
A Software Process Scheduling Simulator

Frank Padberg
Fakultät für Informatik

Universität Karlsruhe, Germany
padberg@ira.uka.de

1 Introduction

To cut development cost and meet tight deadlines in
short staffed software projects, managers must optimize
the project schedule. Scheduling a software project is
extremely difficult, though, because the time needed to
complete a software development activity is hard to esti-
mate. Often, the completion of a task is delayed because
of unanticipated rework caused by feedback between ac-
tivities in the process.

In this research demo, we show how to use process
simulation to support software project managers in
scheduling. We present a discrete-time simulator tai-
lored to software projects which explicitly takes a
scheduling strategy as input. The simulator makes it
easy to experiment with different scheduling strategies.
It provides quick feedback about the impact that a par-
ticular strategy is likely to have on the progress and
completion time of a project. A manager can compare
different strategies and choose the strategy which he
thinks is best for the next project’s setting. In addition,
a single step mode of the simulator allows a manager to
view the dynamics of a project in detail.

The simulator is an implementation of the proba-
bilistic scheduling model for software projects which we
have presented earlier [6, 8] . The scheduling model
describes the software process at a high level of abstrac-
tion : teams work on software components. Classical
process phases such as coding or testing are not mod-
eled explicitly. Still, the model captures much of the
dynamics of software projects, representing varying staff
skill levels, rework caused by design changes, component
coupling, and changing task assignments.

Process simulation is an important technique to
evaluate the impact of proposed process changes [5] .
In particular, system dynamics simulations have been
around for years, some of them addressing the prob-
lem of project staffing [1, 2] . By modeling individual
teams and components as well as explicit task assign-

ments, our model is much more fine-grained than sys-
tem dynamics models. In addition, the particular way
in which our model describes feedback between activi-
ties is novel in both software engineering and operations
research [3, 7, 9] .

2 Simulator

The simulator is written in the ModL language of the
general-purpose simulation tool EXTEND [4] . The in-
put data for the simulator are: the base probabilities,
the dependency degrees, and the scheduling strategy.

For each team and component, there is a set of base
probabilities which specify how likely it is that the team
will need a prescribed amount of time to finish the com-
ponent, report a high-level design problem, or finish re-
working the component after a design change. In prac-
tice, the base probabilities must be computed from em-
pirical data collected during previous projects.

The dependency degrees are a probabilistic measure
for the strength of the coupling between the components
and must be computed from the high-level design of
the software. The stronger the coupling is the more
likely it is that design changes which originate in one
component will propagate to other components, thus
leading to rework in these components.

The scheduling strategy (policy) specifies for each
possible state of the project which team must work on
which component. The scheduling strategy is imple-
mented as a separate block in the simulator; thus, the
strategy can be easily replaced. The state of the project
includes the development time spent on each compo-
nent so far, the project duration up to this point, the
amount of rework left for each component, and the cur-
rent task assignment. Plotters can be easily attached to
the simulator to trace project state variables during the
simulation.

Since the scheduling model is probabilistic, events
will occur only with a certain probability at a particular
point in time during the project. When the scheduling

strategy is fixed, the simulator determines which step
the project will take next by ”throwing a dice”. For ex-
ample, some component might be finished in the next
simulation step, or a design problem might get detected.
The dice behaves according to the input probability dis-
tributions, taking into account the current state of the
project.

Similarly, if a design change occurs in the project
the simulator determines the set of those components
which are affected by the change by throwing another
dice which behaves according to the dependency de-
grees. This way, in each simulation run one possible
full path of the project is simulated.

3 Example

As an example, we use the simulator to study the per-
formance of different list policies for a small sample
project. A list policy prescribes an order in which the
components must be worked on; the next team to fin-
ish must work on the next component in the list. Since
the completion time for an activity is subject to chance
in the simulation, the actual schedule of the project de-
pends on the progress of the project. List policies keep
all teams busy during the whole project, which reflects
management practice.

The sample project consists of four components and
two teams. The base probabilities for the example are
chosen in such a way that: team Two has a lower pro-
ductivity than team One; components A and B have a
similar complexity; components C and D require much
more effort than components A and B. The dependency
degrees are chosen to reflect that components C and D
are strongly coupled.

In the sample project, using list policy ABCD will
initially assign component A to team One and compo-
nent B to team Two. Whichever team finishes its task
first will work on component C. Finally, the next team
to finish will work on component D.

We have implemented list scheduling as a single block
where the list to be used is configurable. We ran 500
project simulations for each of the 24 possible list poli-
cies and observed the project completion time for each
run. Table 1 shows the mean project completion time
for each list policy.

The scheduling strategy has a significant impact on
the completion time of the sample project. On average,
list policy DCBA is best and CBAD is worst. List policy
DCBA yields a schedule which on average is about 17
percent shorter than for CBAD.

From the histogram for the project completion time
of each policy one can see that the risk for missing a
tight deadline (say, 26) is much higher for CBAD than
for DCBA. Figure 1 shows the histogram for policy

Table 1. Mean completion times for the sample
project under different scheduling strategies.

policy mean
ABCD 30.2
ABDC 26.4
ACBD 30.3
ACDB 26.5
ADBC 27.8
ADCB 27.2
BACD 29.1
BADC 27.2

policy mean
BCAD 30.1
BCDA 26.1
BDAC 27.8
BDCA 26.6
CABD 30.9
CADB 28.4
CBAD 31.2
CBDA 29.2

policy mean
CDAB 27.0
CDBA 26.9
DABC 29.5
DACB 26.2
DBAC 29.4
DBCA 26.9
DCAB 26.4
DCBA 25.7

0.0

0.02

0.04

0.06

0.08

0.10

5 10 15 20 25 30 35 40 45

DCBA

Figure 1. Histogram of the simulated project
completion times for policy DCBA.

DCBA. Using the full simulation traces, it is possible to
give a detailed analysis of the performance of the dif-
ferent policies by studying the actual task assignments
and the rework in the simulated projects, see [8].

References

1 . Abdel-Hamid, Madnick : Software Project Dynamics .
Prentice Hall, 1991

2 . Collofello e.a. : ”A System Dynamics Simulator for Staffing
Policies Decision Support” , Annual Hawaii International
Conference on System Sciences 31 (1998) 103–111

3 . Derniame, Ali Kaba, Wastell : Software Process : Principles,
Methodology, and Technology. Lecture Notes in Computer
Science 1500, Springer 1999

4 . EXTEND, http://www.imaginethatinc.com/

5 . Kellner, Madachy, Raffo : ”Software Process Simulation
Modeling: Why? What? How?” , Journal of Systems and
Software 46 (1999) 91–105

6 . Padberg : ”Scheduling Software Projects to Minimize the
Development Time and Cost with a Given Staff ” , Asia-
Pacific Software Engineering Conference APSEC 8 (2001)
187–194

7 . Padberg : ”A Stochastic Scheduling Model for Software
Projects”, Dagstuhl Seminar on Scheduling in Computer and
ManufacturingSystems, June 2002, Dagstuhl Report No. 343

8 . Padberg : ”Using Process Simulation to Compare Schedul-
ing Strategies for Software Projects” , Asia-Pacific Software
Engineering Conference APSEC 9 (2002) 581–590

9 . Weglarz : Project Scheduling. Recent Models, Algorithms,
and Applications . Kluwer, 1999

