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Abstract. We present tools for recording and analysing kernel events

on Linux clusters. The tools provide cluster-wide event logging at system

clock accuracy. We demonstrate the usefulness of our tools by verifying

an implementation of a simple remote scheduling feature and present in-

teresting results regarding schedule responsiveness. With our GUI-based

Java application, data recorded on multiple hosts is integrated for visual-

ization. These tools can be used for analysis of cluster schedulers such as

gang schedulers, cooperative cacheing, network RAM drivers, or parallel

ÿle systems.

1 Introduction

Tracking and analysing events on computer clusters is essential for understanding
and improving crucial aspects of cluster operating systems, such as gang schedul-
ing, synchronization, parallel ÿle access, managing network RAM, or cooperative
cacheing. We provide a set of tools that collect and display kernel events on clus-
ters of Linux computers. The events are logged by kernel modiÿcations on each
node individually and integrated in a cluster-wide view for analysis. Our current
implementation captures scheduling events and is intended to help understand
gang scheduling strategies. Other events can also be captured, such as block
lookup and eviction requests in cacheing policies of network RAM systems on
globally coordinated cluster caches. Similarly, collecting and analysing informa-
tion regarding parallel access to ÿles may help choose proper policies for I/O
scheduling, cacheing and prefetching. Our event recording approach achieves
system clock resolution.
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Fig. 1. General Performance Analysis Approach
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Traditionally, post-mortem performance analysis follows a pattern as shown
in Figure 1. The ÿrst step is to collect data, which can be done in manifold
ways. For example, user applications can be instrumented, i.e. additional code
may be inserted at selected locations in the application such that when execu-
tion comes across such location, timestamp and program status information is
recorded and appended to a logÿle. This way, the logÿle subsumes a trace of
selectively recorded events in the course of program execution. Rather than in-
serting code for instrumentation into a user application, one can also insert such
code at relevant locations of underlying libraries. For example, by instrumenting
a communication library such as PVM[10] or MPI[5], one can track the commu-
nication pattern of a user application that uses the library, but may not be able
to ÿnd bottlenecks in the communication itself. Our approach is to instrument
selected locations of the OS kernel, gaining a better understanding of speciÿc
performance issues in the cooperation between the kernel and user applications.
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Fig. 2. Data Visualization Tool

The second step in the course of post-mortem performance analysis, the data
analysis, consists in ÿltering events, as well as computing some statistics. The
third step is to display the results of the analysis. We integrated these ÿnal two
steps into a single Java application with a graphical user interface. Data display
is based on showing events on per-processor time lines, as shown in Figure 2.

The remainder of this paper is organized as follows: Section 2 gives an
overview of the kernel modiÿcations and a companian user level application to
record event data. In Section 3, we present the visualization tool for analysing
and displaying the data. As an example of usage, in Section 4 we show how we
evaluated the performance of a remote scheduling feature with our tools. Section
5 discusses some limitations of our current design and presents possible solutions
that we envision for the future. In Section 6, we compare our work with related
approaches. Section 7 summarizes the results of this work.
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2 Data Collection

The data collection process is realized by recording local time and type of kernel
events through instrumentation of the kernel. Our work focuses on instrument-
ing selected locations in the kernel code rather than instrumenting user level
applications. With this approach, we can eÆciently log data that is gathered in
the kernel without suÿering from the additional overhead of switching between
kernel and user mode. The possibly most important type of event and relevant
motivation for this work is the point of time when the kernel, while executing the
schedule() function, decides to switch from one task to another one. Similarly,
we may want for example to observe when an ICMP message arrives from the
network, or how much time the kernel spends in a particular servicing routine,
e.g. by recording when the kernel enters and leaves bottom halves1 as part of
the do softirq() kernel function.

For this purpose, we provide a framework consisting of kernel code (based
on modiþcations of a SuSE 8.0 Linux 2.4.18 kernel) that allows for recording
such events, and a user level application that is responsible for saving the data
to disk. This framework follows the producer-consumer paradigm, but is relaxed
in the sense that the producer can not block, but will rather discard data when
its buÿer overýows.

From the perspective of the kernel code to be instrumented, we simply
provide a new kernel function evtlog put(struct evtlog entry t *entry,

int/*bool*/ fill in time), where struct evtlog entry t entry consists of
an event id, a timestamp and 8 bytes of event speciþc data. Depending on the
boolean ýag, the timestamp is either provided by the caller or automatically
þlled in by calling do gettimeofday(). Upon calling evtlog put(), a copy of
the struct is saved in a kernel memory buÿer. The function is designed to return
quickly, such that the overhead of recording does not aÿect the collected data
too much. Therefore, when the buÿer is about to overýow, it does not try to
save the data to disk by itself. Instead, the kernel function wakes up a dedicated
user level process that is responsible for fetching the data from the kernel and
saving it to disk.

Figure 3 illustrates the interactions between the kernel logger code and the
user level logging process. It shows an SMP machine with two processors. The
left side represents the kernel logger code, the right side the dedicated user level
logger process. The user level logging process sleeps by invoking pause(), waiting
to be notiþed by the kernel upon arrival of log data. For each processor, the kernel
logger code provides memory for two buÿers. Upon invocation, the kernel logging
function writes any event data into the þrst buÿer of the currently executing
processor. When this buÿer is full, it swaps the two buÿers by exchanging pointer
references, then makes the user level logging process runnable by calling the
kernel function wake up process(), and þnally returns to the caller. Eventually,

1 Under Linux, a bottom half designates the non-critical part of an interrupt handler

that is not executed immediately when the interrupt occurs, but is delayed until all

time critical code has been executed.
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Fig. 3. Interactions between kernel logging code and user level logging process

the kernel scheduler will switch to the user level logging process, since it is now

runnable. The user level logging process then looks for any data available for

any processor from the kernel logger, fetches it, writes it to disk, and puts itself

back to sleep by invoking pause() once again. In the current implementation,

the data is transferred from kernel to user space by copying it in the course

of reading from a dedicated ÿle in the /proc2 ÿlesystem, such that user level

applications can initiate read or write access ÿlesystem. When reading from

this ÿle, a boolean þag is reset in the kernel, telling it that the buýers may be

swapped once again. A future implementation may avoid the extra copy through

the /proc ÿlesystem by the kernel directly writing the log data into user space

memory that has been allocated by the user level logging process.

The user level logging process has to announce itself to the kernel such that

the kernel logger code knows which process to wake up upon a full buýer. This

is done during startup of the user level logging process through, once more, a

special ÿle entry in the /proc ÿle system: the user level logging process writes

its own process id to that ÿle.

Data may be discarded if the kernel records data faster than the user level

logging process is capable of saving, as the process is scheduled a limited amount

2 The Linux kernel provides pseudo ÿle entries in the /proc ÿlesystem, such that user

level applications may exchange data with the kernel by writing to or reading from

a ÿle in this ÿlesystem.
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of time only. To be able to detect such data loss, each buÿer contains a per-
processor sequence number which is increased whenever the kernel starts writing
a new buÿer. Checking the sequence numbers for completeness is left to the
visualization tool, since the logging itself is designed to produce little overhead.

Kernel logging can be dynamically turned on and oÿ. This mechanism is
also done via the /proc þle system by writing to special þles. Whenever kernel
logging is restarted, the user level logging process creates a new log þle on disk
and writes subsequent buÿers to it. For that purpose, in addition to the buÿer
sequence number, there is also a start/stop sequence number that is incremented
each time kernel logging is turned on, such that the user level logging process
can determine the correct log þle. This is necessary, since on an SMP machine,
the buÿer for one processor may still contain data from an earlier logging phase
as compared to another processor.

Furthermore, since upon stopping kernel logging all buÿers are ýushed, a
third special entry is needed that represents the actual size of the current buÿer.
Choosing a null-terminated array for the buÿer implementation is not reasonable,
since this would require spending time for scanning through the whole buÿer to
determine its size when writing it do disk.

With respect to keeping the logging overhead small, the user level logging
process just fetches and stores the data in whatever order it retrieves it from the
kernel. It only cares for evaluating the start/stop sequence number for writing
the data to the correct þle.

Since the kernel logger uses per-processor buÿers, on an SMP machine, kernel
logging can be performed concurrently among all processors without requiring
a time-wasting SMP kernel lock: the kernel logging function accesses always
the buÿers of the currently executing processor, thus scaling þne even on fat
SMP nodes. Calling the kernel logging function from multiple locations includ-
ing bottom half code is possible, since the kernel itself is not preemptive, such
that calls to the kernel logging function are executed sucessively without over-
lapping in time. However, with the current implementation, the kernel logging
function should not be called from within a hardware interrupt handler, since
the handler might have interrupted a pending call of the kernel logging function.
Overlapping calls to the kernel logging function eÿectively have the same eÿect
as unsynchronized concurrent access to the log buÿers, thereby potentially dam-
aging its consistency. Preventing such a scenario requires additional provision
such as queuing logging requests. This may be added in a future version.

Our kernel modiþcations include a call to the kernel logging function when-
ever the Linux scheduler decides to switch to another process on any processor.
This way, the processing time of the user level logging process itself is logged and
can be used for determining the logging overhead caused by the user level log-
ging process. This includes the time needed for copying the log data from kernel
space to user space, since the read access on the /proc þle system is executed
in the context of the user level logging process.

The overhead in the kernel itself can not be tracked this way. But since the
kernel logging function mostly consists of determining the timestamp and writing
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a log entry into kernel memory, it can be well estimated by assuming a constant
cost of time per log entry for a particular machine. Our experiences suggest that
determining the timestamp is a bottleneck, but that obviously depends on the
particular hardware.

Since logging is performed locally on each node (assuming that the data is
written to a local ÿle system), the system scales ÿne with an increasing number
of cluster nodes. On fat SMP nodes, writing the data to disk may become a
bottleneck (though Linux supports only up to 32 processors). Still, if the logging
overhead is roughly the same for all nodes, scheduling all logging processes simul-
taneously as a gang can be used to minimize the eþect of the logging overhead
onto any other processes of the system.

3 Data Analysis and Display

The user level logging process creates log data ÿles by retrieving data from the
kernel via the /proc ÿle system and writing it to disk without further processing.
It is the task of separate tools to reorder, ÿlter, evaluate and display the data.
For this purpose, we provide a standalone Java application with a graphical user
interface. Since it is written in a platform independent manner, it runs on several
platforms. This is handy, when, for example, the log data is collected on a Linux
cluster, but the perfomance analysis will be done on a separate working station
that potentially runs under a diþerent OS.

Figure 2 shows a screenshot that depicts typical use of the Java tool. For
each processor, grouped on a per host basis, a graphical display panel shows a
horizontal time line with the currently running processes displayed in diþerent
colors. Some colors are dedicated (black = idle process, red = logger process); all
other process are currently mapped to a ÿxed set of colors in a round-robin way,
but support for user-deÿned color mappings may be added in a future version.
Events are marked as vertical ticks across the time line, using diþerent length
and color.

The panel's view can be scrolled by either using the scrollbar below the panel
or by dragging and dropping its content with the mouse. The latter is handy es-
pecially when zooming to high resolution makes the eþect of scrollbar movements
too coarse. The zoom of the display can be easily controlled by the logarithmic-
scaled slider at the right side and allows for zooming from full view to microsec-
ond resolution. Care has been taken to ensure fast and smooth scrolling and
zooming by proper design of the data structures for internal log data represen-
tation and by cacheing pointers to the data of the currently displayed location.
Display of particular event types (schedule(), schedule task(), bottom half
enter/leave, ICMP schedule requests (see Section 4) and other events) can be
turned on and oþ.

When pointing the mouse cursor on a processor's time line, the ID of the cur-
rent process (and its name, if available) on that processor is textually displayed
at the left side above the display panel. When positioning the mouse cursor on an
event tick, additional information about the event such as the event type and its
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exact time in microsecond resolution are textually shown. Processor utilization,
idle time and other general statistics are shown at program startup.

Log data from multiple hosts can be gathered via NFS: Each host writes its
log ÿle to a local disk, in order to minimize the logging overhead, and exports
the directory with this ÿle to the workstation on which the visualization tool
is run. The tool may then read all log data from all hosts and display it in a
single window. It is capable of displaying a large number of processor time lines,
practically limited only by the amount of main memory. If memory is limited, our
tool can be run with data of only a selected number of nodes that are of interest
for the analysis. Filters for data reduction or extraction and combination of data
from multiple processor time lines may be essential for a better understanding
of huge amount of data. We are planning to implement such ÿlters and proper
visualization in a future version of the tool.

4 Preliminary Experience

Originally, our work was motivated by observing and controlling cluster-wide
scheduling. For this purpose, we implemented a remote scheduling request fea-
ture that, for example, may be used for gang scheduling sets of related tasks of
a distributed parallel application in a cluster environment. In our implementa-
tion, a host sends a special ICMP[12] message to one or several hosts to select a
process group for immediate scheduling. We put additional logic into the ICMP
network bottom half code of the Linux kernel such that upon reception of this
special ICMP message the priority of the aþected processes is set to the maximal
possible value. When all bottom halves have been serviced, the Linux kernel re-
runs the scheduler, such that the time between receiving the ICMP message and
scheduling the proper process is mostly determined by the time for processing
all pending bottom halves, provided that the chance for further interrupts to
intercept is negligible. On an SMP machine, the incoming ICMP message is pro-
cessed by a single processor that initiates a reschedule on every other processor
via a call to the kernel function smp send reschedule().

We used our tools to examine how much time is spent from the incoming
ICMP message until scheduling the requested processes on all processors. The
analysis was performed on a Dual 500MHz Pentium III (Katmai) SMP machine.
We naively expected that the processor that handles the incoming ICMPmessage
would perform the requested schedule ÿrst, since the smp send reschedule()

would take some time before aþecting all other processors.
Figure 4 shows a screenshot of our visualization tool that depicts a region

of time between a particular receipt of an ICMP message and the resulting task
switch. Surprisingly, the processor that handles the incoming ICMP message is
often the last one that switches to the requested process. The reason may be that
this processor is still in the midst of executing the network bottom half code,
while the other processor on our two processor machine receives the reschedule
interprocessor signal and almost immediately switches to the requested process.
In any case, we could show that, when no further time is spent in servicing
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Fig. 4. Incoming ICMP message and resulting task switches

other interrupts, on our hardware the reschedule takes eÿect within roughly 10
microseconds after receiving the ICMP message.

5 Future Work

Our approach of instrumenting selected locations in the kernel is essential for per-
formance issues on the OS level. Future versions of our tools may consider more
process related data or additional event types. For a comprehensive understand-
ing, one needs insight from the application point of view. For example, better
support for MPI applications or multithreaded Java programs is desirable, e.g.
in order to recognize threads of execution or process groups and observe eÿects
of communication patterns between them. Ideally, one would like to combine our
approach with one or more of the many application level oriented performance
analysis tools. The process IDs that we record on the OS level oÿer the natural
basis for an integration with log þle data collected in user level space. Integra-
tion of the data either would be done by a separate tool or integrated into our
visualization tool.

When combining log þles from multiple hosts into a single display, we assume
that all logs were started at the same time and the drift between the clocks is
negligible. Otherwise, the display may show a horizontal oÿset error on the
time line. Our modiþcations to the kernel allow for broadcasting special ICMP
messages that remotely start/stop the logging mechanism, using the same in-
frastructure as for the remote schedule feature. First experience shows that this
way, the skew is not worse than 10 microseconds even via a slow 10 MBit/s
Ethernet connection. However, intercepting hardware interrupts may contribute
to further delay. To eliminate this source of error, we may follow recent work
on network time synchronization[2]. This work shows that with broadcasts, the
diÿerence in the arrival time is typically small and OS related skew can be min-
imized by recording the system clock's current time immediately at interrupt
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time upon receiption of a packet. Consequently, we would try to record the sys-
tem time clock upon receipt of an ICMP message as early as possibly and use it
as reference start time for the logging process.

6 Related Work

Almost all software performance analysis tools that we know of focus on either
application or communication library level. The classical UNIX tool gprof[7] and
the Java tool hprof[8] follow the stochastical proÿling approach by interrupting
program execution in regular intervals and recording program status information
such as the current execution stack.

DiP[9] is a collection of tools for recording a stream of events at PVM or
MPI level by instrumenting the underlying communication library. DiP's visu-
alization tool PARAVER uses time lines for visualization and supports textual
and graphical display of user deÿned functions on lists of events.

SCALEA[14] supports automatic and manual instrumentation of user level
source code, using a novel representation of code regions in the course of call
graph analysis that also covers loops, I/O and communication statements.

Recent versions of Paradyn[1] also follow the approach of examining call
graphs. Paradyn uses dynamic instrumentation to insert and delete measurement
instrumentation as a program runs. Visualization under Paradyn is mostly based
on statistical diagrams and search history graphs rather than time lines.

Due to a growing number of performance analysis tools, some work focuses
on standardization. MPI[5] provides a built-in interface for proÿling tools. Sim-
ilar work has been suggested for OpenMP[11]. JavaPSL[3] is a generic language
for describing experiment-related data and performance properties, serving as
a substitute for speciÿc log ÿle formats and including data of the experiment's
environment. Gerndt et al.[6] present an aproach with automatic performance
problem search based on the performance properties speciÿcation language ASL.

Tamches and Miller[13] present a framework for dynamically instrumenting
the Solaris kernel by performing control þow analysis on the kernel machine code
and patching it at runtime.

Feng et al.[4] present a system that conceptionally comes pretty close to our
approach. Still, their implementation diýers in some important details such as
the use of SMP locks which our design avoids.

7 Conclusion

In this paper, we presented a set of tools for performance analysis that collects
OS level data by instrumenting selected code in the OS kernel. We showed that
the logging overhead can be kept small and taken into account in the analysis.
Particular challenges and solutions on this approach inlude peculiarities of SMP
machines. Using our Java-based visualization tool, we could gain ÿrst experience
with our tools upon verifying the eýect of a remote schedule feature that we
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implented in the kernel. We discussed how our approach may be combined with

user level space performing analysis and how the synchronization of time lines

across multiple machines may be further improved. The results of our work are

publicly available at http://www.ipd.uka.de/~reuter/tools/.
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