
Adding Autonomic Functionality to Object-Oriented Applications

Marc Schanne Tom Gelhausen
Software Engineering Software Engineering

FZI Forschungszentrum Informatik FZI Forschungszentrum Inforrnatik
schanne @ fzi.de gelhauto@fzi.de

Walter F. Tichy
Department of Computer Science

University of Karlsruhe
tichy @ ira.uka.de

Abstract

Integrating applications with autonomic ,fiinctions such
as checkpointing/restart, self-healing or self-updating is
diflcult and time consuming [8]. We demonstrate tlmt auto-
nomic,f~tnctionality can he sepuruted,frotn upplications und
supplied by default imple?nentations, thereby dramatically
reducing the cost oj'scipplying autonomy. This article pro-
poses a proxy/vvrapper technique with an additiorzul code
Izook-lip infrustr~lct~ire to provide applic~ztion adaptation
with self-upduting, self-configuratior~ and self-optimizution
,fiinctionalities.

1. Introduction

We propose a method that enables the addition of auto-
nomic functionality [9, 101 to object-oriented applications
in compiled form with the least possible effort. Our pro-
posal can provide the following autonomic functionality to
any component of the application:

self-updating - flexible, dynamic updating, and concur-
rent use of compatible versions of a component;

0 self-recovery - support for Recovery Oriented Com-
puting (ROC) [7] through automatic checkpointing;

self-healing - recursive restartability [3] to cope
smartly with component failures.

Dynamic updating is needed, for example when apply-
ing translets (compiled XSL transformations) [l] in a web
server based XML and XSLT environment:

The content data is stored in XML files and multiple
views onto the data are created via a single servlet, apply-
ing the proper translets. Changes to the content data are

handled through a smart caching architecture, but an imple-
mentation change a translet requires restarting the virtual
machine, thereby losing all caches and sessions. We ensure
high availability of the service by dynamic replacement of
a translet without restarting the web server. If the new ver-
sion of the translet fails, we want the system to self-heal
from this situation by searching for and using an alternate
version of the translet, for instance the last known working
version as a last resort.

We present a system based on a proxylwrapper architec-
ture that addresses these problems.

2. ProxyNVrapper Architecture

This approach is based on class renaming and
proxylwrapper generation. It provides the targeted auto-
nomic functionality by adding application independent sup-
plements. They are integrated through hook-up code in the
wrapper method.

The design ensures there is no need for the user to adapt
his source code in any way. It requires the following pre-
requisites regarding the programming environ~nentlruntime
system:

0 dynamic polymorphism prerequisites,

extendable class loading infrastructure or a separate
by tecode transformation step,

0 reflection.

exception handling supporting undeclared runtime ex-
ceptions.

The approach is applicable on any runtime system that ful-
fills the above requirements. For the remainder of this paper

the Java 2 platform is used as an example system meeting
these prerequisites.

Some meta information should be provided to the ex-
tendable class loading infrastructure respectively the sepa-
rate bytecode transformation step:

Clazz

version information for the management of different
class implementations;

member attributes irrelevant for the object state (com-
parable to Java t r a n s i e n t attributes), reducing the
amount of data to be made persistent in every check-
point (see 'Checkpointing' in section 2.2);

0 assertions (pre- and postconditions, invariants) to sup-
port the self-healing mechanism;

0 further optional data, declaring properties described in
section 2.5.

2.1. Application Updating

In a manner comparably to [13], the versioning prob-
lem is solved through integration in the original inheritance
tree. The type safe replacement is done by class loading
with transformation and separation of functional compo-
nents from data storage.

The Updating Infrastructure provided by our approach
has to support the following main goals:

0 type-safety, proofed by a standard type-safe compiler
and supported with a standard virtual machine;

0 provision of arbitrary applications with the demanded
functionality;

no requirement for any source code changes;

0 need for only moderate changes to the bytecode;

0 application independent default implementation for
version management.

It is impossible to know all references to a certain object
without interfering with the runtime system. Thus, it is also
impossible to update all of these references to point to a new
instance of a different version of the class, if needed. There-
fore, we require all references pointing to a proxy object to
encapsulate a reference to the potentially changing imple-
mentation. Since we generate these proxy objects ourselves,
we can register all instances created. This way, we can find
all references to any instance of the original component and
enable its replacement. The original structure as shown in
figure 1 is transformed into the structure shown in figure 2.

Any Code that creates instances of C l a z z via
the standard new instruction directs the proxy class

Figure 1. Original structure

Registry I

Originalclass
Clazz <

Figure 2. Transformed structure

ProxyClazz

(P r o x y C l a z z) to assume the name of the original class
which is renamed. Our prototype accomplishes this by us-
ing the Byte Code Engineering Library (BCEL) [5]. The
original class is changed to allow the proxy class to ac-
cess all member and class fields and methods. Of course,
the proxy object has to be an exact blueprint of C l a z z .
The structure of C l a z z is determined through reflection
[I 21. Method calls on the proxy object are simply delegated.
With this changes the following code at some arbitrary posi-
tion in another class will transparently use a proxy instance
to access an instance of the original class (100C) instead of
accessing it directly.

C l a z z c = new C l a z z () ;

c. f o o 0 ;

There is still one problem left: synchronization. On the one
hand, external code that accesses member attributes directly
rather than using getter and setter methods causes the state
of the proxy object to differ from the state of the IOOC. Of
course, the external code expects the TOOC to be in the state
of the proxy object in a subsequent method call rather than
in the state in which it still resides. On the other hand, a
method in the IOOC may change attributes and not inform
the proxy about the state change. Consequently, subsequent
direct reads on the proxy object's member attributes lead to
wrong results.

One simple way of tackling the synchronization problem
is to perform a full synchronization before and after every
non-private method call. Thus, the implementation of an
arbitrary method f o o () in the proxy class looks like

+ foo() + foo()

- instanceof
Originalclass

WrapperXXX Iyyi P.II.IIY

Figure 3. Additional wrapper

The proxy class is a blueprint of the original class with
all non-private methods (delegating the execution) and with
fields for all member and class attributes. The methods for
synchronization are generated. It is possible to provide meta
information of the attributes that partake in the object state
to enable more efficient synchronization handling.

Further rules for a more complex inheritance structure of
the original classes and constraints for the proxy generation
are discussed in section 2.4.

2.2. Application extension

To support existing applications with the desired auton-
omy, program adaptation is necessary. This sections de-
scribes a solution to add application independent function-
ality to compiled classes.

Checkpointing The ability to restart quickly from a sys-
tem crash requires that the internal state of the man-
aged IOOCs is made persistent. The natural granularity
for restarts in an object-oriented environment is defined
through the methods' boundaries. Thus, it does not make
sense to set more than one checkpoint before each method
call.

Yet, if a method m () of object o calls method m' () of
o, it is also unnecessary to set a checkpoint at the beginning
of m' () : There is no way of (transparently) restarting m ()

at the position it called m' () . However, it is obvious that
it does make sense to lower the checkpoint rate to those
function calls where the caller is a different instance. These
calls happen to be made through our proxy object, whereby
the implementation of the arbitrary f oo () method in the
proxy class looks like

Runtime Exceptions

Most sofiware hugs in production qu~dity soft-
ware are Heisenhugs. [...] Even zf the source of
such hugs can he tracked down, it may he more
cost efec'tive to simply live with them, as long as
they occur sufficiently injirequently / 3 /

Besides such software faults, the Gartner Group estimates
another 20% of unplanned downtime in business environ-
ments is due to hardware faults, of which 80% are intermit-
tent [3, 41. All of these errors are difficult to detect but even
more difficult to fix. A rollback and restart algorithm to
perform some of the demands of [3] is proposed as follows.

The calls to the original methods are encapsulated by a
retry algorithm to give the system another chance to pass
the call without throwing an unintentional exception. We
identified Runtime Exceptions (i.e. NullPointerException
and ArrayIndexOutOfBoundsException in Java) as the class
of exceptions that are typically thrown unintentionally, thus
indicating a Heisenbug. The retry algorithm provides fall-
backs in the following order: (a) rollback to last checkpoint
and retry with the existing instance; (b) create a new in-
stance of the current version of the component, initialize
with last checkpoint, and retry; (c) search for latent candi-
dates (i.e. pending updates of the component, or last known
working version), create an instance of the other version(s),
initialize with last checkpoint, and retry; (d) initialize an
internet wide lookup for different releases, load, create in-
stance, initialize with last checkpoint, and retry; (e) self-
update with an assertion enabled (see 'Assertions' below)
debug version, and retry; (f) inform user/administrator via
special exception about type of problem, tested versions,
and violated assertions.

Assertions There are two kinds of assertions: the ones
the original programmer chose to use in his code via the
as s e rt keyword and assertions defined via the meta in-
formation provided to the class loader. The pre- and post-
conditions can be used for special implementation wrapper
code [6] to obtain additional information on the source of an
exception. The invariants may be checked before and after
any method call. The information the system developer has
to provide is comparable to the Java Modeling Language in-
terfaces [l I] and enables the definition of correct program
traces [2] as well as their runtime verification through a
watchdog component. The proxy's code for our arbitrary
method f oo () is as follows:

1 Generalsuper 1

- ~nstanceof
OriginalClass -
- instanceof
OriginalClass

Clazz2XXX

Figure 4. Proxy classes in a more elaborate
inheritance structure

memberSyncProxyToOriginal();
[snip try] / / r e t r y algorithm h e r e
instance0f0riginalClas~.foo();
[snip catch]

2.3. Design Pattern Proposal

The preceding code snippet shows that the code within
the proxy class grows with every new feature introduced.
But even when declared for performance reasons, the use of
assertions, for example, may not always be desired. Situ-
ation dependent dynamic selection as shown in paragraph
'Runtime Exceptions' seems appropriate. Consequently,
these code changes cannot be done within the proxy, since
we cannot alter its implementation. The wrapping code
must be placed somewhere else.

We do not want to alter the code of the original class
too drastically (i.e. merging all the instructions mentioned
previously into the bytecode). Therefore, we need to gener-
ate an additional wrapper to add the demanded functional-
ity. In order not to require an additional step of indirection,
this proposal uses dynamic polymorphism and overrides the

Registry ~
- instanceof
OriginalClass

+ bar()

Clazz

+ bar()

+ fool ()

Figure 5. Transformed structure with abstract
super class

methods by inserting the hook-up code into the generated
wrapper class (w r a p p e r x x x) . The class structure is de-
picted in figure 3.

2.4. Advanced inheritance constraints

The presented approach of adaptation is being developed
to augment applications with autonomic functionality. The
figure 4 shows all inheritance relationships in a larger in-
heritance tree. The proxy classes must be full blueprints of
the given original classes (for simplification, only the trans-
formed original classes are depicted) and they should be
transformed without any semantic knowledge. Each class
gets renamed, and if its super class is also transformed, the
inheritance relationship is adapted.

The proxy class is generated by analyzing the transient
closure of all super classes. If there is an abstract class as
an ancestor for this class, no proxy or wrapper is generated
(compare with figure 5).

The introduction of a new wrapper class allows for a fur-
ther abstraction especially needed to deal with additional
language features.

The keyword f i n a l in Java (depicted in figure 6) is
used to prevent the specialization of the method foo in sub-
classes of C l a z z 1. To reproduce this behavior with the
transformed class structure, additional wrappers are used to
encapsulate the f i n a l semantics. There is no inheritance
relationship between the wrappers because each class has to
implement all the delegating methods specified by the tran-
sient closure of the original class with which the final
modifier would conflict.

The Java language safety concept relies on a defined
general super class (j a v a . l a n g . O b j e c t) . Generating
all delegating methods of the transient closure, especially
the final methods, restricts the proxy/wrapper architecture.
Also, the class loading with the Sun Microsystems' JVM
restricts the adaptation possibilities on library classes not
located in j ava . *, j avax . *, o r g . omg . *.

These restrictions limit the number of application classes
in the inheritance tree (shown in figure 4) that could be
transformed.

2.5. Further Options

So far we have shown how to integrate updating, check-
pointing, a retry algorithm, and assertions into compiled
classes. These are only the first steps towards enabling
given applications with autonomic functionality. As exam-
ples for further options of well-known concepts that may
be integrated, we discuss the tields of security, pluggability,
and generic integration.

Authentication and Authorization Modern applications
often contain security relevant code. This functionality is an
ideal candidate for delegation to a default implementation.

Our proxy facilitates the weaving of security aspects into
a given application. The functionality is added by code
adaptation in the same way as already demonstrated for
checkpointing and assertions.

An implementation to support user access control for
any application method can be built, for example, on top of
the Java Authentication and Authorization Service (JAAS)
[I 21. This way, existing Pluggable Authentication Modules
(PAM) can be added as supplements to an existing applica-
tion without changing the source code.

Pluggability Our proxy classes can be used to represent
classes other then local classes. Our design allows IOOCs
to be called remotely via techniques like M I , CORBA or
even SOAP. Consequently, the proxy does not even have to
be a class, but could, for instance, also be a web service.
Innumerable SOAP toolkits support converting classes into
web services. They enable transparent replacement of com-
ponents during runtime as well as providing functionality
to the outer world. The proxy environment defines and con-
trols interaction and communication between the compo-
nents.

Generic Integration Given a compiled class of an exist-
ing application that is loaded through our proposed tech-
nique, its corresponding proxy can be used to enrich its
interface automatically. Moreover, the proxy can be used
to integrate IOOCs into a given class hierarchy. This way,
the class - now represented by the proxy - may inherit

original:

transformed:

Figure 6. Special transformation to deal with
the keyword f i n a l

all interfaces predefined in the hierarchy. Assume class X
provides a p u b l i c v o i d b a r () but does not (by orig-
inal design) implement the interface I, which also declares
a p u b l i c v o i d b a r () , the proxy for X can automat-
ically implement I when it is added to a running system
that already knows I. This function can be regarded as a
shortcut to accessing a component in the same container
via SOAPJWSDL (see paragraph 'Pluggability') since the
original vendor was not aware of (and thus was not able to
implement) the interface another class requires. This is also
a future backdoor to enable type save (semi-) automatically
mapped functionality required and provided by components
from different vendors using different ontologies.

3. Current Status and Future Work

So far we have successfully implemented application
updating as well as application extensions, namely check-
pointing, assertions, and runtime exception healing in our
system. The developed prototype implements the intro-
duced infrastructure with the class loader and a local lookup
for new class versions and additional meta information. Our

Figure 7. Sample Application

future intention is the integration of these concepts and ad-
ditional further options to add autonomic functionality to
object-oriented applications.

A sample application shown in figure 7 is used with the
infrastructure and tests the updating and exception healing
mechanisms. The GUI application follows the model-view-
controller pattern. The GUI also shows the restrictions of
our approach with Sun Microsystems' Java VM. Only the
non-graphical parts (model and algorithms) are useful for
dynamic updating without any further indirections.

Perhaps the modification of the Java VM and the imple-
mentation of the native class loading could be a possible
enhancement of our platform- and VM-neutral approach.

Our first goal is to determine the autonomic properties
we would like to demand of an advanced runtime architec-
ture. We deem performance considerations as secondary,
since we do not want to solve problems that might be solved
automatically according to Moore's law within the next few
years.

4. Conclusions

We presented a software technical solution to add auto-
nomic functionality to existing applications that does not
depend on any source code adaptation. Our prototype is
currently implemented based on the Java class loader ar-
chitecture since this approach allows powerful just-in-time
bytecode transformation in conjunction with a bytecode en-
gineering toolkit like BCEL [5]. Yet the solution is not lim-
ited to the Java world in any way. By providing a separate
bytecode transformation step, it is possible to attribute arbi-
trary classes automatically.

Currently, we are working on the types of features that
can be added to an arbitrary application through our pro-
posed technique. We envision a kind of autonomic func-
tionality framework that enables fine-grained management
of autonomy added to arbitrary applications.

References

[I] Scott Boag. Xalan-J 2.0 Design. The Apache
Software Foundation, in progress edition, 2000.
http://xml.apache.org/xalan-j/.

[2] Mark Brorkens and Michael Moller. Trends in Testing
Communicating Systems, chapter JASSDA TRACE
ASSERTIONS - Runtime Checking the Dynamic of
Java Programs, pages 39-48. March 2002.

[3] George Candea and Armando Fox. Recursive
Restartability: Turning the Reboot Sledgehammer
into a Scalpel. In Proceedings of the 8th Workshop on
Hot Topics in Operating Systems (HotOS-VZZZ), May
2001.

[4] Timothy C. K. Chou. Beyond fault tolerance. ZEEE
Computer, pages 31-36, April 1997.

[5] Markus Dahm. Byte Code Engineering with the
BCEL API. Technical Report B-17-98, University
Berlin, April 2001.

[6] Michel de Champlain. The Contract Pattern. In Pro-
ceedings of Pattern Languages of Program Design 4
(PLoPD4), October 1998.

[7] Armando Fox. Toward Recovery-Oriented Comput-
ing. In Proceedings of the 28th VLUB Conference,
Hong Kong, China, 2002.

[8] W. Wayt Gibbs. Autonomic Computing. Scientijic
American.com, May 2002. http://www.sciam.com/.

[9] Paul Horn. Autonomic Computing: IBMS Perspective
on the State of Information Technology. IBM, October
2001. http://www.research.ibm.com/autonomic/.

[lo] Jeffrey 0. Kephart and David M. Chess. The Vision
of Autonomic Computing. ZEEE Computer, pages 41-
50, January 2003.

[l l] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik
Cheon, and Clyde Ruby. JML Reference Manual,
draft, 1.17 edition, October 2002.

[12] Tim Lindholm and Frank Yellin. The Java Virtual Ma-
chine Specijication: Chapter 4. The class File Format.
Sun Microsystems, 2nd edition, 1999.

[13] Alessandro Orso, Anup Rao, and Mary Jean Harrold.
A Technique for Dynamic Updating of Java Software.
In Proceedings of the IEEE International Conference
on Software Maintenance (CSM 2002), October 2002.

