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Abstract

This paper presents the design and performance of re-
mote disk drivers for clusters of Commodity-Off-The-Shelf
PCs that fetch disk blocks over System Area Networks. The
driver offers a flexible interface, being capable to logically
act either as computer- or network-attached storage. It
allows for fine-grain remote cache control through exclu-
sive caching. An event-driven asynchronous block delivery
mode of operation helps making the most out of the avail-
able parallelism by overlapping request processing with
block delivery at both involved nodes and thus yielding bet-
ter performance than local disks. The driver has been im-
plemented as a Linux kernel module.
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1 Introduction

Clusters of Commodity-Off-The-Shelf (COTS) PCs
have become a practical and cost-effective alternative to
hardware supercomputers. However, their tremendous po-
tential in terms of price-competitive and scalable processing
power, huge aggregate main memory, price-competitive,
highly available and scalable secondary memory, huge I/O
bandwidth, cannot be always fully exploited as the PC sys-
tem software suffers from various well-known problems.
One widely recognized problem is the I/O bottleneck [18].
The ever increasing gap between the rates at which proces-
sor and disk speeds grow, the additional pressure put on the
I/O subsystem by increased data sets, or the lack of coopera-
tion among various optimization algorithms used at various
system levels (OS, disk controller) represent some of the
most challenging issues related to this problem.

Various solutions tackle the I/O problem at different lev-
els in the system. Low-level solutions striving to improve
the I/O performance at disk level either try to bridge the
speed gap between the processor and the disk (Active Disks
[1]) or, recently, to enhance the cooperation among the
various system caches and their inner policies. Exclusive

caching [28, 7] avoids double buffering occurring in inde-
pendently managed caches (e.g., the page/buffer cache in
the OS and the on-chip disk cache). Some systems use
filesystem knowledge to improve the disk controller opera-
tion [23, 7]. At a higher level, distributed filesystems using
virtual disks [26, 19] or cooperative caching enabled server-
less filesystems [2, 10, 9] attempt to enlarge the storage sys-
tem cluster-wide and to extend the limit of the local filesys-
tem cache to that of a global, cluster-wide cache. At user-
level, the most notable recent trend refers to direct access
distributed filesystems [11] in which client machines bypass
the local operating system and access the server memory
through Remote DMA (memory-to-memory).

In this paper we present a low-level solution for
computer-attached remote disks in COTS clusters. They can
logically operate as network-attached storage as well due to
a single copy protocol that allows implementing exclusive
caching and thus isolating the remote system from external
influence. Remote disks are mounted locally by means of
a remote disk driver as any locally-attached disk would do
and the filesystem considers them local storage. Therefore,
these drivers must compare favorably to the performance of
the local drives. That is accomplished by using a highly
asynchronous mode of operation based on an event-driven
model of computation that makes the most out of the per-
formance of System Area Networks (SAN), whose latency
and bandwidth figures resemble more to those of memory
subsystems than to those of networks. Also, the influence
of the semantics and the assumptions of the filesystem us-
ing the driver should be locally-confined so that they don’t
have adverse effects on the operation of the remote disk. In
this context, we discuss the impact of the filesystem read-
ahead policy. A Linux prototype has been implemented and
its performance shows improvement over local disks.

2 Background

The interaction between a filesystem and a disk driver is
intermediated by a page/buffer cache to speed up the disk
access.Buffer headstructures [4] are used to describe the
in-memory copies of the disk blocks kept in these caches.



The strategy routine [4] intermediating the access relies on
buffer heads to pass disk jobs to the driver, and, if possible,
to optimize their schedule (in Linux, disk access optimiza-
tions coalesce disk requests for consecutive blocks).

When a block is requested, the strategy routine passes on
disk requests to the driver. The calling process goes to sleep
while the driver serves the requests. When done, a disk in-
terrupt schedules a software handler that dequeues the re-
quest, calls a callback routine associated with the buffer
head representing the block and wakes up any process that
might wait for that block to become available. The callback
routine performs buffer head and page management tasks.

3 Motivation

The remote disk driver is a regular block device driver
in the kernel. However, fetching disk blocks over a SAN
implies meeting certain design decisions. First of all, hav-
ing to deal with two systems, the remote disk driver design
has to decide to which extent local requests will affect the
remote page/buffer cache at the physical disk node, as re-
cent research in exclusive caching [28, 7] suggested possi-
ble benefits for certain classes of applications. Second, local
filesystem level policies like read-ahead may lose their effi-
ciency if not properly exported to the remote system. And
last but not least, the driver should make the most out of
the available potential for parallelism in order to represent a
true alternative to local drives performance-wise.

4 Single copy protocol

The separation of the various buffering systems in the
kernel affects the remote disk driver design. The network
interface uses specialized socket buffers to send/receive
messages while the filesystem uses its own buffering ca-
pabilities (the page/buffer cache). That implies additional
copying both at the local node and at the remote disk node.

Let’s take the example of a file read operation. The re-
mote disk driver prepares locally a page to store a block
and sends the block request over the SAN to the remote
disk node. There, if already cached, the block is copied to
the socket buffer and sent back to the requester. This copy
can be avoided only if the SAN card would be capable to
DMA directly from the page/buffer cache. Current RDMA
implementations [11] for SAN do not allow such things
since they require pre-defined pinned-down buffers. The-
oretically however, this should be possible, as disks for in-
stance have no problem in sending their data through DMA
to randomly chosen pinned-down addresses like those of in-
dividual pages/buffers.

For uncached blocks, we instruct the disk at the remote
node to DMA directly in the response socket buffer by
preparing a socket buffer large enough to hold not only the

block data but also thebuffer head [4] structure that de-
scribes its in-memory copy (see Figure 1). Thus, we bypass
both the buffer head slab cache and an additional memory
allocation for the data itself. The latter is possible as we use
pre-allocated response socket buffers. We fill in the buffer
head allocated in the socket buffer with the appropriate val-
ues and pass it to the strategy routine [4] of the disk driver.
As a result, the destination address for the disk DMA trans-
fer registered in the disk request will be that provided by
the buffer head which, in turn, points to an address in the
response socket buffer itself. When the disk read operation
completes, the disk software interrupt marks the “buffer”
uptodate and “releases” the buffer head. In fact, nothing
gets done since the buffer head occupies memory in the
socket buffer past the useful region and that memory won’t
be transfered back over the network.

skb head

skb tail

Remote disk request header

Socket buffer

Data pointer
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Figure 1.

As soon as the response arrives at the initiator, the remote
disk driver that issued the request has to copy the block data
to the page cache. Again, this copy could be avoided if the
SAN card would have a DMA capability allowing data to be
directly sent to the page cache. Or, as a general alternative
to any DMA capability, one could use a unified network and
cache buffering system such as IO-Lite [21].

The capability to control whether copies of the fetched
blocks are left behind in the page/buffer cache at the remote
disk node offers extended flexibility. On one hand, fine-
grained exclusive caching [28] is possible by simply send-
ing the appropriate remote disk request. On the other hand,
the ability to control copies at the remote site enables dual
behavior: either computer- or network-attached disk. When
the node hosting the physical disk is not logically involved
in computation, the single copy protocol makes the remote
disk look like network-attached storage.



5 The impact of the filesystem read-ahead
policy and disk fragmentation

Traditional kernels use a filesystem read-ahead policy to
improve the disk usage and throughput. The default policy
is to sequentially prefetch a given number of blocks. The
policy adapts its behavior to the file access pattern of an ap-
plication by using a read-ahead window that may shrink to
zero when accesses become random. This policy is com-
plemented by the optimizations performed by the strategy
routine of the disk driver and the disk controller itself. In-
dependent management of all these caches and their opti-
mization algorithms may lead to performance degradation,
as pointed out by recent research [23, 7].

When exporting an entire disk through a remote disk
driver, the natural question is how to translate the local
filesystem read-ahead policy at the remote disk node since
that node is not aware of the assumptions made by the local
system issuing the disk requests. A simple answer is to use
a synchronous model employed by local disk drivers and
to rely on the read-ahead facilities of the remote disk con-
troller. But this may not work properly for certain classes
of applications (Web servers that serve mostly small files).
Moreover, disk fragmentation worsens the performance due
to unnecessary disk accesses that pollute the caches and re-
duce meaningful disk throughput.

Fortunately, it is fairly easy to translate the read-ahead
access pattern to the remote site by asynchronously sending
disk requests. The low-level driver routine concluding the
decisions of the strategy procedure removes the currently
issued disk request from the driver queue allowing thus the
next requests to be processed. The processed requests are
gathered in a separate queue that will be walked through
when the block replies arrive. Thus, if we consider the
low latency of passing a small message over a SAN, we
can affirm that the read-ahead block requests arrive and are
queued at the remote disk node with minimal delay.

Reading ahead raises another question: how much to
read ahead ? The filesystem makes his assumptions about
the underlying storage system and sets an upper bound to
the read-ahead window. With respect to the remote disk
driver design, one has to answer the following question: are
these assumptions still correct when the disk is not local
anymore? Section 7 will show the sensitivity of our asyn-
chronous mode of sending disk requests to this parameter.

6 Remote disk drivers and the network

The remote disk driver design has to cope also with the
consequences of using a SAN to move blocks back and
forth. Requests arriving at the remote disk site behave as
regular messages delivered by the SAN network card at in-
terrupt time to the remote host. In our previous work [20],
we identified some design decisions to be met regarding

how to handle incoming block requests. In short, we argued
in favor of a mixed event-driven/blocking model in which
cached disk blocks are delivered at interrupt time to enhance
responsiveness (akin to systems like Active Messages [27])
while deferring the disk service to a kernel thread. This
thread delivers the blocks from within a well-defined pro-
tection domain that allows avoiding unfairness caused by
interrupt-driven computation as pointed out by the research
experience with network subsystems [5, 6].

6.1 Asynchronous block delivery

The operation of the kernel thread delivering the disk
blocks may be synchronous or asynchronous. For reasons
discussed in Section 5, a synchronous model is not accept-
able. Moreover, a synchronous block delivery mechanism
loses the opportunity to profit from disk strategy routine and
disk controller optimizations.

In asynchronous block delivery mode, the thread
launches a number of disk requests in execution and blocks
awaiting for the first request to complete. The benefits come
here from amortizing the cost of a context-switch over sev-
eral disk requests, from the optimizations performed by the
strategy routine of the disk driver and from the disk access
optimization algorithms implemented by the disk controller.
However, there is still one problem left. Once the blocks
have been loaded in memory (either in the local page/buffer
cache or, as we presented in Section 4, directly in the re-
sponse socket buffer), they have to be sent back to the re-
quester as well. That may entail additional processing that
cannot be carried out in parallel with the request handling.

A better solution uses an event-driven model. Disk
drivers signal the completion of block reads by calling a
disk software interrupt that removes the request from the
driver queue, marks it free, calls potential callbacks associ-
ated with the buffers heads used for the blocks and launches
new disk jobs, if available. Having the possibility of run-
ning a callback at interrupt time is the key to better per-
formance because these callbacks can be used to sent right
away the freshly loaded block back to the requester. Thus,
by simply registering the appropriate callback in the buffer
head passed to the strategy routine, one gets maximum
amount of parallelism (actually pseudo-parallelism as usual
on uniprocessor machines) between request processing and
data delivery. The major disadvantage of this solution re-
mains unfairness, as already pointed out in our previous
work. The costs of sending the blocks are charged to the
currently running process that happened to be interrupted
by the disk completion event.

7 Performance evaluation

In order to evaluate the performance of our remote disk
driver we used WebStone [24], a well known commercial



benchmark for Web servers respecting a Zipf-like [29] doc-
ument retrieval distribution. The WebStone software has
been configured to retrieve static documents only. There-
fore, throughout the rest of this section, by WebStone op-
erations we refer to HTTP GET commands. The bench-
mark used HTTP 1.0 and a file set around 1 GB of data.
The server(s) used local disks, NFS (over Ethernet) and
Linux ext2 on top of our remote disk driver. The driver
used the single copy protocol (that is, it behaved more like
a network-attached disk than a computer-attached one) and
we tested with both asynchronous delivery mechanisms: the
thread-based one, designated as theasynchronouscase, and
the interrupt-based one, called theevent drivencase.
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Figure 2.

We drove two kinds of experiments. The first type at-
tempted to assess the performance of a single server using
remote disk drivers. We evaluated the impact of the load,
disk fragmentation and read-ahead policy of the filesystem
on the server performance. The results are presented in sub-
sections 7.2 and 7.3. The second type of experiments con-
sidered the operation of remote disk drivers in distributed
servers. The aim was to get an idea about the behavior of
our remote disk acting either as a computer-attached or as
a network-attached disk. In the first case, the node host-
ing the physical disk was running a Web server instance as
well. For the other case, two server machines mounted the
remote disk locally. Subsection 7.4 presents and discussed
the corresponding results.

7.1 Experimental Setup

We ran our experiments on a 3-node Linux cluster in-
terconnected through a Myrinet switch and LANai 7 cards
(133 MHz processor on board, 2 Gb/sec in each direction).
The host interface is a 64 bit/66 MHz PCI that can sustain
a throughput of 500 MB/sec. The Myrinet cards are con-
trolled by the GM 1.6.4 driver of Myricom [25]. The PCs
are 350 MHz Pentium II machines with 256 MB of RAM.
All the systems run Linux 2.2.14.

The test disks are IBM DCAS-34330W Fast/Ultra-SE
SCSI. Only disk partitions were remotely mounted for the
experiments that we further describe. Both disks are format-
ted with a native Linux filesystem format (ext2). One of the
disks has an aged filesystem on it (39.5% non-contiguous,
as reported by thefsck command) while the other one is
newly formatted (0% non-contiguous). The server ma-
chines mounted the remote disk partitions read-only.
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Figure 3.

As Web server we used Apache 1.3.20 [3]. A Linux
router stays between the client and the server machines.
Both the client and the router are Athlon AMD XP 1.5 GHz
PCs with 512 MB of RAM and run Linux 2.4.18. The client,
the router and the server(s) are all interconnected through
regular 100Mb/s Ethernet.



7.2 The impact of the WebStone load on the re-
mote disk driver

We varied the load WebStone puts on the server by in-
structing the benchmark to use a number of simultaneous
connections of 150 and 300, respectively. In terms of re-
quested data, that corresponds to roughly 900 MB and 1.6
GB, respectively. The results are presented in Figures 2 and
3. The average response time refers to the average time
taken by an operation (GET command, actually).

Notice that for the light load there are no significant dif-
ferences between the two remote disk methods. Naturally,
the local disk performance of the aged disk is somewhat
worse than that of the non-aged one. Surprisingly, NFS
copes better with disk fragmentation than local disks. Its
insensitivity to disk fragmentation for this load is similar to
that exhibited by the remote disk driver cases. Overall, re-
mote disk drivers outperform local disks and NFS. The dif-
ference is unnoticeable for the non-aged disk but visible for
the aged one. This may be a bit surprising when it comes
to local disks, but it must be recalled that the remote disk
drivers use a highly asynchronous mode of operation both
at the local and remote sites. That allows some degree of
processing overlapping that makes up for the lack of con-
tiguity of the aged disk whose greater mechanical latencies
can be thus better hidden.

Under heavy load (Figure 3), both remote disk driver
methods yield some sensitivity to the disk fragmentation.
Overall, the event driven method clearly outperforms the
asynchronous one. Disk fragmentation affects the compar-
ison to local disks. For the non-aged disk, the event driven
method outperforms local disks, but the gain is minimal.
For the aged disk, as the load increases, the lack of conti-
guity entails higher performance degradation for the local
disk. Both remote disk driver methods clearly yield bet-
ter figures as they manage to hide more of the increased
mechanical latencies in the parallel processing of the two
nodes. Moreover, the higher the degree of asynchrony (and
therefore pseudo-parallelism), the better the performance.

7.3 The impact of the read-ahead policy of the
filesystem

As mentioned in Section 5, one interesting question is
whether the remote disk driver properly exports the effects
of the read-ahead policy of the localext2 filesystem. To
answer the question, we varied the size of the maximum
number of the read-ahead pages. We used the event-driven
method and a load of 300 simultaneous connections. The
results are shown in Figure 4. The kernel default value spec-
ifies to read ahead at most 31 pages. Notice that for both
disk types, the remote disk driver yields best performance
for the same value. More interesting however, for the other
read-ahead values, the performance of the aged disk is bet-

ter than that of the non-aged one. That clearly points out
that exporting a wrong maximum value for the read-ahead
window is not only suboptimal but ceases to serve the pur-
poses of reading ahead (since the contiguous disk performs
worse than the non-contiguous one, which is totally coun-
terintuitive). Such decisions can thus affect the performance
of the remote system and therefore undermine our design
goal to minimize the remote impact of locally run policies.
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7.4 Distributed server performance

The distributed server performance evaluation uses two
server machines in three setups. The router acts as a front-
end dispatcher using a round robin distribution policy. In
the first setup, the two machines serve the requests from the
local disks (same file set, replicated on both disks). The
disks are mostly contiguous (0% and 1.7% non-contiguity,
respectively). In a second scenario, one of the two servers
uses a remote disk driver to mount the 0% non-contiguous
disk locally using the event driven method. This case cor-
responds to the computer-attached operation of the disk. In
the third setup, two machines mount locally the remote disk
as a network-attached disk using the event driven method.
The WebStone load used was 300 simultaneous connec-
tions. The results are reported in Figure 5.

The two servers equipped with local disks perform best.
The load is almost equally split between the two disk drives
and that maximizes the amount of disk parallelism. The
other two cases show that the task is disk and not compu-
tational dominated. Indeed, notice that their performance



doesn’t differ much from that of the corresponding single
server in Figure 3 (slightly worse for case two and even bet-
ter for case three). For the second scenario, we assume that
the additional load placed by the server software on the node
hosting the disk is responsible for the light performance
degradation. To conclude, disk utilization is affected by ad-
ditional remote operation, but not by an increased number
of clients mounting the disk remotely.
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8 Related work

The I/O bottleneck problem has been tackled at various
levels of the system and among systems (remote I/O for par-
allel/distributed computing). Remote I/O systems can be
broadly classified in: user-level-, filesystem- or low-level-
oriented solutions.

Low-level standalone I/O systems attempt to improve
performance at disk level either by bridging the speed gap
between the processor and the disk (Active Disks [1]) or
by integrating the various system caches into a coopera-
tive I/O infrastructure. Exclusive caching systems [28, 7]
avoid double buffering occurring in independently managed
caches (e.g., filesystem page/buffer cache and disk con-
troller cache). The mismatch between the read-ahead poli-
cies of the filesystem and the disk controller is compensated
by filesystem-aware disk controller prefetching [23, 7].

Distributed low-level I/O systems includevirtual disks
[19] providing their clients a block-oriented, globally ac-
cessible and consistent view of a physically distributed disk

pool,single-image I/O systems[15] amassing the entire (lo-
cal and remote) disk capacity of a node into a RAID-like
structure,striped log-based storage[14] or object-oriented
basednetwork-attached secure disks[13].

At higher levels, distributed filesystems like Frangipani
[26] use Petal [19] virtual disks and supply them with
meta-data consistency support. Server-less filesystems [2]
distribute the meta-data management and use cooperative
caching [10, 22] to scale their working set beyond the limit
of the locally available memory. The usual distributed
filesystem memory hierarchy (local cache, server cache,
server disk) extends by adding the client caches, provided
that remote client cache reads take less time than accessing
the disk. The PACA [9] parallel filesystem mixes coopera-
tive caching with global memory and RDMA.

Direct access filesystems (DAFS [11]) modify the dis-
tributed I/O memory hierarchy as well, not by adding but by
removing a level, namely the local kernel cache. Addressed
to a class of applications that have seldom sharing patterns,
DAFS runs in user space and uses RDMA to communicate
directly with the file server. Thus, the local operating sys-
tem is bypassed. Unlike PACA, no global memory support
is provided. Other user-level systems are mostly a work-
around: block devices [17] or filesystems (PVFS [16]) in
user space, remote I/O libraries [12] over MPI-IO [8]. Since
traditional kernels are unaware of the distributed nature of
these systems and their inner mechanisms and policies fail
to match the expectations of the user space driven compu-
tation, the end result is performance penalty. Also, moving
typical kernel code in user space incurs increased applica-
tion software complexity and more difficult development.

9 Conclusions

In this paper we presented the design of a remote disk
driver for COTS clusters. A single copy protocol allows
implementing exclusive caching. As needed, the driver ex-
hibits either computer- or network-attached storage behav-
ior. The driver properly exports local filesystem read-ahead
decisions to the remote system and uses a highly asyn-
chronous operation mode to outperform local disks.
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