
Transparent Distributed Threads for Java

Bernhard Haumacher, University of Karlsruhe, haui@haumacher.de
Thomas Moschny, University of Wuppertal, moschny@theorie.physik.uni-wuppertal.de

Jürgen Reuter, University of Karlsruhe, reuter@ipd.uni-karlsruhe.de
Walter F. Tichy, University of Karlsruhe, tichy@ipd.uni-karlsruhe.de

5TH INTERNATIONAL WORKSHOP ONJAVA FOR PARALLEL AND DISTRIBUTED COMPUTING IN CONJUNCTION WITH

THE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSINGSYMPOSIUM (IPDPS 2003), NICE, FRANCE, APRIL

22-26, 2003.

Abstract

Remote method invocation in Java RMI allows the flow
of control to pass across local Java threads and thereby
span multiple virtual machines. However, the resulting
distributed threads do not strictly follow the paradigm of
their local Java counterparts for at least three reasons:
Firstly, the absence of a global thread identity causes prob-
lems when reentering monitors. Secondly, blocks synchro-
nized on remote objects do not work properly. Thirdly, the
thread interruption mechanism for threads executing a re-
mote call is broken. These problems make multi-threaded
distributed programming complicated and error prone. We
present a two-level solution: On the library level, we extend
KaRMI [16], a fast replacement for RMI, with global thread
identities for eliminating problems with monitor reentry.
Problem with synchronization on remote objects are solved
with a facility for remote monitor acquisition. Our inter-
rupt forwarding mechanism enables the application to get
full control over its distributed threads. On the language
level, we integrate these extensions with JavaParty’s trans-
parent remote objects [17] to get transparent distributed
threads. We finally evaluate our approach with benchmarks
that show costs and benefits of our overall design.

1 Introduction

While Java is well-equipped for applications on symmet-
ric multiprocessor servers, there is only basic support for
machines with a distributed address space such as clusters
of workstations. Since the scalability of symmetric multi-
processors is limited, a seamless combination of both ap-
proaches with an appropriate programming model appears
desirable for high-performance computing.

While there is no built-in support in the Java language
for distributed systems, at least there is some in the core
library. Besides classes abstracting the pure network in-

terface of the operating system, the Java library includes
a package called RMI that implements remote method in-
vocation [20]. With RMI, an application can export objects,
such that they can be remotely referenced and their methods
can be called from Java applications running in different vir-
tual machines. Using RMI, multiple virtual machines can
easily contribute their objects to a distributed object space.

Remote method invocation as a form of remote execution
naturally entails the concept of a distributed control flow.
The control flow of a program is no longer limited to the
address space of a single JVM, because at an arbitrary point
in time, there might be invocation records allocated on mul-
tiple machines. Like the stack frames of a regular processor,
they are resumed in reverse order. If a system supports mul-
tiple concurrent control flows in a single program, one can
reason about them as distributed threads. RMI allows an
application to create such distributed threads, but it is nei-
ther aware of them nor does it provide any means to control
them.

In our contribution, we tackle problems that arise from
inter-thread relationships of distributed threads. We do not
deviate from the RMI programming paradigm that implies
different semantics for argument passing in local and re-
mote method invocations.

1.1 Related work

Distributed threads are a well-known concept introduced
in the context of the Alpha distributed real-time operating
system [4]. A distributed thread is a light-weight process
that spans multiple address spaces. In Alpha, a distributed
thread is associated additionally with a set of parameters
and attributes for scheduling and real-time behavior, inde-
pendent of the node where the current head of the control
flow is just executing. Our focus is not on real-time and we
rely on the thread scheduling of the underlying Java virtual
machines. We use the termdistributed threadto denote the
distributed flow of control and narrow transparency to inter-
tread communication, synchronization and thread control.



Support for thread-local attributes (such as access-control
lists or information for real-time behavior) is currently not
part of our solution and may be added later.

Work on Alpha has also influenced the distributed real-
time specification for Java [9] and its proposed integra-
tion with Java’s remote method invocation [22]. Unfortu-
nately, the proposed solution requires changes to the virtual
machine and does not foresee transparency for distributed
threads regarding synchronization. Instead, the situation
where synchronization within distributed threads normally
leads to a dead-lock situation is considered an application
failure, and an exception is defined to be thrown. Our solu-
tion can deal with this situation and it can be integrated in
a real-time enabled RMI to provide transparent distributed
threads even for real-time applications.

In contrast to threads in a distributed operating system,
Java threads are bound to the virtual machine they are cre-
ated in. One way around this problem is a distributed vir-
tual machine. A distributed virtual machine can be real-
ized by employing a distributed shared memory (DSM) sys-
tem and allocating the application threads on multiple ma-
chines [24, 3, 13, 12]. This approach renders distributed
threads unnecessary, because threads never leave their cur-
rent node, but communicate by means of shared state pro-
vided by the DSM system.

A distributed virtual machine may also be based on a
distributed object space with remote execution [1, 7, 18].
Using this approach, the distributed virtual machine can
care about the resulting distributed threads internally. Using
commercial virtual machines has the advantage of being
able to benefit from the superior performance of their JIT
compilers. Therefore we neither modify nor rewrite the vir-
tual machine, but introduce transparent distributed threads
on top of several cooperating regular Java virtual machines.

There are packages other than RMI that provide remote
execution [19, 14], but none of them address distributed
threads. Several approaches exist increase the efficiency of
Java communication performance in general and the effi-
ciency of remote method invocation in particular [6]. But
none of those approaches aims at resolving thread related
issues resulting from the introduction of distributed threads.

A number of projects use the combination of a Java vir-
tual machine and a middle-ware library for remote execu-
tion to build a language or an environment for Java-based
distributed computing. JavaParty [17] provides transparent
remote objects with mobility. FarGo [8] annotates remote
references with locality related information. JavaSym-
phony [5] allows the definition of virtual topologies for opti-
mized placement of remote objects. J-Orchestra [21] facil-
itates partitioning of otherwise monolithic applications by
replacing local object references with remote ones based on
RMI. All these projects directly rely on remote execution
but inherit thread synchronization and control directly from

Java. Therefore all these projects are suffering from the de-
ficiencies of RMI and can profit from our solution. But our
approach is not limited to parallel distributed computing
based on the concept of remote method invocation. Each
multi-threaded application using RMI must be designed to
work around the thread related deficiencies in RMI and
could benefit from our proposal.

There are other projects that also use RMI as middle-
ware for a higher level parallel environment, but prohibit
the direct usage of Java threads and synchronization. The
DO! [10] framework has its own primitives for spawning
parallelism and coordinating parallel activities. ProActive
PDC [2] introduces groups of active remote objects. Each
active object has its own local thread that is responsible for
sequentially executing methods upon request. The active
object autonomously decides which request to process next.
The only available synchronization mechanism is waiting
for the completion of requests sent to other active objects.
Projects in this category get around the problems related to
distributed threads by disallowing the direct use of Java’s
multi-threading primitives or by restraining each thread to
the object it was created for.

Weyns et al. [23] make distributed applications aware
of their distributed threads using a byte-code transforma-
tion approach. They add a thread identifier as an additional
parameter to the signature ofeachmethod, regardless of
whether it is a local or remote one. This approach incurs
great runtime overhead by passing an additional argument
in each and every method invocation of the virtual machine.
It produces also a large growth of code, but at the end does
not solve the thread related problems, because this trans-
formation only makes the application and middle-ware li-
braries aware of the distributed thread identities, but can not
restore the thread semantics for the distributed environment.
Our approach establishes thread identity solely within the
communication subsystem. We further extend JavaParty’s
transparent remote objects with transparency of threads and
remote synchronization.

1.2 Paper outline

In Section 2 we explore the problems related to dis-
tributed threads in RMI and present our solutions. Section 3
copes with implementation details of our approach, while in
Section 4 we evaluate our design and implementation with
remote method call and synchronization benchmarks. Sec-
tion 5 contains a conclusion and outlines directions for fu-
ture research.

2 Distributed threads in RMI

RMI enables access to methods of remote objects by
generating special classes (calledstubsin RMI terminol-



ogy), each of which serves as proxy to access the corre-
sponding remote implementation. The proxy forwards all
calls to corresponding methods of the server implementa-
tion. While the body of a remote method is executing, the
local thread blocks in a network receive operation expecting
the method’s return. On completion, the proxy unmarshals
the return value and returns it as regular result.

Nested remote invocations are possible, and result in a
chain of local Java threads each expecting the result of the
next inner remote invocation. From a bird’s eye view, all
these threads are local representatives for one segment of
the same distributed flow of control spanning multiple ad-
dress spaces. If one took a snapshot of a distributed thread,
it would consist of multiple segments analogous to stack
frames, one of them starting with the creation of the thread,
all others with the execution of a remote method, and all of
them but the head segment waiting at the point where the
next inner remote method is called. Only the representative
of the head segment is currently runnable and represents the
distributed thread’s point of execution.

2.1 KaRMI, a drop-in replacement for RMI

RMI is designed for wide-area, high-latency networks
and uses a slow object serialization. In [16] we intro-
duced KaRMI, a much faster drop-in RMI and an effi-
cient drop-in serialization designed and implemented com-
pletely in Java without any native code. Moreover, this
redesigned RMI supports non-TCP/IP communication net-
works, for instance high-performance networks such as
Myrinet. KaRMI keeps the RMI API, so converting an ap-
plication to KaRMI is as easy as substituting all RMI pack-
ages in import declarations with KaRMI.

In the next sections we show some severe limitations in-
herent to RMI with respect to distributed thread semantics.
For each of the identified problems we present solutions and
prove their feasibility by implementing them for KaRMI.
However they are not limited to this specific communica-
tion subsystem.

2.2 Missing synchronization reentrance

Given a distributed thread, each segment maps to a local
representative Java thread, thereby defining the semantics of
synchronization and notification among distributed threads.
When a distributed thread enters a synchronized method,
the local thread that currently represents the head segment
requests the monitor of the corresponding object. As long
as no further remote method invocation occurs while the
object is locked, everything is fine and behaves as expected.
As depicted in Figure 1, the problem arises, if threadt1 that
is representing the current head segment and owning the
monitor becomes inactive, because it calls another remote

method and creates a new head segmentt2. The thread
representing the new head segment in methodbar() is
now unrelated to the thread that still owns the monitor in
methodfoo() . If the distributed thread enters the method
foo2() , which is synchronized again on the same object
(perhaps with some other interleaving remote method invo-
cations), a deadlock occurs: The acquired monitor belongs
to t1, becauset1 executed the segment that entered the syn-
chronization infoo() . This thread is currently waiting for
its successor segmentt2 to return from the remote invoca-
tion. But this segment will never return, because the cur-
rent head of the distributed threadt3 applies for the monitor
owned byt1. The only safe remedy for deadlocks using
regular RMI is to completely avoid calling remote methods
from within synchronized code blocks. While this approach
may be acceptable for client-server programming, it is too
restrictive for parallel distributed programming.

Figure 1. Deadlock on synchronization reen-
trance

2.3 Solution: Unique representative threads

To solve the problem described above, it is sufficient to
reuse threadt1 representing the earlier inactive segment for
executing all further segments of the distributed thread that
occur on the same machine. This approach is legal, because
an inactive segment can not continue while the head seg-
ment is active on the same machine. When returning from
a remote call to a machine with multiple inactive segments,
the segment suspended last is resumed first. Thus a repre-
sentative thread is only responsible for executing at most
one segment at a time.

The concept of a unique representative for a distributed
thread per node solves all problems with synchronization
reentrance: Now the monitor belongs to the distributed
thread as a whole instead of tooneof a number of differ-
ent representatives on a node. It is irrelevant that there may
be multiple representatives for the distributed thread on dif-
ferent nodes, because a monitor is bound to an object and an
object is bound to a virtual machine, and thus all synchro-
nization operations on a monitor are guaranteed to occur on
the same node.



2.4 Broken semantics for synchronized blocks

In Java, the synchronized block statement allows for syn-
chronizing on any non-null object. Without further provi-
sion, if the object is actually a reference to a remote object,
the proxy object’s lock is acquired instead of the server im-
plementation’s one. Since synchronization is performed on
the local proxy, multiple threads that use different proxy ob-
jects for the same remote object can erroneously enter syn-
chronized blocks on these references concurrently. Even if
all threads synchronize on the same remote reference, prob-
lems might occur: The attempt to use primitives for inter-
thread communication (wait()/notify() ) within a re-
mote method while only owning the monitor of the proxy
will fail, because inter-thread communication requires the
monitor of the object they are invoked on. Therefore, the
use of synchronized blocks on remote objects in regular
RMI is illegal. The only workaround is to rewrite the pro-
gram and call a synchronized method of the remote object
instead, which is a non-trivial transformation, if the syn-
chronization is supposed to protect local and remote state at
the same time.

We present a solution based on two steps.

2.5 Solution step one: Remote monitor access

Instead of acquiring the lock of the proxy, the remote
monitor of the server implementation must be owned while
the local synchronized block is executed. Because a library
can not change the meaning of thesynchronized state-
ment, we designed an additional API that allows a straight
forward rewrite with two operationsrmaAcquire() and
rmaRelease() guarded by atry/finally block as
shown at the right side of Figure 2.

Remote obj;
synchronized(obj){

// Code block
// synchronized
// on a remote
// reference

}

⇒

Remote obj;
Object rma =

rmaAcquire(obj);
try {

// Code block
// synchronized
// on the server
// implementation

} finally {
rmaRelease(rma);

}

Figure 2. Rewrite of synchronized blocks on
remote objects

The operationrmaAcquire() acquires a lock for the
monitor of the remote objectobj and returns a handle for
the pending monitor. On completion of the guarded block,

the lock on the pending monitor is released by passing the
handlerma to thermaRelease() operation.

One could think that operationsrmaAcquire() and
rmaRelease() can not be implemented in Java, because
acquiring and releasing a specific lock are operations al-
ways bound to the same syntactic block. This restriction
is enforced by the Java byte-code verifier before execution.
Therefore the lock on the objectobj cannot be held beyond
the end of the call tormaAcquire() .

This observation is true if one tried to implement the
acquire and release operations with regular remote method
calls at the application level. Because of the restriction en-
forced by the virtual byte-code verifier, a method cannot
acquire a monitor and return before releasing this monitor
again.

Remote monitor acquisition can be achieved with
the following trick: We implementrmaAcquire()
and rmaRelease() to trigger a single special remote
method invocation with early-return capabilities. With
rmaAcquire() the remote invocation is started and a
synchronized block on the requested object is entered, and
the corresponding monitor is acquired. After that, an early
return is issued back to the client. The thread serving the re-
mote invocation stays within the synchronized block wait-
ing for the rmaRelease() message. At the client-side,
the method call tormaAcquire() returns after receiving
the early return. At this time, the client has effectively re-
motely acquired a monitor onobj . The monitor is owned
by the representative thread on the nodeobj resides on,
while the statements of the remotely synchronized block are
processed locally.

The client-side call tormaRelease() dispatches a
second message to the representative thread still waiting
within the remote method triggered byrmaAcquire() .
This message instructs the thread to leave the synchronized
block, release the monitor, and return finally. The client-
side can regard the remotely acquired monitor as released
when it receives the return from the server.

2.6 Solution step two: transparent synchronized
blocks

The solution in step one is not location transparent, be-
cause a remote monitor acquisition is possible only on re-
mote objects that are located on a different virtual machine.
There is no local simulation for remote monitor acquisition,
because Java does not support early return from methods,
and the thread requesting the monitor and the representa-
tive thread must be identical, if both operate on the same
virtual machine.

Full transparency however can be achieved by a source
code transformation. The synchronized block shown on
the left side of Figure 2 is transformed into code depicted



in Figure 3. The resulting code first checks whether the
object in question is actually a remote object and really
located remotely. If this is the case, remote monitor ac-
quisition is performed in the same way as shown on the
right side of Figure 2, otherwise regular local Java syn-
chronization is performed. To synchronize on a remote ob-
ject that resides on the local virtual machine, a reference to
the implementation object is required instead of the proxy
used for application access. To make this transformation
feasible, we further extend the RMI API with two meth-
ods isLocatedRemotely() andgetImpl() , to de-
cide whether a remote object is really located remotely and
to obtain a reference to the implementation object from a
proxy referencing a local remote object, respectively.

Object obj;
if (isRemoteObject(obj) &&

isLocatedRemotely(obj)
) {

Object rma = rmaAcquire(obj);
try {

// synchronized code block
} finally {

rmaRelease(rma);
}

} else {
Object lock = isRemoteObject(obj) ?

getImpl(obj) : obj;
synchronized (lock) {

// synchronized code block
}

}

Figure 3. Source code transformation for full
transparency

The transformation shown above is integrated into the
JavaParty compiler. JavaParty transforms annotated Java
programs for execution in a distributed environment. For
classes markedremote , additional code is generated auto-
matically to make them transparently work in a distributed
environment, i.e. like regular Java classes in a single vir-
tual machine. Since the JavaParty transformation originally
produced output conforming to the regular RMI API, there
was no satisfactory transformation for the block statement
synchronized on a remote object. We now base the transfor-
mation on the extended RMI API with the ability to acquire
remote locks. With the transformation shown in Figure 3,
JavaParty provides fully transparent synchronized blocks on
arbitrary (local or remote) objects. For efficiency, the trans-
formation is used only, if the compiler can not prove at com-
pile time that the object in question can not be a remote ob-
ject at runtime.

2.7 No distributed thread control

The only way to send signals directly to a thread is the
Java thread interruption facility. This mechanism is espe-
cially useful for terminating a daemon thread through an
external entity. Unfortunately thread interruption does not
work for distributed threads in RMI: An interrupt signal
sent to a local representative for a currently inactive seg-
ment of a distributed thread does not reach the head segment
and hence will not be handled at the local thread before the
remote invocation returns. A daemon thread typically run-
ning in an infinite loop will never return and thus the inter-
rupt will never be delivered.

2.8 Solution: Interrupt forwarding

We propose to clarify the RMI specification with respect
to interruption of distributed threads. An interrupt sent to
a local thread representing an inactive segment of a dis-
tributed thread should be forwarded to the current head seg-
ment, where the interrupt can be processed. Using the prop-
erty from Section 2.2 that there is a unique representative
thread per node, an inactive segment representative can re-
ceive the interrupt condition and forward it in an out-of-
order invocation along the pending remote method call. Be-
cause there is also a unique representative of the distributed
thread on the remote side, it is obvious to which thread the
interrupt condition must be delivered. Recursively forward-
ing may be necessary on the remote side. There is one pos-
sible race condition, we have to deal with: Method return
and interrupt forwarding may overlap, so the forwarded in-
terrupt is no longer deliverable on the remote side. This
situation is detected in order to signal the interrupt to the
thread now being reactivated on the client-side.

3 Implementation

In order to understand the critical design decisions, let
us revisit the situation depicted in Figure 1. Threadt1 waits
for the completion of methodbar() within a receive oper-
ation out of thejava.io package. With the standard Java
I/O package this operation cannot be interrupted in a plat-
form independent manner (for details see the discussion of
cancellation in [11] and its online supplement). There are
two options to overcome this situation. The I/O package
java.nio of Java 1.4 allows platform independent inter-
ruption of a blocked I/O operation. The alternative approach
is to use an additional threadtr that performs the block-
ing receive operation on behalf of threadt1. Now thread
t1 stays attentive for regular inter-thread communication.
Threadtr can signal the completion of the remote call tot1
andt3 can delegate the execution of methodfoo2() to the



unique representative for the distributed thread on node 1,
which ist1.

We chose the latter approach for two reasons: Firstly, it
does not depend on the availability of a certain new Java
runtime environment. Secondly, Java NIO is currently not
implemented for our preferred ParaStation transport layer,
but only for TCP/IP.

4 Evaluation

We evaluated our approach with benchmarks to show
costs and benefits of our overall design. These bench-
marks were run on our 16 node clusterCarla. Each node
is equipped with one gigabyte of main memory and two
Pentium III processors running at 800 MHz and the nodes
are connected via Fast Ethernet and Myrinet. The latter is
driven by the ParaStation Software [15]. Our fast RMI re-
placement KaRMI allows for switching the transport layer
such that we can either communicate over Fast Ethernet
using TCP/IP sockets or via Myrinet using ParaStation.
With Java RMI, we can use TCP/IP only.

Figure 4. Latency break down

In Figure 4, we show a breakdown of the latency of a re-
motevoid ping() method call on the various transport
layers. In addition to the pure network latency represented
by the base block in the diagram, we identified three sources
of overhead. Two of them relate to the implementation de-
cisions described in Section 3.

In the diagram, the small black box (labeledthread ID)
depicts the time needed for maintenance of a global unique
thread identifier. This maintenance costs only about two mi-
croseconds per remote method call. This cost is almost neg-
ligible compared to the results reported in work by Weyns
et al. [23].

The hashed box (labeleddistributed threads) shows the
additional costs introduced upon an outgoing remote call,

where two additional local inter-thread communications be-
tween the invoking threadt1 and the helper threadtr for the
reception of the result occur: After sending the request,t1
notifiestr to listen for the result. When the result arrives,tr
notifiest1 and passes the data received.

Finally, the top box (labeledrecursive) shows the over-
head on the server-side, where the thread accepting an in-
coming remote call must delegate its execution to the unique
representative thread on that node. This last step only oc-
curs if there is already a (currently inactive) segment of the
same distributed thread on that node. Otherwise the accept-
ing thread becomes the representative and executes the call
by itself.

On the TCP/IP transport layer, the benefits of a com-
pletely transparent distributed thread environment can be
achieved incurring an overhead of about 30%. This is still
about 40% faster than the regular RMI implementation that
does not care about threads at all. On the ParaStation trans-
port layer, the pure network latency is reduced to 36µsec,
while the overhead introduced by our extensions remains al-
most the same. It mainly consists of local thread-to-thread
communication time, which is independent of the trans-
port layer. Solely the costs for transporting a thread ID are
slightly reduced.

Figure 5. Synchronized block latency

Figure 5 shows the duration of an empty statement syn-
chronized on a remote object that resides on a different
node. Again, we compare times for KaRMI using TCP/IP
over Fast Ethernet or ParaStation over Myrinet on the one
hand and RMI on the other. Since remote monitor acqui-
sition is not possible with regular RMI, we explicitly set
and reset a semaphore variable within the remote object for
evaluation. The very same approach was used for remotely
synchronized blocks by the JavaParty transformation prior
to the introduction of transparent distributed threads.

We find that KaRMI, which with our extension offers



correct semantics for synchronized blocks, still performs
about 40% better than RMI for the same network technol-
ogy, and 70% better when using Myrinet.

5 Conclusion and future work

The proposed solution offers significant enhancements
to Java/RMI while minimizing the overhead. In fact, even
with the additional overhead, applications can gain perfor-
mance using KaRMI instead of pure RMI. On the other
hand, there’s still room for improvements. The costs due
to our extensions are mainly independent of the transport
layer, so their relative impact is higher on low-latency net-
works. A remote call to an empty method without any ar-
guments over Myrinet needs about twice the time after ap-
plying our extensions to KaRMI. We expect to reduce this
overhead using the newjava.nio I/O package.

Java plus RMI is still far from being adistributedparallel
object-oriented language. But there are numerous projects
that use the combination of a platform independent virtual
Java machine and the distributed object space provided by
RMI to build a language or an environment for distributed
parallel computing [10, 8, 21, 5]. All these projects are suf-
fering from the deficiencies of RMI and can profit from our
solution. JavaParty [17] is already using these extensions
for transparent distributed threads successfully.

References

[1] Y. Aridor, M. Factor, and A. Teperman. cJVM: A single
system image of a JVM on a cluster. InProceedings of the
International Conference on Parallel Processing, pages 4–
12, Fukushima, Japan, 1999.

[2] L. Baduel, F. Baude, and D. Caromel. Efficient, flexible,
and typed group communications in Java. InProceedings of
the 2002 joint ACM-ISCOPE Conference on Java Grande,
pages 28–36, Seattle, Washington, 2002. ACM Press.

[3] X. Chen and V. H. Allan. MultiJav: A distributed shared
memory system based on multiple Java virtual machines.
In Proceedings of the International Conference on Paral-
lel and Distributed Processing Techniques and Applications
(PDPTA’98), pages 91–98, 1998.

[4] R. K. Clark, E. D. Jensen, and F. D. Reynolds. An archi-
tectural overview of the Alpha Real-Time Distributed Ker-
nel. InProceedings of the USENIX Workshop on Microker-
nels and other Kernel Architectures, pages 127–146, Seattle,
WA, USA, 1992. USENIX.

[5] T. Fahringer. JavaSymphony: A system for development of
locality-oriented distributed and parallel Java applications.
In Proceedings of the IEEE International Conference on
Cluster Computing (CLUSTER 2000), Chemnitz, Germany,
2000.

[6] V. Getov, G. von Laszewski, M. Philippsen, and I. Foster.
Multiparadigm communications in Java for grid comput-
ing. Communications of the ACM, 44(10):118–125, October
2001.

[7] M. W. Hicks, S. Jagannathan, R. Kelsey, J. T. Moore, and
C. Ungureanu. Transparent communication for distributed
objects in Java. InProceedings of the ACM 1999 Conference
on Java Grande, pages 160–170, San Francisco, California,
1999.

[8] O. Holder, I. Ben-Shaul, and H. Gazit. Dynamic layout of
distributed applications in FarGo. InInternational Confer-
ence on Software Engineering, pages 163–173, 1999.

[9] D. Jensen. Java specification request (JSR) 50: Distributed
real-time specification for Java, 2000. Java Community Pro-
cess, http://jcp.org/en/jsr/detail?id=050, March 2000.

[10] P. Launay and J.-L. Pazat. A framework for parallel pro-
gramming in Java. InHPCN Europe, pages 628–637, 1998.

[11] D. Lea. Concurrent Programming in Java: Design Princi-
ples and Patterns. Addison-Wesley, November 1999.

[12] M. Lobosco, C. Amorim, and O. Loques. A Java environ-
ment for high-performance computing. Technical Report
RT-03/01, Instituto de Computação, Universidade Federal
Fluminense, Rio de Janeiro, Brazil, Mai 2001.

[13] M. J. M. Ma, C.-L. Wang, F. C. M. Lau, and Z. Xu. JES-
SICA: Java-enabled single system image computing archi-
tecture. InProceedings of the International Conference on
Parallel and Distributed Processing Techniques and Appli-
cations (PDPTA’99), pages 2781–2787, Las Vegas, Nevada,
USA, 1999.

[14] Object Management Group. CORBA/IIOP specification
(2.6), December 2001.

[15] ParTec AG. Parastation. http://par-tec.com/, January 2003.
[16] M. Philippsen, B. Haumacher, and C. Nester. More efficient

serialization and RMI for Java.Concurrency: Practice and
Experience, 12(7):495–518, May 2000.

[17] M. Philippsen and M. Zenger. JavaParty - transparent re-
mote objects in Java.Concurrency: Practice and Experi-
ence, 9(11):1225–1242, 1997.

[18] M. Schröder.Automatische Objekt- und Threadverteilung in
einer virtuellen Maschine. PhD thesis, Universität Erlangen,
Institut für Informatik, 2001.

[19] R. Srinivasan.RPC: Remote Procedure Call Protocol Spec-
ification Version 2 (RFC1831). IETF Network Working
Group, August 1995.

[20] Sun Microsystems. Java remote method invocation (RMI).
http://java.sun.com/products/jdk/rmi/, August 2002.

[21] E. Tilevich and Y. Smaragdakis. J-Orchestra: Automatic
Java application partitioning. In B. Magnusson, editor,
ECOOP 2002 - Object-Oriented Programming, volume
2374 ofLecture Notes in Computer Science, pages 178–204,
University of Málaga, Spain, 2002. Springer Verlag.

[22] A. Wellings, R. K. Clark, E. D. Jensen, and D. Wells.
A framework for integrating the real-time specification for
Java and Java’s remote method invocation. InProceedings of
the 5th IEEE International Symposium on Object Oriented
Real-Time Distributed Computing (ISORC 2002), pages 13–
22, Crystal City, VA, USA, 2002.

[23] D. Weyns, E. Truyen, and P. Verbaeten. Distributed threads
in Java. InProceedings of the International Symposium on
Parallel and Distributed Computing (ISPDC 2002), 2002.

[24] W. Yu and A. L. Cox. Java/DSM: A platform for heteroge-
neous computing.Concurrency: Practice and Experience,
9(11):1213–1224, 1997.


	Introduction
	Related work
	Paper outline

	Distributed threads in RMI
	KaRMI, a drop-in replacement for RMI
	Missing synchronization reentrance
	Solution: Unique representative threads
	Broken semantics for synchronized blocks
	Solution step one: Remote monitor access
	Solution step two: transparent synchronized blocks
	No distributed thread control
	Solution: Interrupt forwarding

	Implementation
	Evaluation
	Conclusion and future work

