
About the Return on Investment of Test-Driven Development

Matthias M. Müller

Fakultät für Informatik

Universität Karlsruhe, Germany

muellerm@ ira.uka.de

Frank Padberg

Fakultät für Informatik

Universität Karlsruhe, Germany

padberg@ ira.uka.de

Abstract

Test-driven development is one of the central tech-

niques of Extreme Programming. However, the im-

pact of test-driven development on the business value

of a project has not been studied so far. We present

an economic model for the return on investment when

using test-driven development instead of the conven-

tional development process. Two factors contribute to

the return on investment of test-driven development:

the productivity difference between test-driven develop-

ment, and the conventional process and the ability of

test-driven development to deliver higher quality code.

Furthermore, we can identify when TDD breaks even

with conventional development.

1 Introduction

Test-driven development (TDD) is the only way of cod-
ing in Extreme Programming (XP). TDD is also known
as test-first programming: write down a simple test for
each small piece of functionality before you start coding
the functionality. TDD guides you through the whole
life-cycle of an XP project. There is no design and
no explicit testing phase. Both are replaced by auto-
mated tests which are executed continuously to ensure
high program quality.
Proponents of TDD claim that it leads to faster de-
velopment and to more reliable code. Both properties
would make TDD superior to the conventional devel-
opment style which is comprised of a detailed design, a
coding phase, and test. First empirical evidence shows
[2] though that the claim of faster development might
not hold in general; even worse, the opposite seems to
be true. Therefore, in order to assess TDD we must
study the tradeoff between a (possibly) increased de-
velopment cost for TDD versus a corresponding gain
in code quality.
In this paper, we present an economic model for the

return on investment of TDD based on the following
two assumptions.

• The development with TDD is slower.

• TDD leads to higher quality code.

Other aspects of TDD, e.g. the cost of continuous test-
ing, are not captured explicitly by our model as their
impact on the monetary value of the project can not
be easily separated. Thus, we consider our model as a
first major step towards a full economic assessment of
TDD, and it adds to the description of the economic
benefit of XP projects [3].
The model compares the development cost for a con-
ventional project with the development cost for a
project that uses TDD. The investment cost is the ad-
ditional effort necessary to complete the TDD project
as compared to the conventional project. The life cy-
cle benefit is captured by the difference in quality mea-
sured by the number of defects that the TDD team
finds and fixes, but the conventional project does not.
This defect difference is transformed into a monetary
value using the additional developer effort correspond-
ing to finding and fixing these defects in the conven-
tional project. The concepts of the life cycle benefit
and the investment cost in our context are depicted in
figure 1. The upper horizontal line corresponds to the
conventional project with additional quality assurance
phase ! The lower horizontal line corresponds to the
TDD project.
Our model captures the return on investment for an
experienced TDD team. Additional cost for training
necessary when introducing TDD is not considered.
With this model, we can identify tradeoff lines where
TDD becomes beneficial over conventional develop-
ment. Interestingly, the break-even point is indepen-
dent of the actual project size, the number of devel-
opers per team, and the actual developer salary; the
decisive data are productivity difference, quality differ-
ence, defect removal time for one defect, working time
per developer per month, and the initial defect density.

LifeCycleBenefit

Investment

NetReturn

Quality Assurance

TDD

Conventional

Development

Development

Figure 1. Overview of benefit cost ratio calculation.

2 Model

This section describes those formulas of our model
which are necessary to understand the break-even anal-
ysis in Section 3. Appendix A contains a comprehen-
sive description of the model formulas.

2.1 Return on Investment

Calculating the return on investment ROImeans to add
up all the benefits of the investment, subtract the cost,
and then compute the ratio of the cost:

ROI =
LifeCycleBenefit − Investment

Investment

If the investment pays off, the ROI is positive, otherwise
negative. In our evaluation of TDD we focus on the
benefit cost ratio BCR which is easily derived from the
return on investment.

BCR =
LifeCycleBenefit

Investment
= ROI + 1

Studying the BCR instead of the ROI makes the break-
even analysis much simpler, see below.

2.2 Investment Cost

We first look at the investment cost. For the conven-
tional project, the development phase includes design,
implementation and test. The development phase of
the TDD project is comprised only of test-driven de-
velopment.
As first empirical evidence suggests, we assume that
the TDD project lasts longer than the conventional
project. We call the ratio of the project durations the
test-speed-disadvantage (TSD).

TSD =
TimeConv

TimeTDD

.

Since we assume that the development phase is
shorter for the conventional project, the test-speed-
disadvantage ranges between 0 and 1:

0 < TSD < 1.

Using productivity figures to explain the difference in
elapsed development time between the two kinds of
project, the TDD development is (1 − TSD) × 100%
less productive than the conventional project.

Finally, the investment is the difference between the
development cost of the TDD project and the conven-
tional project.

2.3 Life Cycle Benefit

Now, we consider the benefit. Each development
process is characterized by a distinct defect-removal-
efficiency (DRE). The defect-removal-efficiency de-
notes the percentage of defects a developer elimi-
nates during development. Initially, a developer in-
serts a fixed amount of defects per thousands lines
of code (initial-defect-density, IDD), but he eliminates
DRE×100% of the defects during the development pro-
cess. From the increased reliability assumed for TDD,
we have

0 < DREConv < DRETDD < 1.

The additional quality assurance (QA) phase of the
conventional project compensates for the reduced
defect-removal-efficiency of the conventional process.
The only purpose of the QA phase is to remove all
those defects found by TDD but not by the conven-
tional process. The amount of defects to be removed
in the QA phase is mainly characterized by

4DRE = DRETDD − DREConv.

The benefit of TDD is equal to the cost of the QA phase
for the conventional project. The benefit depends on

2

the effort (measured in developer months) for repairing
one line of code during QA, which is characterized by

QAEffort =
DRT× IDD

WT

QAEffort depends on the following:

• The defect removal time DRT. It describes the
developer effort in hours for finding and removing
one defect.

• The inital defect density IDD. The number of de-
fects per line of code inserted during development.

• The working time WT. The working hours per
month of a developer.

The reciprocal of QAEffort is a measure for the produc-
tivity during the QA phase.

2.4 Benefit Cost Ratio

The benefit cost ratio is the ratio of the benefit and
the investment. Substituting the detailed formulas of
our model given in Appendix A, the benefit cost ratio
becomes

BCR = QAEffort× Prod×
4DRE× TSD

(1 − TSD)
, (1)

where Prod is the productivity of the conventional
project during the development phase measured in lines
of code per month. Values larger than 1 for the BCR
mean a monetary gain from TDD, values smaller than
1 a loss.

2.5 Break Even

Setting the benefit cost ratio equal to 1, we get a rela-
tion between the test-speed-disadvantage of TDD and
the reliability gain of TDD:

TSD =
1

c × 4DRE + 1
, or

4DRE =
1− TSD

c × TSD

c =QAEffort× Prod

This relation characterizes the break-even point for
TDD. If the difference between the defect-removal-
efficiencies is known, a lower bound for the test-speed-
disadvantage can be calculated from which on the TDD
project starts to be beneficial.

3 Results

3.1 Exploring the Benefit Cost Ratio

As an example, we examine the benefit cost ratio of
the following scenario.

Factor Value

DRT 10 h/defect

IDD 0.1 defects/LOC

WT 135 h/month

Prod 350 LOC/month

Let TSD and 4DRE vary. Figure 2 shows the
benefit cost ratio plane spanned by the test-speed-
disadvantage TSD and the defect-removal-efficiency
difference 4DRE. Values larger than 4 are cut off.

0.2 0.4 0.6 0.8 1.0

0.2
0.4

0.6
0.8
1.0

1

2

3

4

D
R

E

TSD
0.0

B
C

R

∆

Figure 2. Benefit cost ratio dependent on TSD
and 4Eff

For large values of the test-speed-disadvantage (TSD >

0.9) the TDD project performs almost always better
than the conventional project, even for a small defect-
removal-efficiency difference. On the other hand, if
the test-speed-disadvantage is very small (TSD < 0.2),
TDD does not produce any benefit regardless how large
the defect-removal-efficiency difference is.
The following table shows some benefit cost ratios for
selected values of TSD and 4DRE.

TSD = 0.9

4DRE BCR

0.01 1.0 : 4.3

0.05 1.7 : 1

0.1 2.3 : 1

TSD = 0.3

4DRE BCR

0.2 1 : 4.5

0.4 1 : 2.3

0.6 1 : 1.5

0.8 1 : 1.1

0.9 1 : 1

3

If the productivity of TDD is 10% smaller than
the productivity of the conventional project (left ta-
ble), a 5% better defect-reduction-efficiency suffices
for TDD to break-even with the conventional process
(1.7 : 1). If the productivity of TDD is much worse, say,
70% smaller (right table), even a 80% better defect-
reduction-efficiency does not lead to a gain as compared
to the conventional process (BCR is 1 : 1.1).

3.2 Break Even Analysis

With break even analysis, the ranges for TSD and
4DRE can be identified where TDD is more beneficial
than the conventional process. Figure 3 shows the in-
tersection of the surface in figure 2 with the horizontal
plane BCR = 1.

0 20 40 60 80

0
20

40
60

80
10

0

100

D
el

ta
 E

ffi
ci

en
cy

 [%
]

TestSpeedDisadvantage [%]

BCR < 1

BCR > 1

Figure 3. TSD and 4Eff plane for BCR = 1

The right half of the plane (BCR > 1) corresponds to
the parameter range of TSD and 4DRE where TDD
is superior over conventional development. Two obser-
vations can be made. First, assuming that practical
values for 4DRE can not be larger than 20%, the TSD
may not drop below 66% for TDD, otherwise the TDD
cost exceeds its benefit. Second, if the TSD drops be-
low 27%, TDD does not have a chance to provide any
financial return, regardless of how large the improved
defect-removal-efficiency may be.

3.3 Varying other project parameters

Figure 4 shows the different cost benefit break-even
lines for varying values of the programmer productivity
Prod. All other parameters are kept constant.

0 20 40 60 80 100

0
20

40
60

80
10

0

Prod=350

Prod=250

Prod=450

TestSpeedDisadvantage [%]

D
el

ta
 E

ffi
ci

en
cy

 [%
]

Figure 4. Break even analysis for varying values

for Prod

The higher the initial productivity, the higher the
chance for TDD to get a financial return over conven-
tional development. This result is not intuitively obvi-
ous but, it can easily be derived from (1) and explained
with figure 1 as follows. The higher the productiv-
ity the shorter the elapsed development time for both
TDD and the conventional project. If the elapsed time
for the development phase decreases, the investment
(difference between both development phases) also de-
creases, and thus the benefit cost ratio becomes larger.

4 Conclusions

We propose an economic model for the return on in-
vestment of test-driven development. Our analysis of
the break-even leads, all other parameters are kept con-
stant, to the following conclusions:

• The return on investment of TDD depends to a
large extend on the slower development of TDD
and the higher quality code of TDD.

• Other factors like the effort for fixing a faulty line
of code, or, the productivity of a developer using
the conventional development process, have only
minor impact on the return on investment of TDD.

• The calculation of the return on investment is in-
dependent of the project size, the number of de-
velopers, and the developer salary.

Our model assumes an experienced TDD team. The
additional cost for training which is necessary when
first introducing TDD is ignored so far.

4

Finally, our model strengthens the need for actual em-
pirical figures (or ranges) for the quality advantage and
the loss of productivity of TDD, in order to get a com-
prehensive evaluation of the cost and benefit of TDD.

References

[1] W. Humphrey. A discipline for software engineering.
Addison-Wesley, 1997.

[2] M. Müller and O. Hagner. Experiment about test-first
programming. IEE Proceedings Software, 149(5):131–
136, Oct. 2002.

[3] M. Müller and F. Padberg. Extreme programming from
an engineering economics point of view. In International
Workshop on Economics-Driven Software Engineering
Research (EDSER), Orlando, Florida, May 2002.

[4] I. Sommerville. Software Engineering. Addison-Wesley,
1995.

A Appendix

A.1 Factors in the Economic Model

The following list explains the factors and their abbre-
viations used throughout the model.

ProductSize Size of the project in lines of code.

Prod The developer productivity measured in lines of
code written per month. This figure includes de-
sign, coding, and testing. We assume that the pro-
ductivity remains constant for all developers dur-
ing the project. The average productivity ranges
between 250 and 550 lines of code per month [4].

Salary Salary for the whole team per year. This factor
is not further broken down as it turns out that our
model is independent from the actual value for the
salary.

NumOfDev The number of developers working in the
project. We assume that this number is fixed
throughout the whole project.

DRETDD/ DREConv The defect removal efficiency de-
scribes the percentage of defects a team removes
during development. We assume that TDD has a
higher defect removal efficiency than the conven-
tional process.

TSD The test-speed-disadvantage accounts for the ad-
ditional effort for using TDD during development
as compared to the conventional process.

DRT The defect removal time denotes the effort for
finding and removing one defect during the QA
phase measured in hours per defect.

IDD The number of defects per thousand lines of code
inserted during development is described by the
initial defect density. A typical number is 100 de-
fects per thousands lines of code [1]. A developer
reduces this number of defects according to his de-
fect removal efficiency.

WT The working hours of a developer each month.

A.2 Model Formulas

For the conventional project, the development time is

TimeConv =
1

12
×

ProductSize

Prod × NumOfDev
.

For the TDD project, the decreased productivity has
to be taken into account:

TimeTDD =
TimeConv

TSD

During the QA phase, the conventional project has to
compensate for the lower defect removal efficiency as
compared to TDD:

4DRE = DRETDD − DREConv

There have to be

4Defect = ProductSize× IDD×4DRE

defects removed during QA to get the same defect den-
sity as the TDD project. Thus, the time spent in the
QA phase is

TimeQA =
1

12
×

DRT×4Defect

WT× NumOfDev

The cost for both the TDD and the conventional
project and the QA phase is

Cost p = Time p × Salary

where p ∈ {TDD, Conv, QA }.

A.3 Calculating the BCR

The benefit cost ratio is defined as the ratio between
the life cycle benefit and the investment (cost):

BCR =
LifeCycleBenefit

Investment

Recall that the life cycle benefit equals the cost for the
additional QA phase in the conventional process.

BCR =
CostQA

CostTDD − CostConv

5

The factor Salary can be canceled out. Hence,

BCR =
TimeQA

TimeTDD − TimeConv

=
TimeQA

TimeConv × (
1

TSD

− 1)
.

Further canceling of the factors 12, NumOfDev, and
ProductSize leads to

BCR =
DRT× IDD× Prod×4DRE

WT× (
1

TSD

− 1)

=
DRT× IDD× Prod×4DRE× TSD

WT× (1 − TSD)

=
DRT× IDD

WT
× Prod×

4DRE× TSD

(1 − TSD)

=QAEffort× Prod×
4DRE× TSD

(1 − TSD)
.

6

