the caching
behavior of the server nodes for particular classes of the re-
quested documents in terms of average response time.

Figure 6 shows that migrating class 2 requests balances
the two-node cluster as good as Round Robin does. Indeed,
the overall performance figures for the connection endpoint
migration are slightly better than those of Round Robin, ex-
cept for the heavy load case (700 simultaneous connections)
when the performance is slightly worse. An in-depth anal-
ysis of this result is possible by having a look at Figure 7.
For instance, the class 2 graphs show a slight performance
degradation due to the connection endpoint migration over-



head. The highest degradation concerns the 700 simultane-
ous connections case. The penalty is an extra 12.88% of
the class 2 Round Robin average response time. In fact, for
700 simultaneous connections, Round Robin outperforms
the connection endpoint migration policy for class 0 and
class 1 documents as well.
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Figure 7. Average class response times for Web-
Stone persistent HTTP requests

In general, the connection endpoint migration policy per-
forms better for the classes 0, 1 and 3. The improvements
of the classes 0 and 1 are significant for the light loads (300
and 400 simultaneous connections). The best gain for the
class 0 amounts to 17.47% of the Round Robin time (for
300 simultaneous connections) while the best gain for the
class 1 is 10.19% (for 400 simultaneous connections).

For all the loads, the class 3 figures for the connection
endpoint migration policy are better than those of Round
Robin. An interesting fact is that they are better as the
load on the server increases. For 600 simultaneous connec-
tions, for instance, the class 3 servicing time for the connec-
tion endpoint migration policy is with over 6 seconds faster
(6201.02 milliseconds, in fact) than that of Round Robin,
representing a save of 25.22% of the Round Robin time.
Even for 700 simultaneous connections, the connection mi-
gration policy manages to save 3761.25 milliseconds, that
is 14.05% of the Round Robin time.

7.5 Persistent HTTP connections evaluation of a
three-node cluster-based server

We use the policy depicted in Figure 4 to migrate persis-
tent HTTP requests for class 3 (large and unpopular docu-
ments accounting for 1% of the total number of the requests
issued by the WebStone client). Like in the previous sub-
section, the class 3 has been experimentally identified to be
the best-performing case. The policy operates on a three-
node cluster-based server. The front-end redirects the per-
sistent HTTP requests in a Round Robin manner to two of

the server nodes. In turn, these servers migrate their con-
nection endpoints to the third server for class 3 requests.
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Figure 8. Overall performance figures for WebStone
persistent HTTP requests in a three-node cluster-
based server

The overall results are shown in Figure 8, while the
detailed, per-class average response times are depicted in
Figure 9. Essentially, Figure 8 tells that the connection
endpoint migration policy that migrates persistent HTTP
requests addressed to class 3 performs as well as Round
Robin. For heavy loads, 900 and 1000 simultaneous con-
nections, respectively, it even outperforms Round Robin.
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Figure 9. Average class response times for Web-
Stone persistent HTTP requests in a three-node
cluster-based server

Figure 9 explains this result. For all the loads but the 900
and the 1000 ones, the connection endpoint migration pol-
icy outperforms Round Robin for the classes 2 and 3, while
exhibiting a poorer performance for the classes 0 and 1. For
the last two loads, all the class results are better for the con-
nection endpoint migration policy (except for the case of
class 1 and 1000 connections, but even then the difference is
minimal). Moreover, the class 2 and 3 (large and unpopular
documents whose servicing time accounts for most of the
total servicing time) figures show clear improvements over
Round Robin. For instance, the connection endpoint mi-
gration policy operating on 900 simultaneous connections
improves the class 2 average response time by 688.82 mil-
liseconds (24.70% of the corresponding Round Robin time)
and the class 3 time by 1861.99 milliseconds (6.59% of



the corresponding Round Robin time). For 1000 simultane-
ous connections, the class 2 average response time is with
491.23 milliseconds (17.24% of the corresponding Round
Robin time) smaller than that of Round Robin, while, for
class 3, the difference is of 2817.89 milliseconds (9.06% of
the corresponding Round Robin time).

8 Summary and future work
In this paper, we presented a mechanism that migrates

server-side TCP connection endpoints between two nodes
in a cluster-based server. The protocol is client-transparent
and supports back-end level request distribution policies.
The server-side migrations run over high speed SANs
whose performance makes the migration mechanism suit-
able for request distribution policies. For instance, sim-
ple locality-aware request distribution policies using con-
nection endpoint migration show significant improvements
over well load balanced policies like Round Robin. For
non-persistent HTTP connections, one of our policies, op-
erating on a three-node cluster-based server, improves the
average response times for the small requests by factors of
2.79 and 2.25, respectively, while improving the individ-
ual request figures for the other document classes at the
same time. In terms of the overall average response time,
our policy outperforms Round Robin by a factor of 1.76.
The TCP connection endpoint migration is also effective for
persistent HTTP connections by improving the average re-
sponse times for large and unpopular requests by as much
as 25.22% of the corresponding Round Robin time.

In the future, we would like to further explore the scala-
bility of the locality-aware request distribution policies us-
ing TCP connection endpoint migration. In particular, we
would like to assess whether a two-level migration policy
like that described in Figure 4 scales gracefully. For such
policies, we would also like to find the optimal ratio be-
tween the number of the back-end servers that migrate some
of their connection endpoints and the number of those that
do not migrate requests.
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