
Integrating Collective I/O and Cooperative Caching into the
“Clusterfile” Parallel File System

Florin Isaila, Guido Malpohl, Vlad Olaru, Gabor Szeder, Walter Tichy
Departement of Computer Science, University of Karlsruhe

Fasanengarten 5, 76137 Karlsruhe, Germany

{florin,malpohl,olaru,szeder,tichy}@ipd.uni-karlsruhe.de

ABSTRACT
This paper presents the integration of two collective I/O
techniques into the Clusterfile parallel file system : disk-
directed I/O and two-phase I/O. We show that global coop-
erative cache management improves the collective I/O per-
formance. The solution focuses on integrating disk paral-
lelism with other types of parallelism: memory (by buffer-
ing and caching on several nodes), network (by parallel I/O
scheduling strategies) and processors (by redistributing the
I/O related computation over several nodes). The perfor-
mance results show considerable throughput increases over
ROMIO’s extended two-phase I/O.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—dis-
tributed memories, storage hierarchy ; D.4.3 [Operating Sys-
tems]: File Systems Management—distributed file systems;
D.4.8 [Operating Systems]: Performance—measurements

General Terms
Design, Measurement, Performance

Keywords
parallel file systems, parallel I/O, collective I/O, cooperative
caches, non-contiguous I/O

1. INTRODUCTION
The performance of applications accessing large data sets

is often limited by the speed of the I/O subsystems. Studies
of I/O intensive parallel scientific applications [21, 24] have
shown that an important performance penalty stems from
the mismatch of the file striping (physical parallelism) and
the access patterns (logical parallelism). In this context, it is
important how the software layers between applications and
disks, namely I/O libraries like MPI-IO [20] and file systems
[6, 11, 22, 12], use the inherent system parallelism. An

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’04, June 26–July 1, 2004, Malo, France.
Copyright 2004 ACM 1-58113-839-3/04/0006 ...$5.00.

efficient solution requires an integrated approach at all levels
of the system, including system software and applications
[16].

The above mentioned studies have found that the pro-
cesses of a parallel application frequently access a common
data set by issuing a large number of small non-contiguous
I/O requests. Collective I/O addresses this problem by
merging small individual requests into larger global requests
in order to optimize the network and disk performance. De-
pending on the place where the request merging occurs, one
can identify two collective I/O methods. If the requests are
merged at the nodes with disks the method is called disk-
directed I/O [17, 23]. If the merging occurs at intermediary
nodes or at the compute nodes the method is called two-
phase I/O [10, 3]. The main advantage of disk-directed is
that data travels once through the network. The main draw-
back is that a large number of small requests may involve
a significant computing and copying overhead solely at the
nodes with disks. On the other hand, two-phase I/O allows
distributing this overhead over several nodes at the cost of
a second network transfer.

1.1 Contributions of this paper
Existing collective I/O implementations use either disk-

directed or two-phase I/O. In this paper we propose, to the
best of our knowledge for the first time, the integration of the
two methods into a common design. This approach allows
applications to use the most appropriate method according
to their needs.

The paper estimates the effect of a global cooperative
cache on the collective I/O operations. We are aware of
a single study based on simulations that addresses the issue
[2]. The global cache is used by the collective I/O implemen-
tation for two purposes: for redistribution of scatter-gather
costs from I/O servers to compute nodes and for implement-
ing hot collective buffers, i.e. buffers that are not freed after
the collective operation finishes.

We introduce a decentralized parallel I/O scheduling heuris-
tic used by the collective I/O implementation. Known par-
allel I/O scheduling strategies [16, 4] assume a central point
of decision. The role of the parallel I/O scheduling policy is
to establish an order of request execution that can efficiently
exploit the potential parallelism inside the file system.

All results are based on an implementation inside Clus-
terfile parallel file system.

1.2 Roadmap
The rest of the paper is structured as follows. Preliminar-

Client

I/O
Server

Cache
Manager

I/O
Server

Cache
Manager

Cache
Manager

Metadata
ManagerClient

I/O
Server

Interconnect

Node 1 Node 2

Node 3 Node 4

Figure 1: Clusterfile instalation example

ies and related work are subject of section 2. An overview of
the Clusterfile parallel file system, including the new global
cache, is presented in section 3. Section 4 introduces a novel
non-centralized parallel I/O scheduling heuristic. Cluster-
file’s collective I/O operations are discussed in section 5.
The experimental results are presented in section 6. Finally,
we summarize in section 7.

2. PRELIMINARIES AND RELATED WORK
In the generic, high-level parallel file system architecture,

a parallel computer consists of two sets of nodes, which may
potentially overlap: compute nodes (CN) and I/O nodes [13,
9, 11, 6, 12]. The applications run on compute nodes and
access disks attached to the I/O nodes. Traditionally, the
I/O nodes are managed by an I/O server (IOS) that allows
sharing of local disks among compute nodes. The files in
these systems are striped block-wise across several disks.

xFS [1] uses a log-structured approach. Each compute
node writes its files to a log, which is striped over the avail-
able disks. This approach allows to maximize the paral-
lelism for compute node writes, but offers no guarantees for
read parallelism. Parallel reads are boosted by cooperative
caching [8] (joint management of individual caches). Other
systems using cooperative caching are PGMS [27], PPFS [11]
and PACA [7]. However, none of these research groups have
investigated the impact of cooperative caches on collective
I/O.

There are several collective I/O implementations. In disk-
directed I/O [17], the compute nodes send the requests di-
rectly to the I/O nodes. The I/O nodes merge and sort the
requests and send them to disk. In server-directed I/O of
Panda [23], the I/O nodes sort the requests on file offsets
instead of disk addresses. Two-phase I/O [10, 3] consists
of an access phase, in which compute nodes exchange data
with the file system according to the file layout, and a shuffle
phase, in which compute nodes redistribute the data among
each other according to the access pattern.

ROMIO [25], a MPI-IO implementation, adds two opti-
mizations to the tho-phase I/O method: data sieving (ac-
cessing contiguous intervals and filtering the requested data)
and balancing the access size over several processors in the
I/O phase. In section 5, we describe in detail ROMIO’s ex-

Node 1 Node 2 Node 3 Node 4

Exported
cache

Local cache

Global cache

interconnect

Local cache

Exported
cache

Local cache

Exported
cache

Cache managers

I/O Servers

Figure 2: The cache hierarchy of Clusterfile

tended two-phase method that serves as a basis of compari-
son with our implementation. ROMIO can be implemented
on top of different file systems. This paper evaluates the
implementations over PVFS [12] and Clusterfile [14] paral-
lel file systems.

3. PARALLEL FILE SYSTEM OVERVIEW
In the initial design, Clusterfile [14] consisted of a meta-

data manager, nIOS I/O servers and a parallel I/O library.
Both physical and logical partitioning use the same file

model. A file is physically partitioned into subfiles stored at
I/O servers and may be logically partitioned among several
compute nodes by views (as described in subsection 3.2).
Views are implemented inside the file system, as opposed
to MPI-IO views [20], which are implemented on top of file
system.

The subfiles or views partitions may be achieved either
through MPI data types [19] or through an equivalent, Clus-
terfile native data representation [14]. File inodes are man-
aged by a central metadata manager. Data and metadata
management are separated, therefore data does not travel
through the metadata manager. The centralized metadata
is of no concern to this paper as we concentrate on large
data sets. Ongoing research efforts are investigating ways
to distribute and replicate metadata.

For simplicity reasons, throughout the paper we consider
that a file consists of a single subfile striped round-robin over
all I/O servers, i.e. the x-th block of a file is stored at I/O
server x modulo nIOS.

The new design adds nCM cache managers (CM) that co-
operate in order to implement a global cache. Figure 1 illus-
trates a possible installation of Clusterfile. Figure 2 shows
the cache hierarchy of Clusterfile. Each I/O server manages
a local file cache, storing only local disk blocks. The global
cache is the higher level and consists of distributed memories
managed in cooperation by the cache managers.

Figure 3 depicts the potential for parallelism inside Clus-
terfile. A parallel file access (logical parallelism) may trans-
late into a parallel global memory access over parallel net-
work links to several cache managers. Cache managers re-
trieve their data from I/O servers through parallel network
connections that access parallel local caches, and, finally,
parallel disks.

3.1 The global cache
The main advantage of a global cache is its potential to

scale up to the whole aggregate physical memory of a parallel

Client Client Client Client

Cache
Manager

Cache
Manager

I/O
Server

Local
memory

I/O
Server

Local
memory

I/O
Server

Local
memory

I/O
Server

Local
memory

Logical

Global memory

Local memory

Physical (disk)

PARALLELISM

Network

Network

Figure 3: The potential for parallelism inside Clus-
terfile

computer. The underutilized memory of some nodes can
be employed on behalf of other nodes. In our two-phase
collective I/O implementation the file blocks are moved from
I/O servers to cache managers in order to redistribute the
scatter-gather costs.

Each file block is identified inside the global cache by the
triplet (ios, inode, file offset), where the ios is the I/O
server that stores the file block and inode is a unique file
system-wide inode number assigned by the metadata man-
ager at file creation.

Given x-th block of a file, the cache manager x modulo
nCM either caches the data block or knows where the block
resides. When a read request arrives, if the CM has the block
it delivers the requested data (not the whole block). If not,
the CM brings the block locally and then delivers the data.
This approach is tailored for the collective I/O operations,
known to show a high temporal and spatial locality across
parallel processes [21, 24]. This means that it is probable
that in the near future, the same block will be accessed by
another compute node and at that time the block will be
already available at the CM.

This lookup policy is a variant of Hash Distributed Caching
(HDC) as presented by Dahlin et al. [8]. In the original
HDC the blocks were hashed based on their disk address.
In our case, because the spatial and temporal locality refers
to the file positions and not to the disk addresses, the blocks
are cached based on their file offset (file offsets are mapped
onto disk addresses at I/O servers). Additionally, the like-
lihood of true parallel access is increased by distributing
consecutive file blocks (instead of consecutive disk blocks)
to different cache managers.

In order to keep the protocol as simple as possible and to
avoid cache coherency problems we implemented a “single-
replica” global cache as in PACA [7]. At any time, there is at
most one copy of the block in the global cache. Replication
could be implemented on top of this global cache.

HDC is suitable for parallel workloads. The compute
nodes can guess the likely place of a block without asking
a central server. That helps in decongesting the disk nodes

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

View

I/O SERVER or CACHE MANAGER

Non contiguous file regions

COMPUTE NODE

Figure 4: View I/O

by lowering their I/O server load. Section 5 discusses the
consequences for the collective operations.

3.2 Non-contiguous I/O
Our non-contiguous I/O method is called view I/O and is

presented in another paper [15]. We shortly describe it here,
because it is a part of the collective I/O implementation as
detailed in section 5. A view is a contiguous window to po-
tentially non-contiguous regions of a file. By default, when
a view is not explicitely set, a process “sees” the whole file.
Figure 4 shows how a view maps on a non-contiguous region
of a file. When a view is declared, the mapping information
is transfered to the I/O node or cache manager, where it is
stored for subsequent use. At access time, only the view in-
terval is sent to the I/O node. For instance, for reading the
first three non-contiguous segments a compute node sends a
read request for (0, 5) and the I/O server returns the data
after performing a gather operation by using the previously
stored view mapping.

The scatter/gather operations may become costly both in
terms of computations and copying. If no cache managers
are used, this overhead is paid at the I/O servers. On the
other hand, if nCM > nIOS, the scatter/gather operations
corresponding to a file can be distributed over the nodes
where the data is cached, increasing the parallel execution
degree with nCM − nIOS. If the data is not cached at CM,
the transfer from I/O servers pays off if the gain obtained
from additional parallelism is large enough to outperform
the case when all the requests are processed at I/O servers.

4. PARALLEL I/O SCHEDULING
Collective I/O operations may involve large transfers of

data between pairs of resources, such as processors, memo-
ries and disks. File striping and parallel caching offer data

Schedule 1

Schedule 2

0 1 2 3 time

R1 R2

IOS0

IOS1
R3

R2

R1
R0

CN1

CN0

0 1 2 3 time

R0 R3

R1

R0 R2 R3

Figure 5: Parallel I/O scheduling example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Compute node 1 Compute node 2

Compute node 1 Compute node 2

Interconnect
3

In
te

rc
on

ne
ct

I/O node

1

2

3

2

4

M
PI

−
IO

Fi
le

 s
ys

te
m

M
PI

−
IO

Access phase

Shuffle phase

Figure 6: ROMIO’s two-phase read example

placement solutions that provide potential for parallelism.
However, the effective use of this parallelism can be given
only by the order in which these resources are involved, i.e.
by a parallel I/O schedule.

The parallel I/O scheduling problem is formulated as fol-
lows. Given np compute nodes, nIOS I/O servers and a set
of requests for transfers of the same length between com-
pute nodes and I/O servers and assuming that a compute
node and an I/O server can perform exactly one transfer
at any given time, find a service order that minimizes the
schedule length [16]. As the general scheduling problem is
shown to be NP-complete, Jain et al. [16] and Chen and
Majumdar [4] proposed several heuristics. Their heuristics
are all centralized. However, due to the complex interactions
within a parallel computer, it may be difficult or unpractical
to gather all the information at a central point, choose the
strategy and then redistribute the decision. This approach
may introduce costly synchronization points and cause ad-
ditional network transfers.

Our new parallel scheduling heuristic specifically targets
the collective I/O operations. We assume that, at a certain
point in time, np compute nodes simultaneously issue large
data requests for nIOS I/O servers. We find this to be a rea-
sonable assumption for two reasons. First, collective I/O op-
erations frequently involve all the compute nodes on which
the application runs. Second, files are typically striped over
all the available disks for performance reasons.

For writing, large requests are split by each compute node
into smaller requests of size b. Conforming to the theoret-
ical problem definition, for which each compute node can
perform exactly one transfer at any given time, at time step
tj , j = 0, 1, ..., the compute node i sends a block to the I/O
server (i+ j) modulo nIOS. For instance, in figure 5, np = 2
compute nodes simultaneously issue 4 requests for nIOS = 2
I/O servers. If both compute nodes decide to send the re-
quest to the IOS0 first, and then to IOS1, a schedule of

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Interconnect

Interconnect

Compute node 1 Compute node 2

Cache manager

I/O node

11

23

44

M
PI

−
IO

Fi
le

 s
ys

te
m

Figure 7: Clusterfile’s collective read example

length 3 results (for instance “Schedule 1”). On the other
side our heuristic produces a schedule of length 2 (“Schedule
2”), as the I/O servers run in parallel.

For reading, the compute nodes send all the requests to
the I/O servers which, in turn, split the data into blocks of
size b. Then, at time step tj , j = 0, 1, ..., the i-th I/O server
sends a block to the compute node with the number (i + j)
modulo np.

Notice that there is no central point of decision, each pro-
cess acts independently. The heuristic tries to involve all the
I/O servers in the system, at a given time t. The heuristic
is automatically reseted at the beginning of each collective
operation.

The heuristic can be used also for other pairs of resources:
compute nodes - cache managers, cache managers - I/O
servers. In section 5 we will show how we use it for col-
lective I/O.

5. COLLECTIVE I/O
Let us now assume that the processes of a parallel program

(written for instance in MPI) issue parallel write or read op-
erations by using a corresponding collective call (MPI_File_
read_all or MPI_File_write_all in MPI-IO).

ROMIO’s two-phase I/O of ROMIO performs two steps
as illustrated in the figure 6 for the collective read case.
In the access phase, the compute nodes divide the access
interval into equal parts after a negotiation (1) and each
one reads contiguously its share from the file system into a
local collective buffer (2 and 3). In the shuffle phase (4), the
compute nodes exchange the data according to the requested
access pattern. The access phase is always fast, as only
contiguous requests are sent to the file system. The scatter-
gather operations take place at compute node, whereas the
data travels twice through the network. However, as we
discussed in subsection 3.2, the second network access is
worth only if the parallel cost of shuffle at compute nodes
is smaller. In ROMIO it is not possible to avoid a second
transfer.

Figure 7 shows an example of Clusterfile’s read collective

operation, which consists of the following steps. Each com-
pute node sets a view on the file as shown in subsection 3.2.
The compute nodes send the requests to the cache managers
(1). If the data is not available, it is retrieved from the I/O
servers (2 and 3) into a collective buffer. The steps 2 and 3
are performed solely once at the arrival of the first request
from the collective I/O participants at the cache managers.
Subsequent requests either wait for the data to arrive or
find the data already cached. Finally, the data is sent to
the compute nodes(4). The global order of request service
is guided by the parallel I/O scheduling heuristic from sec-
tion 4. The heuristic is used between compute nodes and
cache managers as well as between cache managers and I/O
servers.

5.1 Parallelism considerations
In figure 3 we illustrated the parallelism potential of Clus-

terfile. Here we show how the collective I/O operations re-
late to the different hierarchy levels.

The file striping hashing (x modulo nIOS) allows to max-
imize local cache and disk parallelism, whereas the global
cache function (x modulo nCM) targets the maximal mem-
ory parallelism. If nIOS = nCM = n, the hashing functions
are the same (x modulo n) and the global cache parallelism
directly translates into local memory and disk parallelism.
If nIOS < nCM , the degree of parallelism is increased with
nCM − nIOS when the global cache is used. These types of
parallelism refer to the spatial characteristics of files, i.e. the
data placement for potentially parallel access.

The temporal order of servicing the requests is given by the
parallel I/O scheduling heuristic from section 4 that targets
to optimize the network parallelism.

In the experimental section, we will show the impact of
the variation of disk, local and global memory parallelism
on the performance of the collective I/O operations.

5.2 Two-phase or disk-directed?
Clusterfile’s collective I/O method integrates the disk-

directed and two-phase approach in a single design.
If nIOS = nCM and the i-th cache manager runs on the

same node as the i-th I/O server , the collective buffering
takes place at the I/O server’s node, which stores the block.
In the example from figure 7, the steps 2 and 3 do not occur.
The cache managers and the I/O servers share the collective
buffers. The data travels over the network only once. In this
case, we can say that Clusterfile’s collective I/O method is
disk-directed.

If nIOS < nCM , the collective buffers of nIOS disks can
be cached at nCM nodes. In this case, Clusterfile’s collective
I/O is a two-phase method: the first phase is the transfer
from I/O nodes to the cache managers, while the second
phase is the data redistribution from cache managers to the
compute nodes. In the two-phase I/O method, data trav-
els twice over the network. However, collective accesses can
benefit from a larger degree of parallelism at the cache man-
agers.

5.3 Comparison with ROMIO’s two-phase I/O
In the ROMIO’s two-phase I/O the collective buffer con-

tent is dropped after the collective I/O operation is ended.
A subsequent collective I/O operation accessing the same
data (as for pipelining or result redistribution) will have to
read again the data into the collective buffer. On the other

0

100

200

300

400

500

600

700

800

900

128x128x128 256x256x256 512x512x512

Global array size

M
B

yt
es

/s
ec

CLF-DD
R-PVFS

Figure 8: Local caches write aggregate throughput
for ROMIO 3D benchmark

0

100

200

300

400

500

600

700

800

900

128x128x128 256x256x256 512x512x512

Global array size

M
B

yt
es

/s
ec

CLF-DD
R-PVFS

Figure 9: Local caches read aggregate throughput
for ROMIO 3D benchmark

0

20

40

60

80

100

120

140

160

128x128x128 256x256x256 512x512x512

Global array size

M
B

yt
es

/s
ec

CLF-DD
R-PVFS

Figure 10: Disk write aggregate throughput for
ROMIO 3D benchmark

hand, the collective buffers of Clusterfile can be reused as
long as they are in the global cache (hot collective buffers).

Clusterfile’s design offers flexible choices. The collective
buffers can be managed at different places in a cluster. As
seen before, the disk-directed I/O approach avoids one net-
work transfer. For two-phase I/O, costly scatter-gather op-
erations may be distributed over several nodes. ROMIO’s
two phase I/O performs two network transfers in most of
the cases, because collective buffers reside always at com-
pute nodes.

An important advantage of ROMIO is portability, as it

Class Total Write operations Read operations
CLF R-PVFS Improv. Speedup CLF R-PVFS Improv. Speedup CLF R-PVFS Speedup

(sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.)
A 0.4 GB 58.8 63.8 5.0 1.09 7.7 12.9 5.2 1.67 0.9 6.4 7.34
B 1.6 GB 216.0 241.4 25.4 1.12 14.5 39.0 25.5 2.69 8.6 12.2 1.43
C 6.8 GB 866.6 1078.1 211.5 1.24 53.8 255.9 210.9 4.75 51.9 43.4 0.83

Table 1: BTIO benchmark results

can be used with different file systems. ROMIO’s collective
I/O and views are file system independent, as it can be
noticed in the right hand side of figure 6. ROMIO’s method
can also be used together with the individual I/O operations
of Clusterfile through its MPI-IO interface. On the other
hand Clusterfile’s collective I/O and views are implemented
inside the file system (see figure 7). This allows a tight
integration of file system policies with different parallelism
types.

6. EXPERIMENTAL RESULTS
Parallel scientific applications frequently use regular data

distributions like High Performance Fortran [18] BLOCK
and CYCLIC distributions. In order to evaluate the per-
formance of Clusterfile’s collective I/O operations, we use
NASA’s BTIO benchmark, a benchmark from the ROMIO
suite and a workload that allows variation of granularity and
data access sizes. Similar experiments were performed for
demonstrating the performance of Panda I/O library for fine
granular distributions [5].

We performed our experiments on a cluster of 16 dual
processor Pentium III 800MHz, having 256kB L2 cache and
1024 MB RAM, interconnected by Myrinet LANai 9 cards
at 133 MHz, capable of sustaining a throughput of 2 Gb/s
in each direction. The machines are equipped with IDE
disks and were running LINUX kernels version 2.4.19 with
ext2 local file system. We used TCP/IP on top of the 2.0
version of the GM [26] communication library. The ttcp
benchmark delivered a TCP/IP node-to-node throughput
of 120 MB/sec. The TCP/IP overhead is known to be large
due to multiple copies, flow-control, reliable delivery etc.
We believe these to be the reason for the 120 MBytes/s
performance of ttcp for a 2Gb network interconnect. For
comparison, on our cluster VIA over Myrinet achieves 220
MBytes/sec out of the theoretical 250 MBytes/s. A Cluster-
file over VIA implementation is current work. The network
buffer size was b = 64K. All measurements were repeated
five times and the mean value is reported.

6.1 BTIO benchmark
NASA’s BTIO benchmark [28] solves the Block-Tridiagonal

(BT) problem, which employs a complex domain decompo-
sition across a square number of compute nodes. Each com-
pute node is responsible for multiple Cartesian subsets of the
entire data set. The execution alternates computation and
I/O phases. Initially, all compute nodes collectively open
a file and declare views on the relevant file regions. After
each five computing steps the compute nodes write the so-
lution to a file through a collective operation. At the end,
the file is collectively read and the solution is verified for
correctness. In this paper we report the results for the MPI
implementation of the benchmark, which uses MPI-IO’s col-

lective I/O routines. Two collective I/O implementations
are compared: Clusterfile’s, denoted as CLF and ROMIO
over PVFS, denoted as R-PVFS. The collective buffers of
Clusterfile, as well as those of ROMIO were cold. Cluster-
file used 16 cache managers and 16 I/O nodes. ROMIO’s
two-phase I/O employed 16 compute nodes for collective
buffering and 16 PVFS I/O servers. We use 16 processes
and three classes of data set sizes: A (419.43 MBytes), B
(1697.93 MBytes) and C (6802.44 MBytes). The benchmark
reports the total time including the time spent to write the
solution to the file. However, the verification phase time
containing the reading of data from files is not included in
the reported total time. Table 1 displays the results on four
groups of columns: class (A, B or C), total timing, collective
write timing and collective read timing. The improvement is
computed as the difference between the measured total time
for R-PVFS and CLF. The speedup is the rate between the
measured total time for CLF and R-PVFS.

BTIO using Clusterfile’s collective I/O runs faster with 9
%, 12 % and 24 % for the classes A, B and C respectively.
The improvement comes from the collective I/O methods, as
the difference between total times and the difference between
collective write times for the two methods show. The total
time is smaller with 5.0 sec., 25.4 sec. and 211.5 sec. for the
classes A, B and C respectively, while the collective write
time (included in the total time) is is smaller with 5.2 sec.,
25.5 sec. and 210.9 sec. respectively.

The total times of collective write operations of Clusterfile
are 67 % (A), 169 % (B) and 375 % (C) faster that those of
ROMIO over PVFS. Clusterfile’s collective read operations
are faster with 634 %, 43 % for A and B classes respec-
tively. For the C class they are 17 % slower. As these mea-
surements were performed short before the deadline of the
camera-ready paper, a better understanding of these partic-
ular performance results is to be sought in the future.

6.2 ROMIO three dimensional block bench-
mark

In this subsection we report the aggregate file read and
write throughput of a collective I/O benchmark from ROMIO
test suite. A three dimensional array is distributed in three
dimensional blocks among compute nodes. All compute
nodes simultaneously write and then read their correspond-
ing subarrays by using a collective call. We repeated the ex-
periment for three array sizes: 128x128x128, 256x256x256,
512x512x512. The size of each element was 16 bytes, amount-
ing to matrix sizes of 32 MBytes, 256 MBytes and 2 GBytes,
respectively.

In this test, Clusterfile used 16 compute nodes, 16 I/O
nodes and 16 cache managers. The CMi ran at the same
node as IOSi, i.e. the collective I/O method was disk-
directed. ROMIO used PVFS parallel file system and em-

Aggregate BC write throughput for 4
IOS

0

50

100

150

200

250

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC read throughput for 4 IOS

0

50

100

150

200

250

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate disk write throughput for 4
IOS

0
10
20
30
40
50
60
70
80
90

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC write throughput for 8
IOS

0

50

100

150

200

250

300

350

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC read throughput for 8 IOS

0

50

100

150

200

250

300

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate disk write throughput for 8
IOS

0

20

40

60

80

100

120

140

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC write throughput for 16
IOS

0
50

100
150
200
250
300
350
400
450
500

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD=2P

Aggregate BC read throughput for 16
IOS

0
50

100
150
200
250
300
350
400
450

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD=2P

Aggregate disk write throughput for 16
IOS

0
20
40
60
80

100
120
140
160
180
200

8 16 32 64 128 256
granularity k

MB/s

R-PVFS R-CLF DD=2P

Figure 11: Aggregate throughput for different granularities.

ployed 16 compute nodes for collective buffering. The col-
lective buffers of both Clusterfile and ROMIO were cold.
PVFS files were striped over 16 I/O nodes. Figures 8, 9, 10
show the results.

We notice that Clusterfile’s disk-directed method signifi-
cantly outperformed ROMIO’s two-phase I/O in all cases.
Clusterfile performed a single network transfer, while two-
phase I/O performed two. Additionally, the scheduling I/O
strategy yielded a good network and disk utilization, while
in ROMIO ’s two phase I/O the file system access did not
overlap the shuffle phase as we will show in subsection 6.3.2
and figure 15.

6.3 Two dimensional matrix synthetic bench-
mark

In the next experiments we compare 4 collective I/O im-
plementations: ROMIO over PVFS [12], denoted as “R-
PVFS” in the graphics, and ROMIO, disk-directed and two-
phase I/O over Clusterfile, denoted as “R-CLF”, “DD” and
“2P” respectively. For collective buffering, our two-phase
I/O used 16 cache managers while extended two-phase I/O
used 16 compute nodes. For 16 I/O servers and 16 cache
managers, our two-phase I/O converges to disk-directed I/O
(steps 2 and 3 from figure 7 are not necessary) and therefore
we report only one value.

In the next two experiments, the global cache is cold, in
order to be fair in the comparison with the ROMIO imple-
mentation, which uses cold collective buffers, as explained
in section 5. These experiments show the impact of the vari-
ation of the degree of local cache and disk parallelism from

0

0,5

1

1,5

2

2,5

3

3,5

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

R-PVFS R-CLF DD 2P

Buffer cache write Buffer cache read Disk write

Figure 12: Average speedup for different granulari-
ties

the figure 3 on the performance for different granularities
and sizes. The global cache degree of parallelism is kept
constant.

Our performance metrics are aggregate throughput (for
file read and write) and speedup. Computing the speedup is
particular to each experiment, as explained in the following
subsections. In order to make sure that the compute node
accesses files simultaneously, the processes synchronized be-
fore and after the file access by using MPI barriers. The
reported results include the barrier times.

6.3.1 Different granularities

Aggregate BC write throughput for 4 IOS

0

50

100

150

200

250

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC read throughput for 4 IOS

0

20

40

60

80

100

120

140

160

180

200

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate disk write throughput for 4 IOS

0

10

20

30

40

50

60

70

80

90

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC write throughput for 8 IOS

0

50

100

150

200

250

300

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC read throughput for 8 IOS

0

50

100

150

200

250

300

350

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate disk write throughput for 8 IOS

0

20

40

60

80

100

120

140

160

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD 2P

Aggregate BC write throughput for 16IOS

0

50

100

150

200

250

300

350

400

450

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD=2P

Aggregate BC read throughput for 16 IOS

0

50

100

150

200

250

300

350

400

450

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD=2P

Aggregate disk write throughput for 16
IOS

0

50

100

150

200

250

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Matrix size (bytes)

MB/s

R-PVFS R-CLF DD=2P

Figure 13: Aggregate throughput variation with size.

The goal of this experiment is to investigate the influence
of access granularity on the performance of collective I/O.
We wrote a parallel MPI benchmark that reads from and
writes to a file a two-dimensional matrix. In each run, p

compute nodes, arranged in a
√

p ×√
p grid declare a view

on the file by using CY CLIC(k), CY CLIC(k) distributions
, for k = 8, 16, 32, 64, 128, 256. In figure 11, there are three
rows of graphs for 4, 8 and 16 I/O servers. In the first
column, the I/O servers write to the local buffer caches(BC),
in the second they read from their buffer caches and in the

0
0,5

1
1,5

2
2,5

3
3,5

4

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

16
IO

S
/4

IO
S

8I
O

S
/4

IO
S

R-PVFS R-CLF DD 2P

Buffer cache write Buffer cache read Disk write

Figure 14: Average speedup for different matrix
sizes

third they write the data to the disks. The size of the matrix
was fixed to 256 MB. We define the speedup for a given
granularity as the relative aggregate throughput gain, when
increasing the number of I/O servers from x to y.

S(x, y) =
AggrThroughputyIOS

AggrThroughputxIOS

The speedups plotted in figure 12 are means of speedups
for all granularities from figure 11. The speedup can be
interpreted as the performance gain, when the degrees of
parallelism of disks and local caches are increased.

Figure 11 shows that,in terms of aggregate throughput,
our two-phase I/O method performs better than the others
in most of the cases. Our two phase I/O uses all the cache
managers in order to compute the access indices and to per-
form the scatter-gather operations. Compute nodes do not
communicate among each other and there is no explicit syn-
chronization point. In this case, the scalability depends on
the I/O servers. In turn, ROMIO makes similar operations
at the compute nodes that synchronize for exchanging meta-
data information. Our measurements confirm that, when
varying the number of I/O nodes, the scalable execution
part is the communication with the I/O servers. First of all,
in figure 12, disk-directed scales up when using 16 instead
of 4 I/O servers with disks by a factor of 3.1 for buffer cache
writing, 2.2 for buffer cache reading and 3.3 for disk writing,
while ROMIO achieves 1.3, 1.3 and 1.9 respectively, for the
same operations.

0

5

10

15

20

25

30

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Time (sec)

M
at

ri
x

si
ze

 (
b

yt
es

)

Shuffle - 4 IOS

FS access - 4 IOS

0

5

10

15

20

25

30

1M 4M 9M 16
M

25
M

36
M

49
M

64
M

81
M

10
0M

12
1M

14
4M

16
9M

19
6M

22
5M

25
6M

Time (sec)

M
at

ri
x

si
ze

 (
b

yt
es

)

Shuffle - 16 IOS

FS access - 16 IOS

Figure 15: ROMIO’s collective read breakdown for 4 and 16 I/O servers

CYCLIC(k),CYCLIC(k)

0
1
2
3
4
5
6
7
8

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16M 64M 144M 256M

*,CYCLIC(k)

0
1
2
3
4
5
6
7
8

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16
C

M
/1

C
M

16
C

M
/4

C
M

16
C

M
/8

C
M

16M 64M 144M 256M

Figure 16: Cooperative caching speedup

6.3.2 Different sizes
Further, we assessed the influence of varying the data size

over the aggregate throughput. We use the same CY CLIC

(k), CY CLIC(k) distribution from the previous subsection
for k = 32. The matrix size is varied from 1Kx1K bytes (1
MB) to 16Kx16K bytes (256 MB). The X-axis of the graphs
in figure 13 represents the matrix size in MBytes.

Figure 13 shows the results for 4, 8 and 16 I/O servers.
The speedup is defined like in previous subsection. The
speedups plotted in figure 14 are speedup means for all the
sizes reported in figure 13.

Notice that our implementation outperforms the other
ones except for one case, namely when reading a 1MB matrix
from the buffer cache. Again, our two-phase I/O implemen-
tation scales better with the number of I/O servers than
extended two-phase I/O for ROMIO.

Figure 15 gives more insight about ROMIO two-phase I/O
implementation over Clusterfile, by showing the breakdowns
of the total time spent in the shuffle and file system access
phases of collective read operations, for both 4 and 16 I/O
servers, i.e. for the first and last row of graphs from figure
13. As expected, because the I/O servers are not involved,
the shuffle time does not change significantly when increas-
ing the number of I/O servers from 4 to 16. The increase
in bandwidth is obtained from file system access. However,
for small granularities, the shuffle phase is computationally
intensive due to index computation and memory copy oper-
ations and therefore limits the scalability.

6.3.3 Global cache scalability
In this subsection we were interested in evaluating the col-

lective I/O read performance speedup, when the size of the

global cache is increased. Two data distributions are used:
CY CLIC(k), CY CLIC(k) and ∗, CY CLIC(k) for k=128.
For each distribution we report results for our two-phase I/O
and 4 matrix sizes: 16, 64, 144 and 256 MB. We define the
speedup for a given size as the relative aggregate throughput
gain, when increasing the number of cache managers from x

to y.

S(x, y) =
AggrThroughputyCM

AggrThroughputxCM

All accesses were performed from a warm global cache.
This experiment shows how the variation the degree of global
cache parallelism from the figure 3 impacts the performance.
The local cache and disk parallelism are not involved, as the
I/O servers are not contacted.

When increasing the number of CM from 1 to 16 the
speedup is upto 6.8 for CY CLIC(k), CY CLIC(k) and upto
7.3 for ∗, CY CLIC(k). The speedup is achieved from both
the parallel access to several cache managers and from the
distribution of scatter/gather costs over several computers.
This represents a significant performance improvement. How-
ever, further assessments are necessary in order to better un-
derstand the difference between the potential speedup of 16
and the measured speedup. One reason is that the reported
results include two global barriers in order to assure true
parallel accesses. Therefore, they include the idle times of
processes that arrive early at the barriers. Another reason
is that the parallel scheduling I/O strategy assumes uniform
service time, which is hardly achievable in practice.

7. SUMMARY

In this paper we integrate two collective I/O techniques
into a common design. The approach allows combining the
advantages of disk-directed I/O (e.g. one transfer over the
network, reduced copy operations) with those of two-phase
I/O (distribution of I/O related computation over all com-
pute nodes). Additionally, to the best of our knowledge,
we present the first implementation that integrates collec-
tive I/O and cooperative caching. The performance results
without cooperative caching show substantial improvements
over ROMIO two-phase I/O. Cooperative caching further
speeds up the file access when the collective I/O buffers are
reused.

8. REFERENCES
[1] T. Anderson, M. Dahlin, J. M. Neefe, D. Patterson,

D. Rosseli, and R. Y. Wang. Serverless Network File
Systems. In The 15th Symposium on Operating System
Principles, Dec. 1995.

[2] R. Bagrodia, S. Docy, and A. Kahn. Parallel
simulation of parallel file systems and i/o programs. In
Proceedings of the 1997 ACM/IEEE conference on
Supercomputing (CDROM), pages 1–17. ACM Press,
1997.

[3] R. Bordawekar. Implementation of Collective I/O in
the Intel Paragon Parallel File System: Initial
Experiences. In Proc. 11th International Conference
on Supercomputing, July 1997. To appear.

[4] F. Chen and S. Majumdar. Performance of parallel
I/O scheduling strategies on a network of
workstations. In Proceedings of ICPADS 2001, pages
157–164, April 2001.

[5] Y. Cho, M. Winslett, Y. Chen, and S. wen Kuo.
Parallel I/O performance of fine grained data
distributions. In Proceedings of the Seventh IEEE
International Symposium on High Performance
Distributed Computing. IEEE Computer Society
Press, 1998.

[6] P. Corbett and D. Feitelson. The Vesta Parallel File
System. ACM Transactions on Computer Systems,
1996.

[7] T. Cortes, S. Girona, and L. Labarta. PACA: A
Distributed File System Cache for Parallel Machines.
Performance under Unix-like workload. Technical
Report UPC-DAC-RR-95/20 or
UPC-CEPBA-RR-95/13, Departament d’Arquitectura
de Computadors, Universitat Politecnica de
Catalunya, 1995.

[8] M. Dahlin, R. Wang, T. Anderson, and D. Patterson.
Cooperative Caching: Using Remote Client Memory
to Improve File System Performance. In The First
Symp. on Operating Systems Design and
Implementation, Nov. 1994.

[9] E. DeBenedictis and J. D. Rosario. nCUBE Parallel
I/O Software. In Proceedings of 11th International
Phoenix Conference on Computers and
Communication, 1992.

[10] J. del Rosario, R. Bordawekar, and A. Choudhary.
Improved parallel I/O via a two-phase run-time access
strategy. In Proc. of IPPS Workshop on Input/Output
in Parallel Computer Systems, 1993.

[11] J. Huber, C. Elford, D. Reed, A. Chien, and
D. Blumenthal. Ppfs: A high performance portable file

system. In Proceedings of the 9th ACM International
Conference on Supercomputing, 1995.

[12] W. L. III and R. Ross. An Overview of the Parallel
Virtual File System. In Proceedings of the Extreme
Linux Workshop, June 1999.

[13] Intel Corporation. Paragon System User’s Guide,
April 1996.

[14] F. Isaila and W. Tichy. Clusterfile: A flexible physical
layout parallel file system. In First IEEE International
Conference on Cluster Computing, Oct. 2001.

[15] F. Isaila and W. Tichy. View I/O: Improving the
performance of non-contiguous I/O. In Third IEEE
International Conference on Cluster Computing, Dec.
2003.

[16] R. Jain, K. Somalwar, J. Werth, and J. C. Browne.
Heuristics for scheduling I/O operations. IEEE
Transactions on Parallel and Distributed Systems,
8(3):310–320, March 1997.

[17] D. Kotz. Disk-directed I/O for MIMD
Multiprocessors. In Proc. of the First USENIX Symp.
on Operating Systems Design and Implementation,
1994.

[18] D. B. Loveman. High Performance Fortran. IEEE
Parallel and Distributed Technology, 1993.

[19] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard, 1995.

[20] Message Passing Interface Forum. MPI2: Extensions
to the Message Passing Interface, 1997.

[21] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis,
and M. Best. File Access Characteristics of Parallel
Scientific Workloads. In IEEE Transactions on
Parallel and Distributed Systems, 7(10), Oct. 1996.

[22] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proceedings
of FAST, 2002.

[23] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and
M. Winslett. Server-directed collective I/O in Panda.
In Proceedings of Supercomputing ’95.

[24] H. Simitici and D. Reed. A Comparison of Logical and
Physical Parallel I/O Patterns. In International
Journal of High Performance Computing Applications,
special issue (I/O in Parallel Applications), 12(3),
1998.

[25] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and
Collective I/O in ROMIO. In Proc. of the 7th
Symposium on the Frontiers of Massively Parallel
Computation, pages 182–189, February 1999.

[26] M. I. G. the low-level message-passing system for
Myrinet networks.
http://www.myri.com/scs/index.html.

[27] G. M. Voelker, E. J. Anderson, T. Kimbrel, M. J.
Feeley, J. S. Chase, A. R. Karlin, and H. M. Levy.
Implementing cooperative prefetching and caching in
a globally-managed memory system. In Proceedings of
the Joint International Conference on Measurement
and Modeling of Computer Systems, pages 33–43.
ACM Press, 1998.

[28] P. Wong and R. der Wijngaart. NAS Parallel
Benchmarks I/O Version 2.4. Technical Report
NAS-03-002, NASA Ames Research Center, Moffet
Field, CA, Jan. 2003.

