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Abstract. This paper describes the Application Programming Interface
(API) of Paradis-Net, a typed event-driven message-passing interface for
designing distributed systems. Paradis-Net facilitates the development
of both peer-to-peer and client-server architectures through a mecha-
nism called “Cooperation”. We introduce the programming interface and
demonstrate how the interface can be used to implement communication
patterns typical for distributed systems.

1 Introduction

This technical report is an extension of the paper “Paradis-Net: A Network
Interface for Parallel and Distributed Applications” [1]. Due to a very tight
page limit it was not possible to publish an in-depth description of the APT in
the proceedings. The technical report gives these details and can be used as a
reference by implementers using the library.

Paradis-Net is a typed message-passing interface for distributed applications
and operating system services. Paradis-Net is suitable for designing distributed
systems for both high speed network like Myrinet [2] or Infiniband [3] or for sys-
tems on top of relatively slow transport mediums like the Internet. A main goal
of Paradis-Net is to offer a simple interface which facilitates the implementation
of complex communication patterns and abstracts away from a particular high
speed network.

Paradis-Net emerged from our experience in developing the Clusterfile par-
allel file system [4,5]. In a typical parallel file system, the files are striped for
performance reasons over the disks of several nodes. Therefore, the service of data
requests or the update of the global metadata attributes involve the communi-
cation of one client with several servers. However, this communication pattern
is not specific to parallel file systems. For instance, it can be used in DSM sys-
tem to implement protocols for updating or invalidating copies of the same page
residing on several nodes.

An other motivation for Paradis-Net was given by xFS [6], one of the first
distributed decentralized file systems. The storage, cache and metadata are dis-
tributed over several workstations in order to provide file system services to the
applications. The underlying protocols involve the cooperation of peers, trading
off the simplicity of client-server model for the efficiency of a global cooperative



management policy. In an paper describing their experience with xFS [7], the
authors identify the mismatch between the service they are providing and the
available interfaces as a main source of implementation difficulties. We believe
that Paradis-Net bridges this gap and demonstrate possible uses in section 3.

2 The Paradis-Net Architecture

This section introduces the Paradis-Net architecture by describing the available
functions from the users point of view. Paradis-Net follows a peer-to-peer com-
munication model in which every communication endpoint is a server and a client
at the same time. The Paradis-Net library is a layer between the application and
the native network interface. as depicted in figure 1. To the application it pro-
vides a simple, uniform interface independent of the actual network technology
used, thus easing the development of complex distributed protocols. Paradis-
Net can be extended with modules to support different network technologies
and delivering their performance to the application.

After addressing the initialization procedure in section 2.1 and the communi-
cation primitive in section 2.2, we will discuss the server aspect of the interface
in section 2.3 and the client aspect in section 2.4. To describe the API we will
use ANSI C.

2.1 Initialization

Before any other function can be called, it is necessary to invoke initialize (see
table 1). The function does not only initialize the internal data structures, but
also opens the local endpoints. The argument contains the configuration options
for the different network interfaces supported on this peer. Some implementa-
tions start a special servicing thread to manage incoming connection requests
and messages. After the function returns, the peer can be contacted by others.
The inverse operation finalize closes down all the endpoints, stops the servicing
threads and releases the corresponding data structures.
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Fig. 1. Paradis-Net Architecture



General

int initialize (end_point ep][]) section 2.1
void finalize () section 2.1
peer_id get_peer.id (char name][]) section 2.1
Communication
int send(peer_id to, msg-type type, coop_nr nr, void *msg, int section 2.2
msg_size)

int forward(peer_id to, peer_id from, msg_type type, coop_nr nr, void section 2.3
*msg, int msg_size)

Request Handlers

void set_handler(msg_type msg, int opt, handler_fun xhandler) section 2.3
void <handler_fun>(peer_id from, msg_type type, coop_nr nr, void * section 2.3
msg, int msg_size)
Cooperations
coop_nr start_cooperation (rcv_desc *rcvec, int vec_size ) section 2.4
int end_cooperation(coop_nr nr, int timeout) section 2.4
void cancel_cooperation (coop-nr nr) section 2.4
int cooperation_finished (coop_nr nr) section 2.4

Table 1. The Paradis-Net API

In Paradis-Net every endpoint has a unique peer name that can be expressed
as an array of characters. This name usually consists of protocol and address
information and is used to address other peers and to send messages to them. For
example the name of a TCP endpoint is expressed as follows: “tcp:<ip>:<port>"
where <ip> is the IP address and <port> the port number of the peer.

For convenience and performance reasons the peer names are mapped onto
locally unique peer IDs by the function get_peer_id (see table 1). A peer ID is a
small integer that is used to easier refer to remote endpoints. Using peer IDs is
similar to using file handles instead of full file names in file system calls, but in
contrast to file handles, peer IDs are not re-assigned at runtime.

2.2 Sending Data

The Paradis-Net library offers only one explicit communication primitive: send
(see table 1). This operation sends a message to the peer represented by the
peer ID (to). The type of the message is given as a parameter and will affect the
way the message is handled on the receiving side. send will either return zero
if the transfer was successful or an error number otherwise. After the operation
returns the memory area that contains the message can be reused immediately.
The coop_nr parameter can be disregarded for now, we will come back to it in
section 2.4.



2.3 Request Handlers

Paradis-Net does not offer a function to receive data from other peers. Instead it
uses handler functions that are called upon the arrival of a message. A handler
function for a certain message type is set using the set_handler (see table 1)
function. This event-driven mechanism implicates that the sending application
and the receiving application have to agree on the meaning of the different
message types at design time.

To avoid deadlock situations, Paradis-Net dispatches the up-calls to handlers
in a dedicated thread. It allocates memory for each message on arrival and frees
the memory as soon as the handler returns. In contrast to Active Messages,
Paradis-Net handlers are not limited in their execution time and can initiate
calls the library, including arbitrary send operations.

We will now look at the signature of a handler function (see table 1). The
parameter from contains the ID of the peer that is the origin of the message
that caused the invocation. The type field contains the type of the message,
which is useful if a handler has been registered for several message types. The
variable msg points to the received message and msg_size contains the size of
that message. Again, nr has to be deferred until section 2.4.

Using handlers facilitates the implementation of server functionality: The
reception of the request from the network and the invocation of the appropriate
function to process it is being taken care of by the library. A handler function
usually consists of the computation to fulfill the request and one call to send the
reply back to the client, thus implementing the traditional client-server model.

The traditional model can be expanded in Paradis-Net with the forward
(see table 1) function. The function, when called from within a handler, allows
“forwarding” the message to a different peer and thereby also delegating the
obligation to answer. The functions parameters are identical to the parameters
of send with the exception of one addition parameter: peer_id from. When using
this function, the handler on the next peer will not be invoked with the actual
origin of the message, but with the local peer_id that corresponds to the from
parameter of the forward call. Section 3.1 will give an example communication
pattern the uses this operation.

2.4 Cooperations

While the handler concept eases the task of writing server functionality, it is not
convenient for the implementation of client functionality: After a client sends a
request to a server it has to wait for a reply before it continues. Although it is
possible to use the handler mechanism of Paradis-Net to notify an application
upon the arrival of a message, this would burden the application developer by
having to implement additional synchronization.

For this reason Paradis-Net introduces “Cooperations”. A Cooperation is
a concept that defines a relationship between the outgoing requests and the
incoming answers by creating a token that accompanies both messages. The



function start_cooperation (see table 1) has to be called to register a Cooperation
on the client side. The parameter (rcvec) describes the reply that is expected.

As an introduction we will exemplify the life-cycle of a typical Cooperation
in a client-server scenario: A Cooperation starts at the client. Before sending the
request, the function start_cooperation registers the Cooperation and returns
a token that represents the Cooperation. Next, the client will send a request
to the server and afterwards call end_cooperation (see table 1). This function
blocks until the expected result is available. The token accompanies the request
message on its way to the server by using the optional parameter of the send
operation (see table 1) that attaches the token to the message. On the servicing
peer, Paradis-Net will invoke the handler that has been assigned to the message
type with the Cooperation token as a parameter (see the signature of handler
functions in table 1). When the reply is send, the Cooperation token is again
attached to the message and travels back to its origin. This reply message has
a special type which the client has assigned to be used for Cooperation replies.
On the client site, Paradis-Net is therefore able to identify the reply as being
part of a Cooperation. Although there is still the possibility to invoke a handler
function upon the arrival of such a message, the library will first check if the
attached cooperation token matches any of the currently active Cooperations
on this peer. If this is the case, the service thread will store the message at the
memory location that was declared when calling start_cooperation and afterwards
wake up the thread that is waiting for the cooperation to finish.

After this introductory example, the following subsections will describe the
operations involved in managing Cooperations in more detail to illustrate the
additional possibilities they offer to implement advanced communication pat-
terns.

Starting A Cooperation. We will first take a look at the start_cooperation
operation and its parameter which is an array of receive descriptors (rcv_desc)
that specify the expected reply. An array of descriptors is used, since the reply
can consist of several messages whereby every element in the array represents
one message from one peer. A Cooperation is completed when all elements have
been filled with replies.

void* memory Pointer to allocated memory

int size Size of the allocated memory
int options Selection criteria options
peer_id from Sel. criteria: Sender peer ID

msg_type type Sel. criteria: Message type
int received Size of received message

Table 2. The Receive Descriptor



The fields of a receive descriptor are depicted in table 2. By assigning values
to these fields, the user can influence (1) the selection of an array element at the
reception of a message and (2) the memory handling. The field receive is set by
Paradis-Net after receiving a message and storing it in this descriptor.

(1) When a reply arrives at the peer, the service thread locates the associated
Cooperation to store the message in one of the receive descriptors. It selects
a descriptor by iterating through the elements of the array and choosing the
first element whose selection criteria fit the incoming message. This selection
process is based on two features of the incoming message: The message type
and the sender. By setting the variable from it is possible to restrict the receive
descriptor to only accept replies from the peer with ID from. type can be used
to confine a descriptor to a message type. Both selection criteria can be ignored
by setting the option RCV_.FROM_ANY and RCV_ANY_TYPE respectively. If
both options are set, Paradis-Net will ignore the values in from and type and
simply use the first free receive descriptor in the array. The selection criteria
are particularly important for multi party communication patterns in which the
different parties play different roles.

(2) The memory to store the reply message can be provided by the application
or automatically allocated by Paradis-Net. If the memory is supplied by the
application, a pointer to the memory and the size of the memory has to be
stored in the appropriate fields of the descriptor (memory and size). When
receiving the message, Paradis-Net will save up to size bytes of the message at
the given location and -if necessary- discard the rest. The number of bytes that
were received will be stored in received. The application can also mandate the
library to automatically aquire as much memory as necessary by assigning 0
to size. While application provided memory incurs less overhead, the automatic
allocation is useful if the size of the reply is not know a priori.

Waiting On A Cooperation. After initializing the receive descriptors, regis-
tering the Cooperation and sending requests to other peers, the application can
either wait for the reply or do some computation and fetch the reply to the re-
quest at a later point. The library offers 3 operations that make it possible for ap-
plications to implement different policies: end_cooperation, cooperation_finished
and cancel_cooperation (see table 1).

The function end_cooperation is the standard way to wait for a reply. If
the Cooperation is already completed, it will de-register the Cooperation and
immediately return. If the Cooperation is not yet completed, the current thread
will sleep until the Cooperation is finished. end_cooperation usually returns a 0
to the caller on successful completion, while a negative value indicates an error,
like an expired timeout for example.

cooperation_finished is a nonblocking version of end_cooperation with the dif-
ference that it does not de-register the Cooperation if it is completed. The func-
tion returns 0 if the Cooperation is not finished and 1 otherwise.

cancel_cooperation de-registers a Cooperation independent of their current
status. It is mostly used in error situations, for example after a timeout expired



when calling end_cooperation. It can also be called from a different thread to wake
up threads that are waiting for this Cooperation to finish in end_cooperation.
Message replies that arrive after a Cooperation was canceled are discarded by
Paradis-Net.

Receiving A Reply. The peer applications have to agree on certain message
types to be used as Cooperation replies. These message types can also be as-
sociated with handlers, but in addition to that the messages will be stored in
one of the registered receive descriptors if the message carries a valid Cooper-
ation token and an empty and suitable descriptor is available. The operation

set_handler is used to declare a message type as Cooperation reply by setting
the option COOPERATION.

3 Examples

In this section we will illustrate the application of Paradis-Net in parallel and
distributed file systems. We will demonstrate the flexibility and simplicity of the
library by implementing two typical communication patterns. These examples
stem from our own experience developing the parallel file system Clusterfile [4]
and the observations that were made building the distributed file system zFS [7].

3.1 Delegation.

®
Peerl R Peer3 Peerl

Fig. 2. Delegation in Paradis-Net Fig. 3. Delegation through RPC

Solid arrow: Request — Dashed Arrow: Reply

The “delegation” pattern (Figure 2) has three participants: Peer! sends a
request to Peer2. Peer?2 can not fulfill the request and forwards it to Peers3,
which replies back to Peerl. The filesystem zFS uses this pattern for cooperative
caching: A client (Peerl) reading from a file incurs a read miss in the local
cache and sends a message to the cache manager (Peer2) in order to retrieve
the cached data from a different peer. The manager consults its map, finds the
responsible cache server (Peerd) and forwards the request to it. The cache server
then responds back to the client with the cached data. The same pattern can be
also be employed for routing in a peer-to-peer system.
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Although this scenario appears to be simple, it is difficult to realize with
traditional message passing interfaces. Wang et al. [7] demonstrate that RPCs
are unsuitable to implement it because of the strict semantic imposed by the
model. To synthesize the Delegation pattern, either 4 or 6 messages have to be
send, even though only 3 messages are necessary (Figure 3).

We will now show code that implements the example. We use C syntax and
for simplicity reasons, we assume that Paradis-Net has been initialized on all
peers and the message types REQUEST and REPLY have been defined and
registered with handlers and Cooperations respectively. When describing the
implementation we will not detail on the precise content of the messages, instead
we will focus on the intention and leave the details open.

Peer] is the origin of the communication. The method start initiates it by
registering a Cooperation, sending the request to a peer and waiting for an
answer. According to figure 2, start is called with the peer ID of Peer2, the
message and its length:

void start(peer-id to, void *xmsg, int msg len) {
COOP_NT COOD;
rev_desc desc = // receive descriptor
{ memory: NULL, size: 0, type: REPLY ,
options: RCV_.FROM_ANY };

coop = start_cooperation(&desc, 1);
send(to, REQUEST, coop, msg, msg-len);
.. // eventual computation
end_cooperation(coop, 0); // no timeout

Listing 1. Sending the request

start first initializes the receive descriptor to accept messages with type
REPLY from any peer (lines 3-5) and registers this Cooperation with the
start_cooperation command (line 7). Next, the request is sent using the mes-
sage type REQUEST and attaching the Cooperation token (line 8). Finally,
the procedure will block in end_cooperation until the reply arrived (line 10).
Note that the communication may overlap with compution between send and
end_cooperation as the comment in line 9 suggests.

The start function is not customized for this example. It can be used for
typical client-server communication as well. If -for example- Peer2 would an-
swer the request directly, start does not have to be changed at all, since the
receive descriptor accepts replies from any peer, as long as the reply carries the
Cooperation token issued by the local Paradis-Net library.

When Peer2 receives the request from Peerl, Paradis-Net invokes the handler
function forward_handler, which has been registered for messages with the type
REQUEST. The handler first inspects the incoming message to find the peer
responsible for answering the request and then forwards the message to it:




void forward_handler (peer_id from, msg_type type,
coop_nr coop, void *msg,
int msglen) {
peer_id liable_peer =
find_liable_peer (msg, msglen);

forward(liable_peer , from, msg_type, coop,
msg, msg_len);

Listing 2. Forwarding the request

The implementation of the function is straight-forward, it mainly consists
of one call to forward the request to the liable peer. We abstract away from
the application logic by expressing the finding of this peer as a function call.
The implementation of forward_handler ignores errors that might happen when
forwarding the message. In the case of an error, Peer?2 could reply back to Peerl
with an error message, or try to forward the request to a different peer.

When Peer2 sends the message to Peer3, the address of Peer! (the original
source of the request) is piggy-backed on the message. On Peer3 Paradis-Net
calls the local handler function (serve_request) with the peer ID of Peer! as first
parameter, so that the handler function will not be able to see the mediator that
forwarded the request. After fulfilling the request, the handler will reply to the
peer that was the origin of the request:

void serve_request(peer_id from, msg_type type,
coop_nr coop, void *msg,
int msg_len) {
reply-msg reply;
int replylen;

fulfill_request (msg, msglen, &reply, &reply len);

send(from, REPLY , coop, &reply, reply_len);

}

Listing 3. Serving the request

We hide the actual application logic behind a call to the fulfill_request method
and assume that the result of this call will be stored in a reply_msg structure.
When sending the reply (line 9), the parameter from is used as addressee, which
is Peerl in our example. Again, we disregarded error handling: An error which
occurs during the send operation will cause the reply not to be send.

3.2 Scatter/Gather.

Scatter/Gather is a 1-to-n communication pattern: Peer! requests the collabo-
ration of a number of other peers to accomplish a task and contacts all peers



Fig. 4. The Scatter/Gather pattern
Solid arrow: Request — Dashed Arrow: Reply

in parallel. While the peers are processing, Peerl accepts the replies as soon as
they arrive and continues with computation after all replies have been attained.
Figure 4 illustrates the procedure.

We use this pattern in our parallel file system Clusterfile [4] when reading or
writing data: Since files are striped over a number of data servers, it is necessary
to contact several servers at the same time when accessing a file. Although the
requests are send out in a particular order, the order of the replies is arbitrary.

For the following code, we again assume that Paradis-Net has been initialized
on all peers and the message types REQUEST and REPLY have been defined
and registered with handlers or Cooperations respectively.

The peers which play the server role in this pattern (Peer2, Peers, ...), define
a handler function to process the request. This handler will, after assembling an
answer, reply back to Peer]. This procedure accords with the one of Peer3 in the
delegation example and therefore the implementation is the same: see listing 3.

As an extension of the pattern, it is also possible to forward the request to a
different peer using the forward function, akin to listing 2. This would result in
a combination of the Scatter/Gather and the Delegation pattern.

Before Peerl sends a request to the peers involved, it has to initialize receive
descriptors and register them as a Cooperation. For simplicity reasons we send
the same message to every peer and expect reply messages of type reply_type.
After sending the requests, Peer! will block in end_cooperation until all answers
have been received. The code is similar to the code of Peer! in the Delegation
pattern (listing 1), except that there are a number of receive descriptors and
send calls:

1 reply-type x start (peer_id = to, int n, void xmsg,

2 int msglen) {
3 reply_type *replies =
4 malloc(n * sizeof( reply_type ));

5 rcv_desc xdesc = init_desc(to, n, replies);
6 COOpP_MI COOP;
7 int i;
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coop = start_cooperation(desc, n);

for (i=0; i<n; i++)
send(to[i], REQUEST, coop, msg, msg_len);

.. // eventual computation

end_cooperation(coop, 0); // no timeout
free (desc);
return replies;

Listing 4. Sending requests

The parameters of the function start changed in comparison to listing 1 with
regard to the addressee: Instead of passing just one peer ID, we pass all peer IDs
of the hosts involved (to) as well as the number of hosts ( n). The initialization
of the receive descriptors is done in line 5 by the init_desc function. The function
creates a vector of n descriptors to hold one reply each which is registered as a
cooperation (line 9). All requests are send in succession by iterating over all peer
IDs (lines 11-12). Registering all receive descriptors as one Cooperation allows
us to wait for all replies concurrently by calling end_cooperation in line 16. After
all replies are received, end_cooperation returns.

rev-desc * init_desc (peer—id xto, int n,
reply_type * replies ) {
rev_desc *desc = malloc(n * sizeof(rcu_desc));
int i;
for (i=0; i<n; i++) {
desc[i]. memory = &replies[i];

desc[i]. size = sizeof(reply_type);

desc[i]. from = to[i];

desc[i]. options = RCV_ANY_TYPE;

}

return desc;

}

Listing 5. Initializing the descriptors

We initialize the receive descriptors in such a way that each descriptor can
only hold the reply from exactly one of the peers. We choose to disregard in
the selection process, since all replies are of the same type. In listing 5 we use
a simple for loop to do the initialization and again we ignore the possibility of
errors occurring during the allocation of memory.



4 Conclusion

We have introduced Paradis-Net, a low-level network interface which is aimed
the implementation of complex multi-party protocols. Paradis-Net emerged from
our experience with a parallel file system and was motivated by the observation
that the needs of our application were not satisfied by available network inter-
faces. Paradis-Net closes this gap with a simple design and the introduction of
a collaboration mechanism called Cooperation.

Cooperations allow the user of Paradis-Net to describe the expected result of
collaborative work between several participating peers. We described the mech-
anism and its potential use by demonstrating how two common communication
patterns used in parallel file systems can be implemented.

We believe that Paradis-Net facilitates distributed system design and devel-
opment of systems that follow the traditional client-server architecture as well
as peer-to-peer or hybrid approaches.
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