
On the Impact of Warmup Phases on the Economics of Pair Programming

Frank Padberg and Matthias Müller
Fakultät für Informatik, Universität Karlsruhe, Germany

padberg | muellerm @ ira.uka.de

Abstract

Pair programmers need a” warmup phase” before the
pair can work at full speed. We study how large the
impact of the lower productivity during warmup is on
the business value of a pair programming project. To
this end, we extend our net present value model for
pair programming to explicitly include a learning
interval for pairs. We then carry out a simulation study
where we vary the shape of the learning curve, the
length of the learning interval, the final productivity
level of the pairs, the market pressure, and the size of
the workforce. Our simulations show that the cost of
the warmup phase is small compared to the project
value. This result suggests that the learning overhead
is not an obstacle to introducing and using pair
programming.

1. Current Interests
Both of us (Frank and Matthias) are interested in the
economic analysis of development techniques and
paradigms, such as XP. The goal of our studies is to
develop guidelines how to use certain technology in
software engineering to the best advantage.
Frank also is working on cost estimation and optimal
scheduling for software projects. This is a hard
problem since feedback between activities introduces a
considerable amount of uncertainty into the software
process, see [6-9].
Our group in Karlsruhe is known for its long-standing
substantial research in empirical software engineering.
Matthias has contributed a number of empirical studies
about XP to our group’s repository, for example, a
study which compares pair programming against
conventional development with reviews [13,14].

2. Past Work
Frank is an early member of the EDSER community.
He contributed papers on probabilistic cost modeling
and the impact of product features (such as the strength

of the coupling in the software) on the project cost to
the workshops [1-3].
Later on, Matthias joined in to work on the economics
of pair programming and extreme programming [4,5].
These papers use concepts from finance such as net
present value and return on investment. Expanded
versions appeared at international conferences [10,11].

3. Issue Statement
Pair Programming (PP for short) is a technique where
all tasks are performed by pairs of developers using
one keyboard, display, and mouse. The idea is that
working in pairs increases productivity and improves
the software quality as compared to conventional
development. These potential advantages are reached
at the expense of a higher personnel cost, though.
Hence, the decision to apply PP in a project must be
supported by a classical cost-benefit analysis.
There is empirical evidence that developers who
program in pairs need a “warmup phase” before PP
becomes fully effective, that is, before the pair works
at full speed [17,19,20]. We have made similar
observations in our XP lab courses for computer
science graduate students [15,16]. Human factors are
of key importance in this context; some developers
easily communicate and share ideas, others don’t.
Clearly, the lower productivity of a pair during the
warmup phase affects the economic assessment of the
project. This holds both for developers who have no
experience with PP and those who do, but are member
of a newly formed pair. We speak of the “learning
phase” in the first case and the “startup phase” in the
second case. We expect that the learning phase for PP
newcomers will take longer and exhibit a different
learning curve than the startup phase for experienced
pair-programmers.
The questions which we want to study, then, are:

• How large is the impact of the lower productivity
during warmup on the business value of a pair
programming project?

• How can the cost of inducting personnel into pair
programming be minimized?

Type of issue
The questions under study are strategic w/t the cost of
introducing PP in a company for the first time, but
operational w/t estimating the value of individual PP
projects and estimating the cost of forming new pairs.
The questions relate to business, management, and
process issues. The decisions to be made will be
mostly non-technical in nature.

Context
The context of the issues studied in this paper are
Agile Methods, in particular, Extreme Programming
(XP). Pair Programming is a key technique of XP
which can be applied independently of other XP
techniques (such as test-driven development). Both XP
and PP are being recommended especially for projects
which are carried out under strong market pressure.
Since programmer pairs should finish tasks faster than
single developers, projects which use PP should get to
market earlier than conventional projects. The
resulting gain in market share can – under suitable
conditions, see our previous studies [10,11] – more
than balance the increased personnel cost.

Stakeholders
Main stakeholders are project managers who….

• must decide from an economics perspective
whether to switch to PP in their projects;

• must estimate the business value of their next PP
project;

• must introduce new personnel to PP with the
lowest possible overhead.

We aim at providing project managers with tools for
computing the business value of PP projects, methods
of tradeoff analysis for PP, and guidelines for using
PP. Other stakeholders are….

• developers who must pair-off with new
colleagues from time to time;

• researchers who want to understand the tradeoffs
involved in PP and who aim at increasing the
productivity of pairs through suitable tools and
techniques.

Information needs
We need both qualitative and quantitative data about
the shape of the learning curves involved in pair
programming. In addition, we need numbers for the
productivity of pairs for different (industrial) project
settings. When applying the model, a manager also
needs some estimate of the discount rate appropriate to
model the market pressure for his next project.

4. Proposed Approach

Research methods
We have already constructed and used an economic
model for Pair Programming in previous papers
[10,11]. The model is based on the concept of net
present value (NPV) and has a number of parameters,
including the productivity of pairs, the size of the
workforce, the market pressure as modelled by the
discount rate, and the size of the software product; see
below for details.
Currently, our model assumes that the productivity of
pairs is constant throughout the project. We propose to
extend this model to explicitly include a learning
interval, respectively, startup phase. The productivity
of the pairs should increase according to some learning
curve until their final productivity level is reached.
Based on such an extended model, we propose to carry
out a comprehensive simulation study to analyze what
happens to a PP project’s buiness value when we
systematically vary ….

• the shape of the learning curve and the length of
the learning interval;

• the final productivity level of the pairs;
• the market pressure;
• the size of the workforce;
• the size of the product.

Assumptions
The productivity of a pair ususally is expressed as a
(fractional) multiple of the productivity of a single
developer. The corresponding factor is called the pair
speed advantage (PSA). The PSA typically ranges
between 1.0 (no difference in productivity) and 2.0
(double speed). In this study, we’ll make the following
assumptions w/t the PSA:

• We assume that a pair gets more and more
productive each working day; that is, we assume
that a pair’s PSA value steadily increases from
1.0 to the final value over time.

• We assume that the growth of productivity
during the warmup phase a priori is described by
some learning curve. An s-shaped curve assumes
that the pair productivity will increase only
slowly in the beginning, but later on will increase
quickly as the developers get to know each other
better. The formula is

aeb −⋅+1

1
 (0>a , 1>b).

 An exponential curve assumes that the pair
productivity will quickly increase right from the
beginning. The formula is

ae −−1 (0>a).
Both curves reach a saturation level after some
time and are commonly used to describe human
learning processes. The next figure shows two
examples for learning curves where the PSA
grows from 1.0 to 1.6:

• We assume that pairs work with a constant speed
after the learning or startup phase; that is, a pair’s
productivity (and hence, PSA) will be constant
after warmup. This is a natural assumption for
coarse-grained models such as our NPV-based
model.

Process or solution
We quickly summarize our existing economic model
for pair programming and its extension with an explicit
learning or startup phase.
The net pesent value (NPV) of a project is defined as

()
DevCost.

teDiscountRa
AssetValueNPV DevTime −

+
=

1

With net present value, the money paid by the
customer for the final product (AssetValue) is
discounted back at a certain DiscountRate. It is
common in economics to model strong market pressure
by large values for the discount rate.
The development time DevTime (in working days) for
a project of size ProductSize (in lines of code) solves
the equation

e.ProductSizNumOfPairsPSAtyProductiviDevTime =⋅⋅⋅

The development cost (DevCost) for the project is
basically proportional to the development time,
number of pairs, and developer salary, see [11].
We now extend the model by assuming that the pair
speed advantage varies from day to day. The amount
of work accomplished on day t then equals

 NumOfPairsPSAtyProductivi ⋅⋅)(t

where PSA (t) is the value of the pair speed advantage
on day t. Therefore, the development time in days for a
pair programming project becomes the smallest
number DevTime which solves the inequality

∑
=

≥⋅⋅
DevTime

e.ProductSizNumOfPairsPSAtyProductivi
1t

(t)

When using this inequality, we silently simplify the
math a little bit by approximating the learning curve by
a piecewiese constant curve (constant for each day).
Finally, the newly computed development time must
be converted to (fractions of) years, as this is the unit
needed in the NPV formula.

5. Results, Status, Prospects, and Needs

First computational results
We have already done various simulations of our
extended model to study the impact of the lower pair
productivity during learning on the PP project value.
We present just a few representative results here.
The sample project under study has the following
parameters: ProductSize = 25,200 LOC, Productivity =
350 LOC per month, AssetValue = 1,000,000 Euros,
DiscountRate = 75 percent (strong market pressure).
The workforce level (NumOfPairs) and the final PSA
vary.
The next figures show the learning cost per pair and
the relative learning overhead for s-shaped,
respectively, exponential learning, each with a learning
period of one month.

learning cost per pair for s-shaped learning
curve, one month learning period, and strong

market pressure

0

1000

2000

3000

4000

5000

1,4 1,5 1,6 1,7 1,8 1,9 2,0

final pair speed advantage

co
st

 p
er

 p
ai

r

4 pairs

6 pairs

8 pairs

The larger the final PSA, the higher the learning cost
per pair. On the other hand, the cost per pair decreases
as the number of pairs increases. Except for small
values of the final PSA in conjunction with a small
workforce, the learning overhead is limited:

relative learning overhead for s-shaped learning
curve, one month learning period, and strong

market pressure

0

0,05

0,1

0,15

0,2

1,4 1,5 1,6 1,7 1,8 1,9 2,0

final pair speed advantage

pe
rc

en
ta

ge
 o

f n
et

 p
ro

je
ct

va

lu
e

4 pairs

6 pairs

8 pairs

The picture looks similar for exponential learning
curves:

learning cost per pair for exponential learning
curve, one month learning period, and strong

market pressure

0

500

1000

1500

2000

1,4 1,5 1,6 1,7 1,8 1,9 2,0

final pair speed advantage

co
st

 p
er

 p
ai

r

4 pairs

6 pairs

8 pairs

The main difference is that the cost per pair is only half
as large for exponential learning than for
s-shaped learning — note the different scaling of the
y-axis. The relative learning overhead behaves similar
to s-shaped learning, but again, the percentages are cut
in half:

relative learning overhead for exponential learning
curve, one month learning period, and strong

market pressure

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08

1,4 1,5 1,6 1,7 1,8 1,9 2,0

final pair speed advantage

pe
rc

en
ta

ge
 o

f n
et

 p
ro

je
ct

va

lu
e

4 pairs

6 pairs

8 pairs

We have performed analogous computations assuming
a moderate market pressure of 25 percent, instead of
75 percent. The charts for the learning cost per pair
look similar to those in the strong market pressure
case, but the costs are lower, both for exponential and

s-shaped learning. We just give the chart for s-shaped
curves:

learning cost per pair for s-shaped learning curve,
one month learning period, and moderate market

pressure

0
500

1000
1500
2000
2500
3000
3500

1,4 1,5 1,6 1,7 1,8 1,9 2,0

final pair speed advantage

co
st

 p
er

 p
ai

r

4 pairs

6 pairs

8 pairs

The relative learning overhead (in percentages of the
project value) also is significantly smaller than for
strong market pressure. As opposed to the strong
market pressure case, the overhead increases with the
number of pairs and the PSA value. Again, we just
give the chart for s-shaped curves:

relative learning overhead for s-shaped learning
curve, one month learning period, and moderate

market pressure

0
0,005

0,01
0,015

0,02
0,025

0,03
0,035

0,04

1,4 1,5 1,6 1,7 1,8 1,9 2,0

final pair speed advantage

pe
rc

en
ta

ge
 o

f n
et

 p
ro

je
ct

va

lu
e 4 pairs

6 pairs

8 pairs

Preliminary conclusions
Our simulation results suggest that, from a project-
economics perspective, the risk of using PP lies not in
the overhead associated with the learning period,
respectively, startup phase:

• For exponential learning curves and reasonable
length of the learning interval, the overhead
caused by learning amounts to only a few
percentage points of the project value. Recall that
we expect exponential curves to be typical for the
startup phase of pairs formed of developers who
have experience with PP.

• The learning period for developers who have no
experience with PP is a one-time cost (except
when staff turnover is heavy and new staff
consists mainly of PP newcomers). Even when
assuming that s-shaped learning curves apply in
this case, the overhead is likely to be limited by 5

to 10 percent for the very first PP project, given
that management can schedule developers to
learn how to pair-program in a fairly well-staffed
project under only moderate market pressure.

As a consequence, we argue that the risk of using PP
comes either from developers who for some reason or
another are opposed to the idea of working in pairs, or,
on the side of management, from overestimation of the
speed advantage which can be achieved by using PP in
the context of a particular company or project.

As a note to researchers in this field, we’d like to point
out that one must be careful when measuring the PSA
in experiments. If the project or assigment is too small
and developers have had no prior experience with PP,
then the value measured will probably be wrong, as it
includes the learning phase with its lower productivity.
Besides differences in individual skills, this effect
might explain why seemingly contradictory values for
the PSA have been reported in the literature, ranging
from 1.0 to 1.8 [12,17,18,20].

6. Open Issues
Currently, we have limited empirical knowledge about
the “true” shape of the learning curves for programmer
pairs: are they exponential, or s-shaped, or other? We
also need empirical data about the length of the
learning interval for PP newcomers, respectively, the
startup time for experienced pair-programmers.
We’d also like to be able to track individual pairs
(instead of a pool of pairs) in our extended economic
model in order to take into account the fact that
backgrounds and learning speeds vary among pairs.

7. References
[1] F. Padberg, “A fresh look at cost estimation, process
models and risk analysis”, EDSER-1, May 1999
[2] F. Padberg, “Linking software design with business
requirements – quantitatively”, EDSER-2, May 2000
[3] F. Padberg, “Tracking the impact of design changes
during software development”, EDSER-3, May 2001, pp. 50-
55
[4] M. Müller, F. Padberg, “Extreme programming from an
engineering economics viewpoint”, EDSER-4, May 2002,
pp. 57-60.
[5] M. Müller, F. Padberg, “About the return on investment
of test-driven development”, EDSER-5, May 2003, pp. 26-
31.
[6] F. Padberg, “A Discrete Simulation Model for Assessing
Software Project Scheduling Policies”, Journal SPIP 7:3,4
(2002), pp. 127-139
[7] F. Padberg, “Using Process Simulation to Compare
Scheduling Strategies for Software Projects”, Proceedings
APSEC 2002, pp. 581-590

[8] F. Padberg, “Scheduling Software Projects to Minimize
the Development Time and Cost with a Given Staff”,
Proceedings APSEC 2001, pp. 187-194
[9] F. Padberg, “A Probabilistic Model for Software
Projects”, Proceedings ESEC 1999, pp. 109-126
[10] M. Müller, F. Padberg, “On the Economic Evaluation of
XP Projects”, Proceedings ESEC 2003, pp. 168-177
[11] F. Padberg, M. Müller, “Analyzing the Cost and Benefit
of Pair Programming”, Proceedings METRICS 2003, pp.
166-177
[12] A. Cockburn, L. Williams, “The Costs and Benefits of
Pair Programming”, Proceedings XP 2000
[13] M. Müller, O. Hagner, “Experiment about test-first
programming”, IEE Proceedings Software 149:5 (2002) pp.
131-136
[14] M. Müller, “Are reviews an alternative to pair
programming?“, Proceedings EASE 2003, pp. 3-14
[15] M. Müller, J. Link, R. Sand, G. Malpohl, “Extreme
Programming in Curriculum: Experiences from Academia
and Industry”, Proceedings XP 2004 (to appear)
[16] M. Müller, W. Tichy. “Case Study: Extreme
Programming in a University Environment”, Proceedings
ICSE (2001), pp. 537-544
[17] J. Nawrocki, A. Wojciechowski, “Experimental
Evaluation of Pair Programming”, Proceedings ESCOM
2001
[18] J. Nosek, “The Case for Collaborative Programming”,
Communications ACM 41:3 (1998), pp. 105-108
[19] L. Williams, C. McDowell, N. Nagappan, J. Fernald, L.
Werner, “Building Pair Programming Knowledge through a
Family of Experiments”, Proceedings ISESE 2003
[20] L. Williams, R. Kessler, W. Cunningham, R. Jeffries,
“Strengthening the Case for Pair-Programming”, IEEE
Software July/August 2000, pp. 19-25

8. Biography
Matthias Müller reveived the diploma and PhD degrees
in informatics from the University of Karlsruhe,
Germany, in 1996 and 2000. In his dissertation, he
worked on the topic of optimizing compilers for
parallel architectures. In the last four years, he has
focused on software process improvement, especially
lightweight software processes.
Frank Padberg received the master's degree in
mathematics from the University of Erlangen,
Germany, and the Ph.D. degree in computer science
from the University of Saarbrücken, Germany. He has
been supported by fellowships and research grants
from the Deutsche Forschungsgemeinschaft DFG.
Before joining the university, he gave seminars within
the industry on networking technology and operating
systems.

