
On the Economic Evaluation of XP Projects

Matthias M. Müller
Fakultät für Informatik

Universität Karlsruhe, Germany
muellerm@ira.uka.de

Frank Padberg
Fakultät für Informatik

Universität Karlsruhe, Germany
padberg@ira.uka.de

ABSTRACT

From a project economics point of view, the most impor-
tant practices of Extreme Programming (XP) are Pair Pro-
gramming and Test-Driven Development. Pair Program-
ming leads to a large increase in the personnel cost, and
Test-Driven Development adds to the development effort.
On the other hand, Pair Programming can speed the project
up; both Pair Programming and Test-Driven Development
can reduce the defect density of the code. Can the increased
cost of XP be balanced by its shorter time to market and
higher code quality?

To answer this question, we construct a new model for the
business value of software projects. We then analyze the
cost and benefit of XP by applying our model to a realistic
sample project. We systematically vary important model
parameters to provide a sensitivity analysis. Our analysis
shows that the economic value of XP strongly depends on
how large the XP speed and defect advantage really are.
We also find that the market pressure is an important factor
when assessing the business value of XP. Our study provides
clear guidelines for managers when to consider using XP –
or better not.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics, Management

General Terms
Economics, Management, Measurement

Keywords
Extreme Programming, Cost-Benefit Analysis

1. INTRODUCTION
Lightweight development paradigms such as Extreme Pro-
gramming (XP) are highly controversial. Proponents of XP

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.
ESEC/FSE’03, September 1–5, 2003, Helsinki, Finland.
Copyright 2003 ACM 1-58113-743-5/03/0009 ...$5.00

claim that their paradigm brings strong advantages over con-
ventional processes, including lower management overhead,
higher team productivity, improved software quality, and
shorter release cycles. Yet, there is only limited empirical
evidence in support of these claims. To properly judge a
new paradigm such as XP one must study for which project
settings the potential benefits of XP balance its cost, if at
all. Such a study must be based on objective measures from
economics.

In this paper, we construct a model for the economic value
of software development projects. We then analyze the cost
and benefit of XP by applying our economic model to a
hypothetical, yet realistic sample project in two different
scenarios: the first scenario corresponds to conventional de-
velopment, the second scenario uses XP. The team size,
product size, and time scale of the sample project are typ-
ical for a project where one would consider using XP. In
addition, we systematically vary the key model parameters
to see how sensitive the results are to a change in the project
setting. We arrive at a comprehensive and detailed analysis
of how efficient the special practices of XP must be in order
for XP to outperform the conventional process.

Our economic project model is based on the concept of net
present value. With net present value, the returns of a
project are discounted back at a certain rate. The discount
rate models the fact that returns which are realized sooner
are more valuable than returns which are realized later. In
the XP community, the special practices of XP are consid-
ered to be most beneficial if the requirements are unstable
and time to market is a decisive factor. Therefore, we use
the discount rate to explicitly take into account the market
pressure.

Extreme Programming breaks with many traditional soft-
ware engineering practices [1, 2] . From the economics point
of view, the most important practices of XP are Pair Pro-
gramming, Test-Driven Development, and Small Releases.
When running a project with XP, all programming tasks
must be performed by pairs of programmers using one dis-
play, keyboard, and mouse. Executable test cases are writ-
ten ahead of the code (”test-first”) and serve as a substitute
for the specification. The test cases must be re-run contin-
uously during development. There is no separate design or
testing phase. Design, implementation, and testing go to-
gether in small increments. The formulas in our economic
project model directly reflect these practices of XP.

Due to Pair Programming, the personnel cost basically is
doubled with XP. In addition, Test-Driven Development can
lead to a delay in the task completions due to the extra
effort required for continuously adapting and running the
test cases. The main claim of XP is that this increased cost
is more than compensated by three factors:

• A pair of programmers has a higher development speed
than a single programmer.

• Continuously checking the code against the test cases
improves the quality of the code.

• The code produced by a pair of programmers has a re-
duced defect density.

The potential speed and defect advantage of XP are usually
explained as follows. Pair Programming allows developers
to share their ideas immediately. This allows to get down
to solutions more quickly and also helps to eliminate defects
early. In addition, Pair Programming leads to an ongoing
review of the program code by the second developer, which
reduces the defect density of the code. Finally, continuous
testing also helps to eliminate defects early.

The potential benefits of XP do not always balance its in-
creased cost. Our sensitivity analysis for the sample project
shows that the economic value of XP strongly depends on
how large the XP speed and defect advantage actually are,
as expected. We also find that the market pressure is an
important factor when assessing the business value of a XP
project. The results of our study have direct implications for
software management practice. Our most important find-
ings are as follows:

• A manager should consider XP if the market pressure
is strong and his programmers are much more efficient
(with respect to both productivity and code quality)
when working in pairs as compared to working alone.

• On the other hand, if the market pressure is only mod-
erate and there are tasks left over which can easily be
assigned to additional developers, a manager should add
single developers instead of using XP.

These are general guidelines; the decision whether to use
XP or not from an economics perspective must be made
individually for each project setting. In summary, we get a
largely diversified picture of the tradeoff between the cost
and benefit of XP.

2. RELATED WORK
The economic project model presented here is based on our
workshop paper about Pair Programming [11] . The results
of that workshop paper have been independently replicated
and confirmed by Smith and Menzies [14] . Smith and Men-
zies are motivated by the question whether XP (or other
lightweight methods) should be adopted by NASA, or not.
We have also included results from our workshop paper
about Test-Driven Development [12] .

Currently, the impact of Pair Programming and Test-Driven
Development on the productivity and code quality are only
being studied separately. For both practices, the empirical
knowledge is very limited.

Some empirical studies provide evidence for the benefits of
Pair Programming. The studies indicate that the pair speed
advantage actually does exist, but the authors come to dif-
ferent numbers. Nosek [13] reports about a study with
software professionals where the pairs had a 29 percent
shorter time to completion than the individual program-
mers. Williams [4, 17] reports about a study with under-
graduate students where the pairs required between 20 and
40 percent less time for completing their task than the in-
dividuals. Williams [4] also reports that Pair Programming
led to 15 percent fewer defects in the final product as com-
pared to single programmers. An early paper by Bisant
and Lyle [3] already indicated that working in pairs during
a review can save total development effort despite having
doubled personnel cost during the review.

Test-Driven Development has been studied empirically by
one of the authors in [10]. This study provides some evidence
that the code quality improves, but the development slows
down with Test-Driven Development.

Williams and Erdogmus [16] present another study about
the economic feasibility of Pair Programming (without Test-
Driven Development) which is also based on the concept
of net present value. There are a number of major differ-
ences between their work and ours, though. In the study
of Williams and Erdogmus, Pair Programming is run under
a software factory model where code is not only developed,
but also delivered and paid for in very small increments.
This assumption is unrealistic even for XP projects, which
typically are small scale. Williams and Erdogmus adopt the
most optimistic figures about the speed and defect advan-
tage of pairs reported earlier by Williams. In particular,
pairs are assumed to work almost twice as fast as individ-
uals. No sensitivity analysis with respect to the pair speed
and defect advantage is provided.

Erdogmus and Williams conclude that there is an overall
economic advantage of 40 percent for pairs over single pro-
grammers. Due to their modelling approach, this figure
is independent of the actual discount rate, product size,
project deadline, and labor cost. We doubt that such a
global figure is valuable as a basis for management decisions
in a given project setting. In addition, their result depends
on their particular choice of the pair speed and defect ad-
vantage. In contrast, we use a more realistic project model.
Our study makes clear that even when adopting the most
optimistic figures reported in the literature to date about
the speed and defect advantage of pairs, the market pres-
sure must be rather strong in order for XP to pay off.

3. ECONOMIC MODEL
In this section, we describe in detail our model for the eco-
nomic value of a software development project. The model
can be applied to both conventional projects and XP projects
by suitably choosing the values for the model parameters.

3.1 Project Value
Our model for the economic value of a development project
is based on the concept of net present value. The net present
value of a project [6, 7] is defined as:

NPV =
AssetValue

(1 + DiscountRate) DevTime
− DevCost.

With net present value, the dollar returns of a project (de-
noted as its AssetValue) are discounted at a certain rate,
the DiscountRate. The rational behind discounting is that
an investment worth one dollar today is worth

(1 + DiscountRate)T

dollars in T periods. With this rational, the present value of
the project must be calculated by discounting back the asset
value from the time of project completion (DevTime) to time
zero, and then deducing the development cost (DevCost).
A project has business value only if its net present value is
positive. Otherwise, the project leads to a financial loss.

3.2 Market Pressure
Time to market can be the decisive factor for the success
of a project. Under strong market presure, a delay of the
project completion leads to a loss of market share, which
drastically decreases the business value of the project.

To model strong market pressure, it is common in economics
to choose high values for the discount rate in the formula for
the net present value. In our study, we use discount rates
up to 75 percent a year. A high discount rate means that
time to market is a decisive factor for the business value of
the development project.

3.3 XP Speed Factor
The key XP practices of Pair Programming and Test-Driven
Development have an opposite impact on the task comple-
tion times in a project. On the one hand, one can expect
that a pair of programmers has a higher development speed
than a single programmer; this is supported by first em-
pirical studies [4, 13, 17] . On the other hand, test-driven
development seems to lead to a delay in the task completion
times due to the extra effort spent on continuously adapting
and running the test cases [10] .

It is a central claim of XP that the speed advantage pre-
dominates, but currently we lack empirical data to con-
firm this claim. To model the difference in development
speed between a conventional project and a XP project in
an unbiased way, we introduce the XP speed factor. The
XPSpeedFactor is defined as the (average) ratio between the
time required for some task by a single developer in a con-
ventional project and the time required by a pair of pro-
grammers using test-driven development in a XP project. If
the XPSpeedFactor is larger than one, XP has a speed ad-
vantage over conventional development; otherwise, XP has
a speed disadvantage.

The difference in development speed between a conventional
project and a Pair Programming project (without test-driven
development) is measured by the pair speed advantage. The
PairSpeedAdvantage is defined analogous to the XP speed
factor. Nosek [13] reports that programmer pairs on aver-
age require a 29 percent shorter time to completion for their

tasks than single programmers. Using this data, we have

PairSpeedAdvantage =
100

100 − 29
= 1.4.

The few empirical studies available today indicate that the
pair speed advantage can reasonably be expected to range
between 1.3 and 1.8 [4, 13, 17] . The pair speed advantage
is an upper bound for the XP speed factor:

XPSpeedFactor ≤ PairSpeedAdvantage.

Similarly, the XP speed factor is bounded from below by the
test-driven speed factor :

TestDrivenSpeedFactor ≤ XPSpeedFactor.

The test-driven speed factor is defined analogous to the XP
speed factor but relates to test-driven development (without
Pair Programming). In principle, the range for the test-
driven speed factor can be determined empirically in the
same way as the pair speed advantage.

3.4 XP Defect Factor
A programmer typically inserts 100 defects per thousand
lines of code [9] . A good conventional software process elim-
inates up to 70 percent of these defects [9] . Therefore, we
assume that the code produced with conventional develop-
ment has an average defect density of

DefectDensityC =
100

1000
× 30

100
= 0.03

defects per line of code.

XP claims that Pair Programming and Test-Driven Devel-
opment lead to fewer defects in the code as compared to
conventional development. To model the difference in code
quality between a conventional project and a XP project in
an unbiased way, we introduce the XP defect factor :

XPDefectFactor =
DefectDensityC − DefectDensityXP

DefectDensityC

.

DefectDensityXP denotes the (average) defect density of a
XP project.

Again, we currently lack empirical data about how large the
XP defect factor actually is. One empirical study indicates
though that Pair Programming (without test-driven devel-
opment) already provides a pair defect advantage over con-
ventional development which ranges about 15 percent; that
is, Pair Programming on average leaves 15 percent fewer
defects in the code than conventional development [4, 17] .
Although empirical evidence is limited yet, we expect the
XP defect factor to actually measure an advantage since the
defect advantage of Pair Programming should be reinforced
by test-driven development. Therefore, the XP defect factor
is bounded from below by the pair defect advantage:

PairDefectAdvantage ≤ XPDefectFactor.

3.5 Workforce Level
The number of single developers in the conventional project
is denoted by NumOfDevelopers. The number of program-
mer pairs in the XP project is denoted by NumOfPairs. For
some computations, we’ll assume that the number of pairs
equals half the number of single developers; for other com-
putations, we’ll assume that workforce has been added to
form more programmer pairs.

The module breakdown structure of the software determines
the maximum number of tasks that can be worked on simul-
taneously in the project. Splitting the development tasks
any further doesn’t make sense due to the size and structure
of the software. The maximum number of tasks is denoted
by TaskLimit, which is an upper limit for adding developers
to a conventional project. Instead of measuring the module
breakdown structure in detail, it suffices for our purposes to
directly use the metric TaskLimit as input for our computa-
tions.

3.6 Development Time
In our economic model, we compute the development time
for conventional projects as

DevTime C =
1

12
× ProductSize

Productivity × NumOfDevelopers

+ QATime.

The ProductSize is measured in lines of code. The product
size is the same for conventional development and XP. The
average Productivity of a single developer is measured in
lines of code per month. Figures in the literature for the
average productivity range between 250 and 550 lines of
code per month, including design, coding, and unit testing,
but excluding regression testing [15] .

The time needed for quality assurance (QATime) is special :
it’s the time needed to compensate the defect advantage
which XP is assumed to have over the conventional process.
The formula for the quality assurance time is given in the
next subsection.

For a project which uses XP, no additional time for quality
assurance is required (QATime = 0), but the fact that
developers work in pairs must be taken into account:

DevTime XP =
1

12
× ProductSize

Productivity × NumOfPairs

× 1

XPSpeedFactor
.

In addition, the XP speed factor enters the formula for the
development time of the XP project.

In our model, we make the simplifying assumption that
the productivity of the developers, respectively, programmer
pairs, adds up. We do not take into account any increase

in the team communication overhead as the team size in-
creases.

3.7 Quality Assurance
Using conventional development, there are

DefectsLeft = ProductSize × DefectDensityC

defects left in the software after coding. Given that XP
produces code which has a reduced defect density, the con-
ventional project must make up for the quality difference of

DefectDifference = XPDefectFactor × DefectsLeft

defects in a separate quality assurance phase before entering
the market. With XP, no separate quality assurance phase
is required.

The time needed to remove a defect in quality assurance is
denoted as DefectRemovalTime. Figures in the literature for
the defect removal time vary between 5 and 15 hours per
defect [8, 9] . The length of the separate quality assurance
phase for the conventional process depends on the defect
difference and the defect removal time:

QATime =
1

12
× DefectRemovalTime

WorkTime × NumOfDevelopers

× DefectDifference.

A reasonable figure for the monthly working hours of a de-
veloper (WorkTime) is 135 hours.

3.8 Development Cost
For simplicity, our model assumes that the development cost
of a project only consists of the salaries for the developers
and the project leader.

For the cost of the conventional project, we get:

DevCostC = DevTime C

× (NumOfDevelopers × DeveloperSalary

+ LeaderSalary).

For the XP project, we get:

DevCostXP = DevTime XP

× (2 × NumOfPairs × DeveloperSalary

+ LeaderSalary).

The model does not take into account project startup and
fixed cost, such as the salary for secretaries or the cost for
computer equipment, nor does the model take into account
product installation cost. It is reasonble to assume that
startup cost, fixed cost, and installation cost are indepen-
dent of the development method; thus, these costs can be
left out when comparing the net present values of the con-
ventional and XP project.

4. NUMERICAL RESULTS
In this section, we compute the net present value of a hy-
pothetical, but realistic sample project for various project
settings. We distinguish between two main scenarios: In
the first scenario, the project is run using a conventional
process. In the second scenario, the project is run using XP.
For different values of the XP speed factor, XP defect factor,
and discount rate we compare the net present value of the
XP project against the net present value of the conventional
project. More precisely, we study the ratio

NPVXP − NPVC

NPVC

where NPVXP denotes the net present value of the XP
project and NPVC denotes the net present value of the
conventional project. The NPV ratio captures the relative
advantage (or disadvantage) of XP over the conventional
process.

4.1 Sample Project
For the sample project that we shall study in the remainder
of this paper, we keep some model parameters fixed, see
Table 1.

Table 1: Fixed model parameters for sample project.

parameter value
Productivity 350 LOC/month
DefectDensity (conv.) 0.03 defects/ LOC
DefectRemovalTime 10 hours/defect
ProductSize 16,800 LOC
TaskLimit 8 tasks
AssetValue 1,000,000 dollars
DeveloperSalary 50,000 dollars/year
LeaderSalary 60,000 dollars/year
WorkTime 135 hours/month

To get some impression how large the sample project actu-
ally is, assume that we have eight developers who follow a
conventional process. In this case, the formula given in the
preceding section for the development time of conventional
projects yields that it will take about half a year to finish
the project. In addition, if we assume a moderate annual
discount rate of 10 percent, the formula for the net present
value of conventional projects yields

NPVC = 723, 463 dollars.

4.2 Limited Workforce
The number of tasks which can reasonably be worked on
simultaneously in the sample project is bounded by eight
(TaskLimit = 8). Suppose that the workforce available for
the project is strictly limited to eight developers. The man-
ager then has two options:

• He could run the project with eight single programmers
using a conventional process.

• He could run the project with four programmer pairs
using XP.

Even when assuming that pairs have a considerable speed
advantage over single developers, it is questionable whether
the speed advantage suffices to compensate the fact that
four pairs do not exploit the maximum degree of parallelism
possible in the project.

To study this setting of a limited workforce, we apply our
economic model first assuming a moderate annual discount
rate (DiscountRate = 25 %). We then compare the conven-
tional project with eight single developers against XP with
four pairs, using different values for the XP speed factor
XPSF and the XP defect factor XPDF, see Table 2.

Table 2: Net present value of sample project with limited
workforce under moderate market pressure.

XPSF XPDF NPVC NPVXP

1.4 15 % 626,026 524,093
1.8 15 % 626,026 627,851
1.8 25 % 600,509 627,851

Table 2 shows that for reasonable values of the speed and
defect factor the net present value of the conventional project
will exceed the net present value of the XP project. Recall
that a value for the XP speed factor of 1.8 means that pairs
work almost twice as fast as single developers despite the ad-
ditional effort required by test-driven development, and we
have only very limited empirical evidence to date in favor of
such a large speed advantage.

The NPV ratios do not change much when the market pres-
sure is strong. Even for an extreme DiscountRate of 75
percent, a large XP speed factor of 1.8, and a significant
XP defect factor of 15 percent, the XP project just breaks
even with the conventional project given that the workforce
is limited to eight developers, see Table 3.

Table 3: Net present value of sample project with limited
workforce under extreme market pressure.

XPSF XPDF NPVC NPVXP

1.4 15 % 474,817 341,932
1.8 15 % 474,817 477,233
1.8 25 % 441,177 477,233

The quantitative figures computed here using our economic
model suggest the following management guideline for the
sample project :

If the size of the workforce does not allow to run
the project with the maximum number of pairs, a
manager should better add single programmers to
maximize the degree of parallelism in the project
instead of using XP.

This guideline holds in particular if the market pressure is
only moderate. In such a setting, the potential speed and
defect advantage of XP do not compensate the lack of par-
allelism in the XP project.

4.3 Sensitivity Analysis
The NPV ratio is sensitive to the XP speed factor and XP
defect factor. For a fixed discount rate, we visualize the
NPV ratio for different values of these parameters using a
”checkboard.” In each checkbord, we systematically vary
the parameters over the following ranges:

Table 4: Varying XP speed and defect factor.

parameter start stop step
XPSpeedFactor 1.0 2.0 0.1
XPDefectFactor 0 30 5

Figure 1 shows the checkboard when assuming a work-
force of eight developers (four pairs) and a high annual
DiscountRate of 50 percent. The numbers in the boxes
specify the NPV ratios (in percentages). We have filled in
only some of the numbers. The boxes are grey if
the NPV ratio ranges between − 10 and +10 percent, and
white otherwise. In the upper half of the checkboard,
the net present value of the conventional project is more
than 10 percent larger than the net present value of the XP
project ; in the lower right corner of the checkboard, the XP
project has a more than 10 percent higher value.

XPDefectFactor

0 5 10 15 20 25 30

XPSpeedFactor

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

-49

-39

-30

-22

-16

-10

-4

0

5

-14 -12 -7 -4

0

-65

3

-64

6

-63

8

-62

12

-61

15

-59

18

-58

-4 14

-7 10

-12 4

-17 -1

-22 -8

-28 -15

-36 -24

-44 -33

-53 -45

Figure 1: NPV ratios with four pairs under strong market
pressure.

Figure 1 leads to a number of observations about how the
value of the XP and conventional project (and hence, the
NPV ratio) depend on the speed and defect factor:

• For a fixed defect factor, the NPV ratio increases as the
speed factor increases; see for example the NPV ratios
in the column XPDF = 15 percent.

• For a fixed speed factor, the NPV ratio increases as the
defect factor increases; see for example the NPV ratios
in the row XPSF = 1.6.

• Conventional development will outperform XP if the
programmer pairs do not show a reduced defect rate;
see the NPV ratios in the column XPDF = 0.

• XP will outperform the conventional project if the pairs
work twice as fast as single programmers; see the NPV
ratios in the row XPSF = 2.0.

The dependence of the NPV ratio on the XP speed and
defect factor can be explained by going back to the formu-
las for the development time of the conventional and XP
project, respectively. As the speed factor increases, the de-
velopment time of the XP project decreases and hence its
value increases; the value of the conventional project does
not depend on the speed factor. On the other hand, as
the defect factor increases the quality assurance time of the
conventional project increases and hence its value decreases;
the value of the XP project does not depend on the defect
factor.

4.4 Developer Pool
Assume that there is a fairly large pool of developers avail-
able who could work on the project. Since the number of
tasks which can reasonably be worked on simultaneously is
bounded by eight (TaskLimit = 8) for the sample project,
the manager has two options:

• He could run the project with up to eight single devel-
opers using a conventional process.

• He could run the project with up to sixteen developers
who work in pairs using XP.

Clearly, due to Pair Programming the personnel cost of the
XP project basically would double. On the other hand,
granted that XP pairs have a speed advantage over single
developers, the XP project should deliver faster than the
conventional project. Especially under strong market pres-
sure, earlier time to market will result in a gain in market
share. Thus, the increased personnel cost of XP might be
more than covered for by the gain in market share.

To make a decision whether to use XP or not, we apply
our economic model assuming an annual DiscountRate of
75 percent, which corresponds to extreme market pressure.
We then compare the conventional project with the maxi-
mum workforce of eight single developers against XP with
the maximum workforce of eight pairs . Table 5 shows the
results for different values of the XP speed factor XPSF and
the XP defect factor XPDF.

Table 5: Net present value of sample project under extreme
market pressure with maximum workforce.

XPSF XPDF NPVC NPVXP

1.4 5% 508,803 511,700
1.4 25 % 441,177 511,700
1.8 5% 508,803 617,141
1.8 25 % 441,177 617,141

We conclude from Table 5 that XP outperforms the conven-
tional project if the XP speed and defect advantage both are

significant (for example, XPSF = 1.4 and XPDF = 15 %). If
the speed advantage is very large, XP outperforms the con-
ventional project even when the defect advantage is small.

We visualize the dependence of the NPV ratio on the XP
speed and defect factor using a checkboard, see Figure 2.
For a fixed defect factor, the NPV ratio increases as the
speed factor increases; a corresponding statement holds for
a fixed speed factor. In addition, due to the stronger market
pressure and larger number of pairs in the XP project, the
area in the lower half of the checkboard where XP has a clear
advantage over the conventional project has grown larger.

XPDefectFactor

0 5 10 15 20 25 30

XPSpeedFactor

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

-19

-9

0

8

14

20

25

30

34

12 16 25 29

24

-38

29

-36

33

-34

38

-31

43

-29

48

-26

54

-23

21 50

17 45

13 40

9 34

3 28

-3 21

-10 12

-18 2

-27 -9

Figure 2: NPV ratios with eight pairs under extreme market
pressure.

The quantitative figures computed here using our economic
model suggest another management guideline for the sample
project :

A manager should consider applying XP if the
market pressure is strong, his programmers are
much faster when working in pairs as compared
to working alone, and there is a sufficiently large
workforce available to run the project with the
maximum number of pairs.

For high discount rates, the speed and defect advantage of
XP pairs come into full play. As a result, it can make sense
to add developers to a project to form XP pairs because the
increased personnel cost is more than balanced by the gain
in market share.

4.5 Market Pressure
The market pressure plays an important role in the eco-
nomic comparison of XP and conventional development. In
general, the stronger the market pressure, the smaller the
net present value of the project, no matter whether XP is
used or a conventional process. This effect is apparent when
comparing the numbers in Table 2, which correspond to a
DiscountRate of 25 percent, with the numbers in Table 3,
which correspond to a DiscountRate of 75 percent.

On the other hand, some computations have also shown that
XP can pay off if the market pressure is strong. To study
the impact of the market pressure on the NPV ratio more

systematically, Figure 3 shows the checkboards for different
project settings. Horizontally, the DiscountRate assumes the
values 25, 50, and 75 percent. Vertically, the number of
pairs in the XP project equals 4, 6, and 8. The number
of single developers in the conventional project is always
fixed at eight, assuming that one can’t split the project tasks
beyond the TaskLimit.

25%

0

-49

2

-48

4

-47

6

-46

8

-45

11

-43

13

-42

-3 10

-6 7

-9 3

-12 -1

-16 -6

-21 -11

-26 -17

-33 -24

-40 -32

50%

0

-65

3

-64

6

-63

8

-62

12

-61

15

-59

18

-58

-4 14

-7 10

-12 4

-17 -1

-22 -8

-28 -15

-36 -24

-44 -33

-53 -45

75%

0

-79

3

-78

7

-77

11

-77

15

-76

19

-75

24

-74

-4 18

-9 12

-15 6

-21 -2

-27 -10

-35 -19

-44 -30

-54 -43

-65 -57

7

-37

9

-35

11

-34

13

-33

16

-31

18

-30

21

-28

4 18

2 15

-1 12

-4 8

-8 4

-12 0

-17 -6

-22 -12

-29 -19

11

-45

14

-43

18

-42

21

-40

24

-38

28

-37

32

-35

8 28

5 24

1 20

-3 15

-8 9

-13 3

-19 -4

-26 -13

-35 -23

16

-53

20

-51

24

-49

28

-48

33

-46

38

-44

44

-41

12 39

8 34

3 28

-2 22

-8 15

-14 6

-22 -3

-30 -14

-41 -26

10

-30

12

-29

14

-27

17

-26

19

-24

22

-23

24

-21

8 22

6 19

3 16

0 13

-3 9

-7 5

-12 0

-17 -6

-23 -13

17

-34

21

-32

24

-30

27

-29

31

-26

35

-24

39

-22

15 36

12 32

8 28

4 24

0 19

-5 13

-11 6

-17 -2

-25 -11

24

-38

29

-36

33

-34

38

-31

43

-29

48

-26

54

-23

21 50

17 45

13 40

9 34

3 28

-3 21

-10 12

-18 2

-27 -9

Figure 3: NPV ratios with varying discount rate and four
to eight pairs.

The numbers in the upper left and lower right corner of each
checkboard specify the maximum disadvantage, respectively,
maximum advantage of XP over the conventional process.
For a fixed workforce level, the spread between the max
advantage and the max disadvantage of XP increases as the
discount rate increases. In addition, the group of project
settings where XP has a more than 10 percent advantage
over conventional development grows as the discount rate
increases, see the size of the white area in the lower half of
the checkboards.

Suppose that the market pressure is strong (DiscountRate
equals 50 percent). Table 6 shows in detail what happens
to the NPV ratio if extra pairs are added to the XP project.
In Table 6, the XP speed factor equals 1.6 and the XP
defect factor equals 15 percent.

Table 6: Net present value of sample project under strong
market pressure for varying number of XP pairs.

XP pairs NPVC NPVXP

4 540,578 488,645
6 540,578 569,556
8 540,578 612,241

For example, the NPV ratios are much better with six XP
pairs than with four XP pairs. Adding XP pairs leads to
a shorter time to market; under strong market pressure, a
short time to market is decisive for the net present value of
the project.

This result is also supported by Figure 3. With six or
eight pairs, XP can outperform the conventional project for
a smaller speed and defect advantage than with four pairs if
the market pressure is strong. Recall that if the market pres-
sure is only moderate, XP can outperform the conventional
process only for a very high speed and defect advantage.

These findings suggest yet another management guideline
for the sample project :

The stronger the market pressure, the smaller are
the number of pairs, the speed advantage, and
the defect advantage which are required for XP
to break even with the conventional process.

This guideline pins down the fact that the economic evalu-
ation of XP depends not only on the XP speed and defect
factor, but to a large extent on the economic context in
which the project is carried out.

4.6 Incremental Delivery
Our economic project model assumes that the roll-out of the
software is done at the end of the project and that payment
is due at this point in time. Delivering the software at the
end of the project is common practice in conventional soft-
ware development. However, XP breaks with this practice
as well. XP aims at delivering parts of the software, the so
called small releases, from early on in the project cycle. In
this subsection, we study the impact of incremental delivery
on both conventional and XP projects.

With incremental delivery, the software is subdivided into
”chunks” which are delivered as soon as they have been de-
veloped. For each chunk, the customer pays a fraction of
the project’s asset value. We assume that the payment is
proportionate to the size of the chunk. This way, total pay-
ment for the project is split into a stream of small payments
which is described by a sequence

PF = (pf1, . . . pfm)

of ”product fractions” pfk. Each fraction describes the size
of the release relative to the whole product. For example, a
project which delivers two equal-sized releases is described
by the sequence PF = (0.5, 0.5). The first release is de-
livered half time through the project, the second release at

the end of the project. A one-release project is described by
PF = (1.0).

To compute the net present value of a project with incre-
mental delivery, payment k has to be discounted up to the
point in time

DevTime [k] =

k�
j = 1

pfj × DevTime

when release k is delivered. We assume that the develop-
ment cost for a small release is proportionate to the size of
the release:

DevCost [k] = pfk × DevCost.

Finally, the net present value of a project which delivers in
small releases is described by

NPV [PF] =

m�
k = 1

� AssetValue× pfk

(1 + DiscountRate) DevTime [k]

− DevCost [k]
�

Table 7 compares the two-release scenario PF = (0.5, 0.5)
with the one-release scenario PF = (1.0) for the sample
project. The model parameters are chosen in such a way
that the conventional project outperforms the XP project
(DiscountRate = 50 %, XPSF = 1.5, XPDF = 15 %, and
NumOfPairs = 4). For the two-release scenario, the columns
in the table show the NPV of the first and second release as
well as the NPV of the total project. The last column shows
the NPV of the one-release scenario.

Table 7: Net present value of sample project with limited
workforce and incremental delivery.

two releases one release
1. release 2. release total

NPVC 318,072 270,289 588,361 540,578
NPVXP 283,457 228,238 511,695 456,476
ratio - 13 % - 16 %

Two effects can be observed:

• The net present value of the two-release project is higher
than the value of the one-release project, regardless of
which development process is being used.

• The relative advantage of the conventional project over
XP decreases when delivering in two releases.

Both effects also occur when XP has an advantage over con-
ventional development, see Table 8. The model parameters
are DiscountRate = 75 %, XPSF = 1.6, XPDF = 15 %, and
NumOfPairs = 8.

In the two-release scenario, one half of the asset value is
returned after a shorter discount period as compared to the

Table 8: Net present value of sample project with
maximum workforce and incremental delivery.

two releases one release
1. release 2. release total

NPVC 299,266 237,408 536,674 474,817
NPVXP 323,762 285,404 609,166 570,807
ratio 14 % 20 %

one-release scenario. This higher cash inflow increases the
business value of the project, regardless of the process used.

By the same argument, the process with the smaller project
value in the one-release scenario has more to gain in the
two-release scenario. For example, referring to Table 7,
the additional return for the XP project in the two-release
scenario (55,219 dollars) is larger than the additional return
of the conventional project (47,783 dollars). Thus, the ab-
solute value of the NPV ratio is smaller in the two-release
scenario than in the one-release scenario.

Figure 4 shows the NPV ratios when using incremental
delivery PF = (0.5, 0.5) for both XP and conventional de-
velopment. The upper three checkboards correspond to a

25%

0

-44

2

-43

4

-42

5

-41

7

-40

9

-39

12

-37

-2 9

-5 6

-8 3

-11 -1

-15 -5

-19 -10

-24 -15

-29 -21

-36 -29

50%

0

-55

2

-54

5

-53

7

-52

10

-51

12

-50

15

-49

-3 12

-6 8

-10 4

-14 -1

-19 -6

-24 -13

-30 -20

-37 -28

-45 -37

75%

0

-65

3

-64

6

-63

9

-62

12

-61

15

-60

19

-59

-4 14

-8 10

-12 5

-17 -1

-22 -8

-29 -15

-36 -24

-44 -34

-54 -45

8

-29

10

-28

12

-26

14

-25

16

-24

18

-22

20

-21

6 18

4 16

1 13

-1 10

-4 7

-8 3

-12 -2

-17 -7

-22 -13

13

-32

16

-30

18

-29

21

-27

24

-25

27

-23

30

-21

11 27

8 24

5 21

2 17

-2 13

-6 8

-11 2

-17 -4

-24 -12

18

-34

21

-33

24

-31

28

-29

32

-27

35

-24

40

-22

15 36

12 33

8 29

5 24

0 19

-5 13

-11 6

-17 -2

-25 -11

Figure 4: NPV ratios for incremental delivery.

limited workforce (eight single developers versus four XP
pairs), the lower three checkboards correspond to a maxi-
mum workforce. As the checkboards show the NPV ratios,
only the second effect can be observed: the relative advan-
tage of the better process is smaller when delivering in two
releases. Compared to the one-release scenario depicted in
Figure 3, the grey zones have broadened and (up to round-
ing errors) the absolute NPV ratios are smaller.

The above discussion leads to the following management
guideline :

A manager should consider applying XP if that
supports splitting the project into small releases
better than a conventional process.

The stronger the market pressure, the more important it is
to deliver and receive payment by the customer early. XP
claims to be more suitable for delivering in small releases
than conventional development. Currently, we lack empiri-
cal evidence collected from industrial projects of a realistic
size in support of this claim; see [5] for an industrial XP
experience report.

5. CONCLUSIONS
In this paper, we have presented an evaluation of XP from a
project economics point of view. We have developed a novel
economic project model which allows to study the impact of
the key XP practices – Pair Programming and Test-Driven
Development – on the business value of a project. Being
based on the concept of net present value, our model also
allows to consider the impact of the market pressure on the
business value of the project.

Due to Pair Programming, personnel cost is doubled in a
XP project as compared to a conventional project. Also,
the effort spent on continuously adapting and running the
test cases in Test-Driven Development is likely to add to the
task completion times in a project. On the other hand, pairs
have a speed advantage over single developers, and both
Pair Programming and Test-Driven Development increase
the code quality. Therefore, the increased cost of applying
XP can be balanced – under suitable economic conditions
– by its faster time to market and reduced effort for late
quality assurance.

We have applied our economic model to a hypothetical, yet
realistic sample project. More precisely, we have compared
the net present value of the sample project when using a
conventional process against the net present value of the
sample project when applying XP. We have studied different
project scenarios and provided a detailed sensitivity analysis
with respect to the model parameters. The XPSpeedFactor,
XPDefectFactor, and DiscountRate each have a strong im-
pact on the business value of the XP project. For some
project settings, XP outperforms the conventional process,
but there also are settings where the opposite is true.

The results of our computations provide clear management
guidelines when to use XP – or better not:

• If the size of the workforce does not allow to run the
project with the maximum number of pairs, a manager
should better add single programmers to maximize the
degree of parallelism in the project instead of using XP.

• A manager should consider applying XP if the mar-
ket pressure is strong, his programmers are much faster
when working in pairs as compared to working alone,
and there is a sufficiently large workforce available to
run the project with the maximum number of pairs.

• The stronger the market pressure, the smaller the speed
advantage, the defect advantage, and the number of
pairs which are required for XP to break even with the
conventional process.

• A manager should consider applying XP if that supports
splitting the project into small releases better than a
conventional process.

Other projects will differ from the sample project in the
values of some model parameters, such as the ProductSize,
the AssetValue, or the Productivity. Since there is nothing
special about the sample project and its size, we expect these
guidelines to be valid for other projects as well, although the
particular numbers will change, of course.

Currently, our model does not take into account some man-
agement issues which typically occur when the project ex-
ceeds a certain size, such as high staff turnover, increased
communication overhead, and overtime work. Such issues
play a role in both conventional and XP projects. We also
do not model the tradeoffs involved in applying refactoring,
which is another important XP technique.

Another topic which might be interesting to study from
an economics viewpoint is customer satisfaction with the
functionality of the software. As opposed to conventional
projects, XP compiles a stack of story cards each of which
captures one particular requirement in the form of a usage
scenario. The story cards are written together with the cus-
tomer, who is supposed to be on the project all the time.
XP does not maintain a requirements specification docu-
ment, nor a high-level design document. This fact might
make it difficult to guarantee that the software as a whole
actually fulfils the customer’s needs [5] .

We think that it is important to understand that an objec-
tive evaluation of XP depends not only on certain process
metrics, such as the XP speed and defect factor, but to a
large extent on the economic context in which the project
is carried out. We consider concepts from economics (such
as net present value) to be just the right vehicle to combine
software engineering metrics in order to assess the tradeoffs
involved in a new development paradigm. Our computa-
tions show that the interplay between the different metrics
for XP and the economic project context is rich.

The business value of XP as compared to conventional de-
velopment much depends on how large the speed and defect
advantage of XP pairs actually are. Currently, our knowl-
edge about the true values for these parameters is severly
limited.

For one thing, Pair Programming and Test-Driven Develop-
ment have only been studied separately so far. Recall that
Pair Programming and Test-Driven Development have an
opposite impact on the task completion times, but a similar
impact on the code quality. Hence, it remains unclear how
to combine data about the PairSpeedAdvantage, PairDefect-
Advantage, and TestDrivenSpeedFactor in order to quantify
the XPSpeedFactor and XPDefectFactor. In addition, quan-
titative data about Pair Programming and Test-Driven De-
velopment is scarce to date.

The XPSpeedFactor and XPDefectFactor can be determined
empirically in the same way as we study Pair Programming
or Test-Driven Development. We consider it an important
task to collect reliable empirical data about how large the
speed and defect advantage of XP pairs actually are. We also
must study how well XP supports delivering small releases.
Most notably, we lack empirical data from industrial XP
projects having a realistic size. From this point of view, our
paper gives a clear direction for future empirical research
about XP.

6. REFERENCES

[1] K. Beck. Embracing change with extreme programming.
IEEE Computer, pages 70–77, Oct. 1999.

[2] K. Beck. Extreme Programming Explained. Addison
Wesley, 1999.

[3] D. Bisant and J. Lyle. A two-person inspection method to
improve programming productivity. IEEE Transactions on
Software Engineering, 15(10):1294–1304, Oct. 1989.

[4] A. Cockburn and L. Williams. The costs and benefits
of pair programming. In eXtreme Programming and
Flexible Processes in Software Engineering XP2000,
Cagliari, Italy, June 2000.

[5] A. Elssamadisy and G. Schalliol. Recognizing and
responding to bad smells in extreme programming. In
International Conference on Software Engineering
ICSE-24, pages 617–622, Orlando, Florida, USA, May
2002.

[6] H. Erdogmus. Comparative evaluation of software
development strategies based on net present value. In
International Workshop on Economics-Driven Software
Engineering Research EDSER-1, Los Angeles, USA, May
1999.

[7] W. Harrison, D. Raffo, and J. Settle. Measuring the value
from improved predictions of software process improvement
outcomes using risk-based discount rates. In International
Workshop on Economics-Driven Software Engineering
Research EDSER-1, Los Angeles, USA, May 1999.

[8] W. Humphrey. Managing the Software Process.
Addison-Wesley, 1989.

[9] W. Humphrey. A Discipline for Software Engineering.
Addison-Wesley, 1997.

[10] M. Müller and O. Hagner. Experiment about test-first
programming. IEE Proceedings on Software,
149(5):131–136, Oct. 2002.

[11] M. M. Müller and F. Padberg. Extreme programming from
an engineering economics point of view. In International
Workshop on Economics-Driven Software Engineering
Research EDSER-4, Orlando, Florida, USA, May 2002.

[12] M. M. Müller and F. Padberg. About the return on
investment of test-driven development. In International
Workshop on Economics-Driven Software Engineering
Research EDSER-5, Portland, Oregon, USA, May 2003.

[13] J. Nosek. The case for collaborative programming.
Communications of the ACM, 41(3):105–108, Mar. 1998.

[14] J. Smith and T. Menzies. Should NASA embrace agile
processes, 2002. preprint, West Virginia University,
Morgantown, USA.

[15] I. Sommerville. Software Engineering. Addison-Wesley,
1996.

[16] L. Williams and H. Erdogmus. On the economic feasibility
of pair programming. In International Workshop on
Economics-Driven Software Engineering Research
EDSER-4, Orlando, Florida, USA, May 2002.

[17] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries.
Strengthening the case for pair-programming. IEEE
Software, pages 19–25, July/Aug. 2000.

