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Abstract

This paper presents a performance analysis of request
distribution-aware caching in cluster-based Web servers.
We use the Zipf-like request distribution curve to guide
static Web document caching. A combination of coopera-
tive caching and exclusive caching provides for a cluster-
wide caching system that avoids document replication ac-
cross the cluster. We explore the benefits of cooperative
caching algorithms that use request distribution informa-
tion to steer their behavior over general purpose cooper-
ative caching algorithms. Exclusive caching exercises a
fine-grained control over replication of data blocks across
the cluster. The performance of the system has been as-
sessed by using the WebStone benchmark. Our cluster-
based server employs Linux kernel-level implementations
of cooperative caching and exclusive caching. Current re-
sults show that request distribution-aware caching outper-
forms general-purpose caching algorithms, makes up for
the performance loss of non-replicated data solutions and
compares favorably to fully-replicated solutions.

1 Introduction

In this paper, we address two issues regarding the disk
I/O subsystem of cluster-based servers. First, locality-aware
request dispatching algorithms assume most of the time that
documents are fully-replicated across the cluster. One alter-
native is to use virtual disks but then uncached concurrent
non-overlapping block requests have to be serialized at the
disk controller. In a system using replicated documents,
such requests take advantage of the disk controller level
parallelism. We assess the benefits of cooperative caching
as a driving engine to bridge the gap between the perfor-
mance of virtual disks vs. replicated documents. Second,
we try to exploit information from the Zipf-like [20] Web
document request distribution curve in order to improve the
caching performance over general purpose algorithms. To
be more specific, we show that request distribution aware
cooperative caching outperforms its corresponding general

purpose counterpart. Especially the class of large, unpop-
ular files benefits of this approach. Moreover, handling
block eviction in a cooperative cache pays off only for sig-
nificantly large, unpopular documents. To the best of our
knowledge, this is the first attempt to analyze the impact of
application-aware (request distribution aware, in fact) coop-
erative caching.

Exclusive caching [19, 5] exercises a fine-grained con-
trol over multiple copies of the same data found in indepen-
dently managed caches in the system (filesystem cache, on-
chip disk cache, etc). We extended the concept cluster-wide
[13] by offering control over which copies of a disk block
are kept around in response to a remote request and we in-
vestigate to which extent exclusive caching can help coop-
erative caching by avoiding unnecessary copies of certain
classes of documents. To the best of our knowledge, this is
the first attempt to combine exclusive caching with cooper-
ative caching in a cluster-wide, application-aware caching
system.

2 Server architecture overview

Our cooperative caching system is based on Cluster-
Aware Remote Disks [12], which are kernel device drivers
that represent local stand-ins for remote disk drives and
fetch remote blocks over a System Area Network (SAN).
Their strategy routine is driven by cooperative caching poli-
cies (algorithms) that allow checking block requests miss-
ing in the local cache against remote caches as well. The
access mechanism of CARD drivers implements exclusive
caching capabilities. In order to establish a global cache,
several nodes in the cluster mount locally a remote disk via
CARD drivers. If no cooperative caching policy is in use,
the CARD acts as a virtual disk. Otherwise, the CARDs co-
operate through the policy in order to jointly manage their
corresponding parts of the local caches.

From a software perspective, a caching subsystem (as
any other kernel subsystem, in fact) faces a serious prob-
lem: the more general it is, the little the chances to properly
suit the needs of particular problems. Therefore, the design
of our server is policy-oriented, rather then service-oriented.



That means applications may download in the kernel their
own policies at will, in the spirit of extensible/grafting ker-
nels [3, 9]. For instance, cooperative caching policies can
be downloaded in the CARD driver to steer its operation.
We will use this facility to experiment with several policies
as explained in the following sections.

3 Caching on a curve

Web workloads exhibit a certain request distribution,
amenable to a Zipf-like [20] formula. Of particular interest
is the so called “heavy tail” of the distribution curve, con-
sisting of unpopular static documents that account for a sig-
nificant part of the servicing time. Moreover, it is possible
to identify entire classes of such static documents according
to their popularity. For instance, WebStone [17], a commer-
cial benchmark for Web servers, identifies by default four
classes of static documents: files smaller than 1KB, files
in the (1KB, 10KB) and (10KB, 100KB) ranges and files
larger than 100KB, denominated by class0, class1, class2
and class3 respectively. In terms of their popularity, class0
accounts for 50% of the requests, class1 for 35%, class2
for 14% and class3 for 1%. However, the servicing time
for class3 accounts for roughly one quarter of the total time
while servicing class3 comes close to 40% of the total time.

A legitimate question is to ask whether special treat-
ment for each class could improve the overall server perfor-
mance. Some results from connection scheduling in stan-
dalone servers [7, 10] are an encouraging starting point as
favoring short-lived connections in a SRPT (Shortest Re-
maining Processing Time) connection scheduling improves
significantly the response time without affecting the overall
behavior of the server. Beforehand knowledge of the life
length of a connection is shown to vary consistently with
the size of the documents. Otherwise put, if one singles
out large files as a separate class and schedules connections
according to this simple classification, the overall perfor-
mance of the standalone server improves.

By further refining the document taxonomy, we are using
a combination of cooperative caching and exclusive caching
to manage a the global cluster-wide cache according to the
characteristics of the workload. Such an approach needs
to respond several challenges. First off, it must be as-
sessed whether cooperative caching compares favorably to
simple solutions like document replication. Second, it is
unclear whether general-purpose cooperative caching algo-
rithms wouldn’t do equally well. Finally, since a previous
attempt to use general-purpose cooperative caching for dis-
tributed Web servers [14] relied on simulation, it is interest-
ing to validate our solution through a real implementation.

3.1 Cooperative caching

Two of the main features of cooperative caching are of
particular interest to our work. First, client disk block re-

quests missing in the local cache are checked against remote
client caches as well before going to the server. Second,
cooperative caching implements a global replacement pol-
icy for locally evicted blocks. Due to the aforementioned
flexibility of our CARD drivers, we can implement various
lookup and eviction handling procedures. That allows us
to test common sense intuitions about caching documents
in the global cache. For instance, globally caching highly
popular documents seems a good idea because it may yield
high hit ratios. Also, saving evicted blocks for unpopular
documents seems equally important because they account
for a significant part of the total servicing time. But since
all the classes compete for the same memory, would a gen-
eral purpose cooperative caching algorithm do? Would a
policy trading off among classes of documents do better?

Research showed that servers operating in complex en-
vironments using proxies, content delivery networks, etc.
serve mostly the unpopular documents as the popular ones
are filtered out of the request stream at early stages by the
proxies, CDNs, etc. [15]. This is yet another argument to
assess the performance of caching exclusively the class of
unpopular documents.

In our previous work on cooperative caching [12], we
showed that handling block eviction irrespective of the
loads of the clients participating in the global cache may
cause severe performance loss (the performance can plum-
met below that of a cold global cache). However, these re-
sults are valid for cooperative caching in a distributed en-
viroment. A natural question asks whether global eviction
handling is a right idea in a cluster-based Web server, since
such a server can be considered a parallel machine in which
all nodes are (more or less) equally busy (especially when
load balancing mechanisms are used). That is to say, the
chances for finding lightly loaded nodes to host remotely
evicted blocks are small and our previous experience argues
against global eviction handling in such circumstances.

One final question asks whether cooperative caching can
compare to a simple technique like replication. If not, one
loses an important advantage of replication, namely that of
the disk controller parallelism. In the worst case when all
the requests have to go to the disk, cooperative caching pays
double: the protocol overhead and the sequential disk pro-
cessing, the latter being probably the heaviest price. And if
this is the case, is it possible to alleviate the consequences
by using a mixed approach, that is replicating some classes
of documents while cooperatively caching the other?

We responded all these questions by writing specific al-
gorithms that all build upon the HSCC algorithm [12], a
general purpose cooperative caching algorithm. By spe-
cific algorithms we mean actually various versions of the
lookup and eviction procedures of HSCC. For instance, de-
ciding not to cooperatively cache a certain class of static
documents is simply a matter of downloading in the CARD



driver a lookup procedure that lets requests addressed to
files from that class to be directly forwarded to the disk
node. Similarly, for handling evictions of blocks belonging
to files in a certain class of documents. For the case when
no eviction was handled, a null eviction procedure has been
downloaded in the kernel to disregard block eviction events.

3.2 Exclusive caching

Our exclusive caching solution [13] operates cluster-
wide by avoiding double buffering as a host mouting a
CARD requests a block from the remote disk. To avoid
leaving a copy at the remote site we use a technique that al-
lows a DMA transfer from the disk driver into the response
socket buffer. When used with cooperative caching system,
exclusive caching concerns only requests that need to go
to the disk. Requests serviced from remote client caches
don’t need to worry about remote copies, because they got
there according to the joint management algorithm of the
global cache (loaded on demand or saved as a result of re-
mote eviction) while eviction from that cache is regulated
by the global replacement policy.

Exclusive caching allows such computer-attached disks
in COTS clusters to exhibit also network-attached behavior,
provided that no other useful computation takes place on
that node. A disk with network-attached behavior mounted
remotely through CARD drivers opens also possibilities for
selective caching according to certain criteria. For instance,
in terms of Web workloads, the page/buffer cache at the disk
node can be used to store unpopular documents and thus act
as a discard cache. This is simply done by suppressing the
exclusive caching bit in the requests for uncached blocks
belonging to files of that class. As a result, the disk node
cache and itslocal replacement policy govern the caching
of that class of documents which may make little sense to
be cached across the cluster. Naturally, the effectivenessof
such a method depends on the memory size of the disk node
and the size of the class.

4 Performance evaluation

The performance evaluation of our caching system used
WebStone [17], a well known commercial benchmark for
Web servers respecting a Zipf-like [20] document retrieval
distribution. The WebStone software has been configured
to retrieve static documents only, to use HTTP 1.0 and a
workload around 1 GB of data (corresponding to 300 simul-
taneous connections maintained by the client with the dis-
tributed server). The servers used a Linuxext2filesystems
both on top of local disks and remotely mounted disks. The
remotely mounted disks used CARD drivers with exclusive
caching turned on by default (if not otherwise stated).

4.1 Experimental setup and methodology

We ran experiments on a 3-node Linux cluster intercon-
nected through a Myrinet switch and LANai 7 cards (133
MHz processor on board, 2 Gb/sec in each direction). The
host interface is a 64 bit/66 MHz PCI sustaining a 500
MB/sec throughput. The Myrinet cards are controlled by
the GM 1.6.4 driver of Myricom [18]. The PCs are 350
MHz Pentium II machines with 256 MB of RAM. All the
systems run Linux 2.2.14. The test disks are IBM DCAS-
34330W Fast/Ultra-SE SCSI wth non-aged filessytems on
them (0.7% non-contiguous, as reported by thefsck com-
mand). Our Web server choice was Apache 1.3.20 [2]. A
Linux router stays between the client and the server ma-
chines. Both the client and the router are Athlon AMD XP
1.5 GHz PCs with 512 MB of RAM and run Linux 2.4.18.
The client, the router and the server(s) are all interconnected
through regular 100Mb/s Ethernet. Figure 1 describes visu-
ally the experimental setup.

Ethernet

Myrinet

Server 3

Server 1 Server 2Cooperative caching

CARD CARD

Client

Router

Disk

Ethernet

Figure 1. Experimental setup
WebStone runs on the client machine and sends requests

to the cluster-based server through the router that dispatches
them according to a round robin policy to two of the server
machines in order to yield perfect load balancing (in terms
of the number of requests serviced). The two cluster nodes
build a cooperative cache of at most 512 MB (somehwat
smaller, in fact, due to the space occupied mainly by the op-
erating system and the server program). This amounts to at
most half of the aggregated storage size of the working set
of the workload (1GB of data). Thus, we avoid having the
working set fit entirely either in any of the local memories or
in the global cache. The two nodes mount the disk contain-
ing the benchmark file set through CARD drivers. The disk
itself resides on the third server node and emulates network-
attached behavior. The page/buffer cache at the disk node
(the third server machine) is referred throughout the rest of
the section as the “discard cache”.

4.2 The performance of CARDs as simple remote
disk interfaces

In order to have an idea about the performance loss of
a server using a single disk remotely mounted when com-



pared to a fully-replicated solution (that is, each server has
all the needed documents stored on local disks), we drove a
first experiment by running the benchmark with two servers
in three setups. In the first setup, the two machines serve
the requests from the local disks (same file set, replicated
on both disks). In a second scenario, one of the two servers
uses a CARD driver to mount the remote disk locally while
the second server relies on a local disk to deliver the data.
This case corresponds to the computer-attached operation
of the disk. In the third setup, two machines mount locally
the remote disk as a network-attached disk. The results are
reported in Figure 2.

The two servers equipped with local disks perform best.
The load is almost equally split between the two disk drives
and that maximizes the amount of disk parallelism. The
other two cases show that the task is disk and not compu-
tational dominated. For the second scenario, we assume
that the additional load placed by the server software on
the node hosting the disk is responsible for the light perfor-
mance degradation.

WebStone, 2 servers, 300 simultaneous 
connections
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Figure 2. Remote disk vs. replication
4.3 The performance of cooperative caching with-

out eviction handling

One of the questions we would like to ask is whether
checking remote client memories for cached copies of a lo-
cally missing requested block is a technique that can fill out
the performance gap that we saw in our previous experi-
ment. In order to assess that, we wrote three policies and we
compared their performance to that of the fully-replicated
solution. Using the class definitions in Section 3, a brief
description of these policies follows:� cooperatively cache classes 2 and 3 of files, that is the

files that require most of the servicing time. The small
and popular documents are cached at the discard cache� cooperatively cache classes 0 and 1 (small and popular
documents) and rely on the discard cache to cope with
classes 2 and 3� cooperatively cache all the requested documents
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Figure 3. Evaluation of cooperative caching
without eviction handling

The results are presented in Figure 3. Notice that the
first policy has the best results (even slightly better than
the replicated solution), which stresses on the importance
of caching the heavy tail of the request distribution curve.
The last two policies exhibit comparable performance (with
a slight degradation for the results of plain cooperative
caching). This outcome can be explained if we remember
that classes 0 and 1 account for 65% of the requests. Thus,
using the limited capacity of the discard cache to store the
big files of classes 2 and 3 doesn’t improve significantly the
performance.

Selective evition handling
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Figure 4. Selective block eviction handling ac-
cording to classes of documents

4.4 Selective eviction handling

We pushed our investigation further by attempting to as-
sess to which extent saving locally evicted blocks in re-
mote client memories affects the performance of cooper-
ative caching operating in a cluster-based server environ-
ment. Again using the notations from Section 3, here is the
definition of these policies:� handle only evictions of blocks belonging to files from

class 2, those that account for almost 40% of the total
servicing time� handle the evictions of the blocks in classes 0 and 1,
that is popular documents less than 10 KB� handle evictions for class 0 only, i.e., the most popular
documents, representing 50% of the requested files



The results are reported in Figure 4 which also compares
them with those of the fully-replicated solution. Notice that
the first policy comes very close to the performance of the
replicated solution which underlines again the importance
of keeping class 2 files cached in memory, this time due
to eviction handling. The performance degradation of the
other two policies shows that the smaller and the more pop-
ular the file is, the less important the eviction handling. That
can be understood if we remember again that class 0 ac-
counts for 50% of the requests which makes very probable
to find a cached copy of the block in remote client memories
and thus rendering futile the saving of such blocks. As the
sizes of the document grow and their popularity decreases,
eviction handling becomes more important.

Heavy tail handling
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Figure 5. Heavy tail caching

4.5 Handling the heavy tail of the request distri-
bution curve

This part of the request distribution curve represents 1%
of the requested documents but takes some 25% of the total
servicing time. Our previous experiments showed the im-
portance of caching large documents from classes 2 and 3.
In this subsection we try to get more fine-grained insight
about this issue by separately treating the unpopular docu-
ments. We wrote three other policies in which we attempt
to cache these documents at the discard cache. The policies
using cooperative caching handled evictions in class 2. The
three policies are:� cooperatively cache all documents and use the discard

cache to keep copies of the large documents of class 3� cooperatively cache classes 0, 1 and 2 without caching
class 3 at all� cache only class 3 documents using the discard cache

The results are shown in Figure 5 and, as usual, they
are compared to those of the replicated solution. The poor
performance of the third policy shows that caching the large
files doesn’t help if all the other requests go to the disk.
That becomes clear when comparing the performance of the
third policy with that of the second policy which doesn’t

cache class 3 at all and yet performs significantly better. The
best solution is the mix of the last two which shows slightly
better performance than the solution using replication.

Replication and caching mix
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Figure 6. Combining replication with caching

4.6 Mixing replication with cooperative caching

In this section we present the results of a mixed solu-
tion that uses both replication and cooperative caching (see
Figure 6). We wrote and tested two policies. In the first
one, we replicate classes 0 and 1 on local disks of the two
servers and use cooperative caching for classes 2 and 3. The
second policy uses replication for small and popular doc-
uments, cooperatively caches class 2 and uses the discard
cache to store unpopular documents. Both policies han-
dle eviction for class 2 only. The first policy outperforms
the fully-replicated solution and its results are consistent
with our previous observation according to which caching
classes 2 and 3 yields the best performance. The fact the us-
ing replication for the small and popular files doesn’t affect
this conclusion indicates that these classes enjoy enough
locality due to their popularity (since there are only two
servers, there is a 50-50 probability that a second request
for the same document will hit the same server).

5 Related work

A fairly broad survey on locally distributed Web servers
can be found in Cardellini et al. [4]. Locality-aware re-
quest distribution [14] aims at reconciling load balancing
with data reference locality at the back-end level. An alter-
native to this approach would be to use cooperative caching
[8, 16], but the results were shown to be similar [14].

Exclusive caching systems [19, 5] strive to avoid double
buffering occurring in independently managed caches (e.g.,
filesystem page/buffer cache and disk controller cache).
Serverless filesystems [1] aim to improve the I/O perfor-
mance by distributing the metadata management and by
using cooperative caching [8, 16]. Through cooperative
caching, the traditional distributed filesystem memory hi-
erarchy (local cache, server cache, server disk) is extended
through the support of client caches, as long as reading from



a remote client cache takes less time than accessing the disk.
With such systems the working set can scale beyond the
limit of the locally available memory. PACA [6] is a par-
allel filesystem that mixes cooperative caching with global
memory and Remote DMA (RDMA). The Clusterfile [11]
parallel filesystem uses cooperative caching to improve col-
lective I/O.

6 Conclusions

This paper describes request distribution-aware caching
for cluster-based Web servers. Our caching system uses co-
operative and exclusive caching to speculate on the proper-
ties of Zipf-like request distribution curves for static Web
documents by selectively caching classes of documents ac-
cording to their popularity. Our evaluation showed that co-
operative caching bridges the performance gap between vir-
tual disks and fully-replicated solutions especially whentar-
geting the class of large, unpopular files. Handling block
eviction pays off for unpopular and large documents only.
Separate handling of the heavy tail of the request distribu-
tion curve may bring further benefits.
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