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Abstract 

Integrating applications with autonomic ,fiinctions such 
as checkpointing/restart, self-healing or self-updating is 
diflcult and time consuming [8]. We demonstrate tlmt auto- 
nomic,f~tnctionality can he sepuruted,frotn upplications und 
supplied by default imple?nentations, thereby dramatically 
reducing the cost oj'scipplying autonomy. This article pro- 
poses a proxy/vvrapper technique with an additiorzul code 
Izook-lip infrustr~lct~ire to provide applic~ztion adaptation 
with self-upduting, self-configuratior~ and self-optimizution 
,fiinctionalities. 

1. Introduction 

We propose a method that enables the addition of auto- 
nomic functionality [9, 101 to object-oriented applications 
in compiled form with the least possible effort. Our pro- 
posal can provide the following autonomic functionality to 
any component of the application: 

self-updating - flexible, dynamic updating, and concur- 
rent use of compatible versions of a component; 

0 self-recovery - support for Recovery Oriented Com- 
puting (ROC) [7] through automatic checkpointing; 

self-healing - recursive restartability [3] to cope 
smartly with component failures. 

Dynamic updating is needed, for example when apply- 
ing translets (compiled XSL transformations) [ l ]  in a web 
server based XML and XSLT environment: 

The content data is stored in XML files and multiple 
views onto the data are created via a single servlet, apply- 
ing the proper translets. Changes to the content data are 

handled through a smart caching architecture, but an imple- 
mentation change a translet requires restarting the virtual 
machine, thereby losing all caches and sessions. We ensure 
high availability of the service by dynamic replacement of 
a translet without restarting the web server. If the new ver- 
sion of the translet fails, we want the system to self-heal 
from this situation by searching for and using an alternate 
version of the translet, for instance the last known working 
version as a last resort. 

We present a system based on a proxylwrapper architec- 
ture that addresses these problems. 

2. ProxyNVrapper Architecture 

This approach is based on class renaming and 
proxylwrapper generation. It provides the targeted auto- 
nomic functionality by adding application independent sup- 
plements. They are integrated through hook-up code in the 
wrapper method. 

The design ensures there is no need for the user to adapt 
his source code in any way. It requires the following pre- 
requisites regarding the programming environ~nentlruntime 
system: 

0 dynamic polymorphism prerequisites, 

extendable class loading infrastructure or a separate 
by tecode transformation step, 

0 reflection. 

exception handling supporting undeclared runtime ex- 
ceptions. 

The approach is applicable on any runtime system that ful- 
fills the above requirements. For the remainder of this paper 



the Java 2 platform is used as an example system meeting 
these prerequisites. 

Some meta information should be provided to the ex- 
tendable class loading infrastructure respectively the sepa- 
rate bytecode transformation step: 

Clazz 

version information for the management of different 
class implementations; 

member attributes irrelevant for the object state (com- 
parable to Java t r a n s i e n t  attributes), reducing the 
amount of data to be made persistent in every check- 
point (see 'Checkpointing' in section 2.2); 

0 assertions (pre- and postconditions, invariants) to sup- 
port the self-healing mechanism; 

0 further optional data, declaring properties described in 
section 2.5. 

2.1. Application Updating 

In a manner comparably to [13], the versioning prob- 
lem is solved through integration in the original inheritance 
tree. The type safe replacement is done by class loading 
with transformation and separation of functional compo- 
nents from data storage. 

The Updating Infrastructure provided by our approach 
has to support the following main goals: 

0 type-safety, proofed by a standard type-safe compiler 
and supported with a standard virtual machine; 

0 provision of arbitrary applications with the demanded 
functionality; 

no requirement for any source code changes; 

0 need for only moderate changes to the bytecode; 

0 application independent default implementation for 
version management. 

It is impossible to know all references to a certain object 
without interfering with the runtime system. Thus, it is also 
impossible to update all of these references to point to a new 
instance of a different version of the class, if needed. There- 
fore, we require all references pointing to a proxy object to 
encapsulate a reference to the potentially changing imple- 
mentation. Since we generate these proxy objects ourselves, 
we can register all instances created. This way, we can find 
all references to any instance of the original component and 
enable its replacement. The original structure as shown in 
figure 1 is transformed into the structure shown in figure 2. 

Any Code that creates instances of C l a z z  via 
the standard new instruction directs the proxy class 

Figure 1. Original structure 
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Figure 2. Transformed structure 
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( P r o x y C l a  z z) to assume the name of the original class 
which is renamed. Our prototype accomplishes this by us- 
ing the Byte Code Engineering Library (BCEL) [5]. The 
original class is changed to allow the proxy class to ac- 
cess all member and class fields and methods. Of course, 
the proxy object has to be an exact blueprint of C l a z z .  
The structure of C l a z z  is determined through reflection 
[ I  21. Method calls on the proxy object are simply delegated. 
With this changes the following code at some arbitrary posi- 
tion in another class will transparently use a proxy instance 
to access an instance of the original class (100C) instead of 
accessing it directly. 

C l a z z  c = new C l a z z  ( )  ; 

c. f o o  0 ; 

There is still one problem left: synchronization. On the one 
hand, external code that accesses member attributes directly 
rather than using getter and setter methods causes the state 
of the proxy object to differ from the state of the IOOC. Of 
course, the external code expects the TOOC to be in the state 
of the proxy object in a subsequent method call rather than 
in the state in which it still resides. On the other hand, a 
method in the IOOC may change attributes and not inform 
the proxy about the state change. Consequently, subsequent 
direct reads on the proxy object's member attributes lead to 
wrong results. 

One simple way of tackling the synchronization problem 
is to perform a full synchronization before and after every 
non-private method call. Thus, the implementation of an 
arbitrary method f o o  ( )  in the proxy class looks like 



+ foo() + foo() 
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Figure 3. Additional wrapper 

The proxy class is a blueprint of the original class with 
all non-private methods (delegating the execution) and with 
fields for all member and class attributes. The methods for 
synchronization are generated. It is possible to provide meta 
information of the attributes that partake in the object state 
to enable more efficient synchronization handling. 

Further rules for a more complex inheritance structure of 
the original classes and constraints for the proxy generation 
are discussed in section 2.4. 

2.2. Application extension 

To support existing applications with the desired auton- 
omy, program adaptation is necessary. This sections de- 
scribes a solution to add application independent function- 
ality to compiled classes. 

Checkpointing The ability to restart quickly from a sys- 
tem crash requires that the internal state of the man- 
aged IOOCs is made persistent. The natural granularity 
for restarts in an object-oriented environment is defined 
through the methods' boundaries. Thus, it does not make 
sense to set more than one checkpoint before each method 
call. 

Yet, if a method m ( ) of object o calls method m' ( ) of 
o, it is also unnecessary to set a checkpoint at the beginning 
of m' ( ) : There is no way of (transparently) restarting m ( ) 

at the position it called m' ( ) . However, it is obvious that 
it does make sense to lower the checkpoint rate to those 
function calls where the caller is a different instance. These 
calls happen to be made through our proxy object, whereby 
the implementation of the arbitrary f oo ( ) method in the 
proxy class looks like 

Runtime Exceptions 

Most sofiware hugs in production qu~dity soft- 
ware are Heisenhugs. [...] Even zf the source of 
such hugs can he tracked down, it may he more 
cost efec'tive to simply live with them, as long as 
they occur sufficiently injirequently / 3 /  

Besides such software faults, the Gartner Group estimates 
another 20% of unplanned downtime in business environ- 
ments is due to hardware faults, of which 80% are intermit- 
tent [3, 41. All of these errors are difficult to detect but even 
more difficult to fix. A rollback and restart algorithm to 
perform some of the demands of [3] is proposed as follows. 

The calls to the original methods are encapsulated by a 
retry algorithm to give the system another chance to pass 
the call without throwing an unintentional exception. We 
identified Runtime Exceptions (i.e. NullPointerException 
and ArrayIndexOutOfBoundsException in Java) as the class 
of exceptions that are typically thrown unintentionally, thus 
indicating a Heisenbug. The retry algorithm provides fall- 
backs in the following order: (a) rollback to last checkpoint 
and retry with the existing instance; (b) create a new in- 
stance of the current version of the component, initialize 
with last checkpoint, and retry; (c) search for latent candi- 
dates (i.e. pending updates of the component, or last known 
working version), create an instance of the other version(s), 
initialize with last checkpoint, and retry; (d) initialize an 
internet wide lookup for different releases, load, create in- 
stance, initialize with last checkpoint, and retry; (e) self- 
update with an assertion enabled (see 'Assertions' below) 
debug version, and retry; (f) inform user/administrator via 
special exception about type of problem, tested versions, 
and violated assertions. 

Assertions There are two kinds of assertions: the ones 
the original programmer chose to use in his code via the 
as s e rt keyword and assertions defined via the meta in- 
formation provided to the class loader. The pre- and post- 
conditions can be used for special implementation wrapper 
code [6] to obtain additional information on the source of an 
exception. The invariants may be checked before and after 
any method call. The information the system developer has 
to provide is comparable to the Java Modeling Language in- 
terfaces [ l  I ]  and enables the definition of correct program 
traces [2] as well as their runtime verification through a 
watchdog component. The proxy's code for our arbitrary 
method f oo ( ) is as follows: 
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Figure 4. Proxy classes in a more elaborate 
inheritance structure 

memberSyncProxyToOriginal(); 
[snip try] / /  r e t r y  algorithm h e r e  
instance0f0riginalClas~.foo(); 
[snip catch] 

2.3. Design Pattern Proposal 

The preceding code snippet shows that the code within 
the proxy class grows with every new feature introduced. 
But even when declared for performance reasons, the use of 
assertions, for example, may not always be desired. Situ- 
ation dependent dynamic selection as shown in paragraph 
'Runtime Exceptions' seems appropriate. Consequently, 
these code changes cannot be done within the proxy, since 
we cannot alter its implementation. The wrapping code 
must be placed somewhere else. 

We do not want to alter the code of the original class 
too drastically (i.e. merging all the instructions mentioned 
previously into the bytecode). Therefore, we need to gener- 
ate an additional wrapper to add the demanded functional- 
ity. In order not to require an additional step of indirection, 
this proposal uses dynamic polymorphism and overrides the 

Registry ~ 
- instanceof 
OriginalClass 

+ bar() 

Clazz 

+ bar() 

+ fool () 

Figure 5. Transformed structure with abstract 
super class 

methods by inserting the hook-up code into the generated 
wrapper class ( w r a p p e r x x x ) .  The class structure is de- 
picted in figure 3. 

2.4. Advanced inheritance constraints 

The presented approach of adaptation is being developed 
to augment applications with autonomic functionality. The 
figure 4 shows all inheritance relationships in a larger in- 
heritance tree. The proxy classes must be full blueprints of 
the given original classes (for simplification, only the trans- 
formed original classes are depicted) and they should be 
transformed without any semantic knowledge. Each class 
gets renamed, and if its super class is also transformed, the 
inheritance relationship is adapted. 

The proxy class is generated by analyzing the transient 
closure of all super classes. If there is an abstract class as 
an ancestor for this class, no proxy or wrapper is generated 
(compare with figure 5). 

The introduction of a new wrapper class allows for a fur- 
ther abstraction especially needed to deal with additional 
language features. 

The keyword f i n a l  in Java (depicted in figure 6) is 
used to prevent the specialization of the method foo in sub- 
classes of C l a z  z 1. To reproduce this behavior with the 
transformed class structure, additional wrappers are used to 
encapsulate the f i n a l  semantics. There is no inheritance 
relationship between the wrappers because each class has to 
implement all the delegating methods specified by the tran- 
sient closure of the original class with which the final 
modifier would conflict. 



The Java language safety concept relies on a defined 
general super class ( j  a v a  . l a n g  . O b j e c t ) .  Generating 
all delegating methods of the transient closure, especially 
the final methods, restricts the proxy/wrapper architecture. 
Also, the class loading with the Sun Microsystems' JVM 
restricts the adaptation possibilities on library classes not 
located in j ava . *, j avax . *, o r g  . omg . *. 

These restrictions limit the number of application classes 
in the inheritance tree (shown in figure 4) that could be 
transformed. 

2.5. Further Options 

So far we have shown how to integrate updating, check- 
pointing, a retry algorithm, and assertions into compiled 
classes. These are only the first steps towards enabling 
given applications with autonomic functionality. As exam- 
ples for further options of well-known concepts that may 
be integrated, we discuss the tields of security, pluggability, 
and generic integration. 

Authentication and Authorization Modern applications 
often contain security relevant code. This functionality is an 
ideal candidate for delegation to a default implementation. 

Our proxy facilitates the weaving of security aspects into 
a given application. The functionality is added by code 
adaptation in the same way as already demonstrated for 
checkpointing and assertions. 

An implementation to support user access control for 
any application method can be built, for example, on top of 
the Java Authentication and Authorization Service (JAAS) 
[ I  21. This way, existing Pluggable Authentication Modules 
(PAM) can be added as supplements to an existing applica- 
tion without changing the source code. 

Pluggability Our proxy classes can be used to represent 
classes other then local classes. Our design allows IOOCs 
to be called remotely via techniques like M I ,  CORBA or 
even SOAP. Consequently, the proxy does not even have to 
be a class, but could, for instance, also be a web service. 
Innumerable SOAP toolkits support converting classes into 
web services. They enable transparent replacement of com- 
ponents during runtime as well as providing functionality 
to the outer world. The proxy environment defines and con- 
trols interaction and communication between the compo- 
nents. 

Generic Integration Given a compiled class of an exist- 
ing application that is loaded through our proposed tech- 
nique, its corresponding proxy can be used to enrich its 
interface automatically. Moreover, the proxy can be used 
to integrate IOOCs into a given class hierarchy. This way, 
the class - now represented by the proxy - may inherit 

original: 

transformed: 

Figure 6. Special transformation to deal with 
the keyword f i n a l  

all interfaces predefined in the hierarchy. Assume class X 
provides a p u b l i c  v o i d  b a r  ( ) but does not (by orig- 
inal design) implement the interface I, which also declares 
a p u b l i c  v o i d  b a r  ( ) , the proxy for X can automat- 
ically implement I when it is added to a running system 
that already knows I. This function can be regarded as a 
shortcut to accessing a component in the same container 
via SOAPJWSDL (see paragraph 'Pluggability') since the 
original vendor was not aware of (and thus was not able to 
implement) the interface another class requires. This is also 
a future backdoor to enable type save (semi-) automatically 
mapped functionality required and provided by components 
from different vendors using different ontologies. 

3. Current Status and Future Work 

So far we have successfully implemented application 
updating as well as application extensions, namely check- 
pointing, assertions, and runtime exception healing in our 
system. The developed prototype implements the intro- 
duced infrastructure with the class loader and a local lookup 
for new class versions and additional meta information. Our 



Figure 7. Sample Application 

future intention is the integration of these concepts and ad- 
ditional further options to add autonomic functionality to 
object-oriented applications. 

A sample application shown in figure 7 is used with the 
infrastructure and tests the updating and exception healing 
mechanisms. The GUI application follows the model-view- 
controller pattern. The GUI also shows the restrictions of 
our approach with Sun Microsystems' Java VM. Only the 
non-graphical parts (model and algorithms) are useful for 
dynamic updating without any further indirections. 

Perhaps the modification of the Java VM and the imple- 
mentation of the native class loading could be a possible 
enhancement of our platform- and VM-neutral approach. 

Our first goal is to determine the autonomic properties 
we would like to demand of an advanced runtime architec- 
ture. We deem performance considerations as secondary, 
since we do not want to solve problems that might be solved 
automatically according to Moore's law within the next few 
years. 

4. Conclusions 

We presented a software technical solution to add auto- 
nomic functionality to existing applications that does not 
depend on any source code adaptation. Our prototype is 
currently implemented based on the Java class loader ar- 
chitecture since this approach allows powerful just-in-time 
bytecode transformation in conjunction with a bytecode en- 
gineering toolkit like BCEL [5]. Yet the solution is not lim- 
ited to the Java world in any way. By providing a separate 
bytecode transformation step, it is possible to attribute arbi- 
trary classes automatically. 

Currently, we are working on the types of features that 
can be added to an arbitrary application through our pro- 
posed technique. We envision a kind of autonomic func- 
tionality framework that enables fine-grained management 
of autonomy added to arbitrary applications. 
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