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Abstract

This paper presents Cluster-Aware Remote Disks
(CARDs), a Single System I/O architecture for cluster com-
puting. CARDs virtualize accesses to remote cluster disks
over a System Area Network. Their operation is driven by
cooperative caching policies that implement a joint man-
agement of the cluster caches. All the CARDs of a given
disk employ a common policy, independently of other CARD
sets. CARD drivers have been implemented as Linux kernel
modules which can flexibly accommodate various cooper-
ative caching algorithms. We designed and implemented a
decentralized policy called Home-based Serverless Cooper-
ative Caching (HSCC). HSCC showed cache hit ratios over
50% for workloads that go beyond the limit of the global
cache. The best speedup of a CARD over a remote disk in-
terface was 1.54.

1 Introduction

High-speed System Area Networks (SAN) have laten-
cies and bandwidths comparable to those of a memory sub-
system. This makes a case for integrating cluster resources
into Single System Image services. Integrating distributed
resources into a single system was the subject of substan-
tial prior research. User-space communication subsystems
[23, 20] improved the SAN performance by removing the
kernel from the critical path. However, message passing is
not a handy programming model and high-level software
abstractions (memory pages, disk blocks, etc.) were devel-
oped. A notable research effort in this direction was that of
software Distributed Shared Memory systems [1, 24].

Cooperative caching network filesystems [2, 8] changed
the distributed filesystem memory hierarchy (client cache,
server cache, server disk) by letting client cache misses
to be checked against other client caches before the server
cache. Thus, the working set grew beyond the local memory
limit while read latency improved because remote caches
were accessed faster than the disk (even if it was local).

Flexible/extensible kernels [5, 9] have shown a better re-
sponse to the challenges raised by the new class of highly
intensive I/O-bound applications (mostly related to multi-
media and Web/Internet) than conventional general-purpose
kernels. These systems use a joint management of the re-
sources. Applications manage alone their own resources
while the system software continues to provide general
mechanisms such as protection domains, resource alloca-
tion, scheduling, etc.

Our work is inspired by all these trends. CARD drivers
hide the distributed nature of the cluster disk caches by of-
fering the local hosts an interface to a global unified buffer
cache (from hereon calledcooperative cache). Similar to
DSMs, CARDs use a high-level abstraction (disk blocks) to
deal with remote resources and cooperative caching algo-
rithms [8] to jointly manage the cluster caches. They rely on
the low communication latencies of powerful interconnects
to minimize block access times. Applications may down-
load their own caching policies into the CARD driver. Thus,
the kernel provides the block access mechanism (the CARD
driver) while applications can specify their block manage-
ment policy at will. Different caching policies can be in use
at the same time in the cluster, but the set of CARDs of a
given disk must employ a common policy.

This paper evaluates the performance of CARDs as a
distributed storage system. We present and evaluate a sim-
ple and efficient decentralized cooperative caching policy,
Home-based Serverless Cooperative Caching. We empha-
size the flexibility of policy choice in our system by imple-
menting and evaluating another cooperative caching algo-
rithm, Hash Distributed Caching [8].

2 Cluster-Aware Remote Disks

CARDs are block devices that virtualize remote disk ac-
cesses over a SAN. They can be mounted on the local sys-
tem as regular block devices. Without cooperative caching,
a CARD behaves like a remote disk interface (RD). Every
miss in the local buffer cache is checked by the RD also
against the remote buffer cache at the physical disk node.
A set of CARDs using a common cooperative caching pol-
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Figure 1. Cooperative caching with CARDs
Case A: client-to-client cooperation;Case B: three-
client cooperation;Case C: client-to-client coopera-
tion fails. The block must be retrieved from disk

icy implements a joint management of their corresponding
caches. CARDs offer a flexible and easy to use scheme of
building the cooperative cache. Just by mounting CARDs
of a given disk on a set of cluster nodes, one gets shares
of each buffer cache in the cluster for cooperative use. The
cooperative cache size is thus the sum of these shares.

Managing the cooperative cache is a task orthogonal to
that of physically moving blocks to and fro and is expressed
by means of a cooperative caching policy. Essentially, such
a policy defines how to find blocks in the cooperative cache,
what should be done with the evicted blocks, whether mul-
tiple copies of the block may exist in the cooperative cache
and, if so, how consistency is handled. Blocks not found in
the local caches can be looked for in the cooperative cache.
Only when there is no available copy in the entire cooper-
ative cache, the block request is serviced from the disk. A
typical setup and possible scenarios are shown inFigure 1.

Cooperative caching policiesCooperative caching has
been originally developed for network file systems ([8, 2]).
Our approach tackles the topic at storage system level. In-
stead of reasoning about a filesystem hierarchy, we prefer
to view cooperative caching as a way to enlarge local disk
caches by using remote caches. Thus, the upper layers are
offered the view of a unified buffer cache across the cluster.
This approach seems more general to us, as one can build
on top of our storage system not only filesystems but also
databases or Web storage systems.

A cooperative caching policy is a set of four operations
executed by the CARD drivers in response to various events
during the lifetime of a disk block in the cooperative cache.
These operations exercise in fact a distributed management
of the cooperative cache. Writing a cooperative caching

policy means to provide code for these operations. By de-
fault, they are void and CARDs behave like remote disk
interfaces. The C definition of a cooperative caching policy
looks like this:

struct coop_caching_ops {
int (*lookup)(struct request*);
int (*handle_eviction)(struct

buffer_head*);
int (*keep_consistency)(kdev_t,

struct sk_buff*);
kdev_t (*handle_request)(kdev_t,

struct sk_buff*);
};

Block requests missing in the local cache are sent by the
CARD driver to a node caching the block or to the disk.
Searching the cooperative cache for a block copy is the job
of lookup. It returns a node id.

Cooperative caching saves evicted blocks in idle remote
caches in order to reduce the disk I/O activity and to im-
prove read latencies and cache hit ratios. Single cached
copies of a block (singletons) should be handled specially
because discarding them means that the next request for that
block anywhere in the cluster will have to go to the disk.
handleeviction looks for remote hosts for locally evicted
blocks. It does not interfere with the native kernel eviction
algorithm because CARDs are ordinary block devices and
they obey this policy as any other local disk would do.han-
dle evictionextends this algorithm by taking advantage of
the cooperative cache. On success, it returns the node id of
the new block host. Otherwise, the block is dropped.

If cooperative caching uses block replication, a spe-
cial operation to support consistent writes is needed.
keepconsistencyshould define the actions to be taken in
response to a block write event.

Handling incoming block requests is the task ofhan-
dle request. It decides whether or not a block request can
be satisfied from the local cache. On a cache hit, the method
serves the block and returns the corresponding local CARD
or physical disk device identifier. Otherwise, the request is
forwarded to another host.handlerequestalso defines how
to deal with evicted blocks forwarded from other nodes.

3 HSCC: Home-based Serverless Coopera-
tive Caching

According to the above guidelines, we designed Home-
based Serverless Cooperative Caching (HSCC), a decentral-
ized globally coordinated cooperative caching policy which
attempts to offload the physical disk node by distributing the
block delivery task. It ishome-basedbecause each block
gets ahomenode which handles requests for that block.
Homes are assigned to blocks by using a hashingmodulo
n scheme. Since most clusters don’t change dynamically in



size, the choice of a fixedn is reasonable. The home may
cache the block in its own buffer cache or may simply keep a
hint telling which is the node caching the most recent block
copy. Blocks get loaded at their homes lazily (on-demand)
and only if there is enough room. Thus, HSCC partitions
statically and evenly only the meta-data, not the actual data.
The policy is calledserverlessbecause the disk blocks are
not served by a traditional centralized server.

HSCC employs a per-node cache index to keep track of
the nodes caching particular blocks of the disk. The node
uses this index to forward block requests that miss in the
local cache. In general, this may prove to be too space-
expensive and may endanger scalability. For instance, us-
ing a bitmap to mark the nodes caching the block requires
16 bytes per entry to keep track of 128 nodes. 1024 nodes
require 128 bytes per entry and so on, the index size grows
steadily with the size of the cluster. For 1024 nodes with
256 MB each, 128 bytes for every 4KB block require
roughly 8 GB (3.1% out of 256 GB).

To avoid this inconvenience, we chose to keep the index
entry size constant, regardless of the cluster size. We store
only two node IDs per index entry. When storing a block, a
node records in the corresponding index entry the ID of the
node delivering the copy. We call it thepreviousID. The
second ID is that of the next node requesting the block from
the local node. We call it thenext ID. Now all the block
copies are in a distributed double-linked list in whichnext
points to more recent block copies whilepreviousrefers to
older copies. This solution doesn’t reduce the overall size
of the index, but distributes its information and thus reduces
the local memory usage.

The overall index size can be reduced significantly if the
block size (or equivalently, the cooperative caching unit)
is increased to values larger than 4KB (a typical value for
SCSI disks). But larger caching units aggravate thefalse
sharingproblem pointed out by the DSM experience.

HSCC lookup If available, a validnextID for the block
is returned. In turn, the CARD driver directs the request to
that node. Otherwise, the request is sent to the home.

HSCC handle eviction An evicted block is considered
singleton if thenext ID is void and thepreviousID is the
physical disk node ID. For a voidnext ID and aprevious
ID different than the physical disk node ID, the block is
considered the most recent copy (it may even be a singleton
if all the other copies have been evicted meanwhile). Only
singletons and most recent copies are considered for saving.
All the other copies are dropped.

HSCChandleeviction sends singletons to the least
loaded node in the cluster, as perceived from the local per-
spective. Choosing such a node is based on a priority queue
storing the numbers of blocks cached on behalf of each
home participating in the cooperative cache. The home on
behalf of which the local node caches the least number of

blocks is considered to be the least loaded node. If the cho-
sen node can host the block, it will send an index update
with the newnext ID to the block home. If not, the target
node further forwards the block to its home. If there is no
room at home either, the block is discarded.

Most recent copies are sent to theirpreviousnode. If
this node has a copy, the block is discarded. Else, if there
is enough space, it stores the block and sends an update to
the home with its own ID as the newnextID for the block.
If there is not enough room, it forwards the block further
to its ownpreviousnode. In practice, this process can be
quite long, so adepthcount set in the evicted block message
helps to restrict the forwarding todepthstages. If no copy
is found indepthsteps, the block is stored locally instead
of a “non-CARD” block in order to avoid an eviction ripple
effect. By default,depthis 2.

When the index update reaches the home, if there are no
newer block requests, an invalidate index message is sent to
the evicting node. This node discards its cache index entry
and forwards the invalidation to thepreviousnode. Each
previousnode does the same until the invalidation reaches
the node caching the new most recent copy.

HSCC keep consistencyThe consistency algorithm is
a flavor of write-through with invalidation. A written block
is sent to the physical disk node and both the home and the
previousnode are invalidated. The home forwards the in-
validation to the node caching the most recent copy. Each
node receiving an invalidation message invalidates its own
copy. If previousis not the physical disk node, the invalida-
tion is forwarded to it. Otherwise, the message is dropped
since the physical disk node already got the written block so
the invalidation would be wrong. As noticed, there are no
guarantees for concurrent writes. This would need a locking
scheme in the upper kernel layers (at filesystem level).

HSCC handle request If a block request arrives at
home, the request handler looks for a block copy in the local
buffer cache. If found, the block is returned to the requester.
Otherwise, the request is forwarded to another node that can
satisfy it. This node is either that identified by thenextID
from the corresponding index entry, if any, or the physical
disk node, otherwise. Either way, the requester is registered
in the home index as thenextID.

A forwarded block request is handled the following way.
If the node holds a block copy, this one is delivered directly
to its original requester in order to save network bandwidth
and to avoid an extra and unnecessary hop. Otherwise,
the request is forwarded directly to the physical disk node
which in turn will deliver the block.

4 The software architecture of CARDs

Device identification and block addressingBoth the
physical disk and the CARD are uniquely identified in the
cluster by a tuple(major number, minor number, physical



ID). Themajor andminor numbers form the conventional
pair used to identify a block device in standalone kernels.
This pair may differ from CARD to CARD, but all the
CARDs of a disk share the samephysical ID. This is the
ID of the physical disk node and helps to distinguish among
different CARDs with the same(major,minor)pair. Re-
motely cached blocks are first checked against theirphys-
ical ID to identify the actual CARD on that machine. Then,
the native addressing scheme of the local kernel is used.

Design and implementation issuesIf a block request
misses in the buffer cache, the kernel allocates a new buffer
for the block, locks the buffer and queues a request in the
disk driver. The process making the request goes to sleep
while the driver is responsible for serving the request. When
the driver finishes the service, it dequeues the request, un-
locks the buffer and wakes up any process that might wait
for that block to become available. The main difference be-
tween a real disk driver and a CARD driver is that the latter
serves the requests from remote caches. That requires cer-
tain design and implementation decisions that are described
in what follows.

Handling incoming block requests may follow either a
blocking model (using a kernel thread server) or an inter-
rupt driven one, akin to systems like Active Messages [22],
which serves the blocks using a software interrupt handler
run in interruptible context. This handler is executed at the
end of the hardware interrupt handler triggered by the SAN
card interrupt. The thread solution offers a well-defined
protection domain and the thread gets charged for the server
computation. That avoids unfairness as pointed out the by
the research experience with network subsystems [3, 4].
The disadvantage consists in a lower degree of responsive-
ness. An incoming request triggers a network card interrupt,
the server thread is woken up and placed in the run queue.
However, this doesn’t ensure immediate response as only
the scheduler decides who gets the processor next. The in-
terrupt driven solution shows better responsiveness. Cached
blocks are delivered at interrupt time as quick as possible.
If the block is not cached, the software interrupt handler
sets up a callback function associated with the buffer. This
will deliver the block (also in interruptible context) when
the disk interrupt handler will signal that the disk driver fin-
ished loading the block. The disadvantage is that the inter-
rupted process is going to be unfairly charged for unasked
computation. In our solution, cached blocks are serviced at
interrupt time in order to improve responsiveness. The un-
cached blocks service is deferred to a kernel thread because
the disk latency is dominant in this case and saving a few
microseconds wouldn’t help much.

Linux itself raises problems as well. It uses two cache
systems to speed up disk access. Raw and special data (in-
odes, for instance) are accessed through the buffer cache.
However, regular files read/write their data through thepage

cache. Unlike the buffer cache, which is indexed bydisk ID
andblock number, the page cache is indexed byinodeand
offsetwithin the file. It seems to have appeared as a re-
sponse to an efficientmmapimplementation because in its
pages it stores disk blocks contiguous in the logical file lay-
out (a byte stream for Unix files) but potentially uncontigu-
ous on disk. A CARD asking another CARD to deliver an
already cached block sends the disk ID tuple and the block
number but the CARD storing the block cannot use them to
search the page cache. To solve the problem, we unified the
buffer and the page cache so that blocks in the page cache
can be also indexed through the buffer cache hash list.

The separation of the various buffering systems in the
kernel affects the CARD performance. The network in-
terface uses specialized socket buffers to send/receive mes-
sages while the file system buffer cache uses its own buffer-
ing system (the buffer head cache). Therefore, fetching
blocks from remote caches implies two extra copies. To
avoid them, one needs a Remote DMA (RDMA) engine that
allows direct read/write access to remote memories over the
SAN. Alternatively, one could use a unified network and
cache buffering system such as IO-Lite [18]. To date, our
prototype does not incorporate any of these facilities.

CARDs are independent of any disk format and may ac-
cess the physical disk through a raw interface, but using
a non-distributed filesystem (Linux EXT2) on top of them
may lead to severe inconsistencies. Any file system has spe-
cialized directory and inode (file meta-data) caches. Be-
cause CARDs look like ordinary disks to the system, such
a file system will fail to take the appropriate measures for
keeping these caches consistent across the cluster. We chose
not to involve the CARDs in filesystem meta-data consis-
tency handling for two reasons. First, CARDs are meant to
be storage devices independent of the actual data format on
the disk. Second, our plans are oriented towards integrating
CARDs with Clusterfile [15], a parallel file system for clus-
ters. Clusterfile will take care of meta-data consistency.

5 Performance evaluation

We evaluated the performance of our CARD proto-
type using HSCC andHash Distributed Caching[8] (from
hereon designated as HDC). CARDs of a disk format-
ted with a native Linux filesystem format (EXT2) were
mounted remotely. Because of the potential inconsistencies
that we have mentioned in Section 4, the mount was read-
only. The filesystem was not aged and therefore mostly
contiguous. All the tests consist of running the Unixfind
command on a CARD to scan a directory for a given string.
The typical layout of the command was:

find <dir> -exec grep <str> {} \;

Experimental Setup We ran our experiments on a 3-
node Linux cluster interconnected through a Myrinet switch



and LANai 7 cards. The Myrinet cards have a 133 MHz
processor on board. They achieve 2 Gb/sec. in each direc-
tion. The host interface is a 64 bit/66 MHz PCI that can
sustain a throughput of 500 MB/sec. The Myrinet cards
were controlled by the GM 1.4 driver of Myricom [20]. The
PCs were 350 MHz Pentium II machines with 256 MB of
RAM. All the systems ran Linux 2.2.14. The disk used for
tests was an IBM DCAS-34330W Fast/Ultra-SE SCSI disk.
Only a 1.7 GB partition of it was remotely mounted for the
experiments that we further describe.

We approximated the extent to which the buffer cache
of Linux can grow by scanning a directory whose size was
larger than the local memory. On the physical disk node,
the buffer cache grew up to 240 MB. On a CARD node, the
buffer cache grew up to 225 MB. So we can consider a value
of roughly 690 MB of RAM for our cooperative cache.
However, this figure is just an upper bound as the Linux
memory management algorithm dynamically trades off ap-
plication memory for kernel memory. This behavior makes
it hard to precisely determine the buffer cache size which
may vary significantly depending on the machine load.

CARD Local Disk

Throughput (MB/s) 2.14 2.93

Memory copies 80�s -
Service handling 15�s -

Network overhead 205�s -

Average cached
read time 300�s 30�s

Average disk
read time 12300�s 12000�s

Table 1. CARD vs. Local Disk Comparison
Throughput and 4k block read access times

5.1 CARD vs. Local Disk comparison

We evaluated the performance of a CARD acting as
a simple remote disk interface. The outcome was com-
pared to that of the corresponding physical disk. We
mounted remotely the SCSI partition and measured the
CARD throughput and the read access times (both cached
and uncached). The throughput was computed by timing a
Unix find command scanning all 1.7 GB of data stored on
that partition. We repeated the experiment locally on the
machine hosting the disk. The figures are presented inTa-
ble 1. Notice that accessing a remotely cached block is 40
times faster than getting it from the local disk. Also, the
CARD achieves 73.03% of the local disk throughput.

5.2 CARD operation analysis

The cache-cooperative operation of the CARD driver
was evaluated using six workloads whose sizes were

roughly 310 MB, 420 MB, 490 MB, 571 MB, 681 MB and
741 MB respectively. All the workloads were combinations
of subdirectories of a typical/usr Unix directory, namely
/usr/bin, /usr/lib/, /usr/share, /usr/src. The first four size
choices aim at evaluating the behavior of the cooperative
cache for workloads bigger than any cluster node memory
(240 MB) but smaller than the size of the global cache (690
MB). The last two size choices intend to show the system
performance at the limit of the global cache and beyond.

We warmed up the cooperative cache by running thefind
command at a CARD node and then we took measurements
by running it at another CARD node. We compared the
cache hit ratios of the two policies and evaluated the general
benefits of saving the evicted blocks.

Cache Hit Ratios
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Figure 2. Cache hit ratio comparison

Cache hit ratios comparisonA comparison between
HSCC and HDC in terms of cache hit ratios is presented
in Figure 2. Notice that HSCC performs better overall and
that HDC’s performance degrades faster with the increasing
size of the workloads than that of HSCC. Indeed, for the first
workload the cache hit ratio of HDC is roughly 85% of the
HSCC figure, while close to the global cache limit HSCC
achieves at least twice as many cache hits as HDC. HDC
degradation becomes even more severe beyond this limit,
as for the last workload HSCC’s ratio is roughly 2.7 times
that of HDC.Figure 3 offers more insight on the CARD
operation by showing cache access breakdowns.

Eviction statistics The number of evicted blocks stored
by a CARD node running on the warm cache is reported in
Figure 4. From this figure andFigure 3 one can infer that
handling too many evicted blocks is a waste. The reason lies
in the way the two policies handle the cooperative cache.
HDC evicts blocks only at the server cache (physical disk
node) and does it irrespective of load by sending the evicted
blocks to their homes. AsFigure 3 shows, this improves
the local cache hits. Overall, HDC has better local hit ratios
than HSCC. On the contrary, HSCC has better global hit
ratios overall because it handles evictions at homes as well
and saves blocks trying to even out the load.



HSCC Cache Access Breakdown
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HDC Cache Access Breakdown
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Figure 3. Cache Access Breakdowns Local cache hits, global cache hits and cache misses for HSCCand HDC

For heavy workloads (the last three for instance), local
cache hits become less important when compared to global
cache hits. In this case, HSCC outperforms HDC by far ex-
actly because it maintains a higher global hit ratio. As it can
be seen fromFigure 3, saving too many evicted blocks (as
in HDC’s case) under memory pressure turns out to be inef-
fective as both the local and global cache hit ratios seem to
diminish at the same pace. Thus, handling evictions must be
made with care in order to balance the loads of the caches.

5.3 CARD Speedup/Slowdown

We ran the workloads on a CARD acting as a remote disk
interface and measured the running time using the Unixtime
command. We also ran the workloads on CARDs with co-
operative caching enabled, both on cold and warm caches.
The results are presented inFigure 5.

For HSCC, the best speedup was that of the first work-
load. The CARD running on a warm cache achieved a
speedup of 1.54 over the remote disk. Even the workload
larger than the global cache experienced speedup, although
smaller (see the last line of the x-axis of theFigure 5). The
slowdown of a CARD running on a cold cooperative cache
when compared to a remote disk is negligible (see the mid-
dle line of the x-axis of theFigure 5).

For HDC, practically only the first workload exhibited
speedup since that of the second workload is negligible.
All the other workloads experienced only slowdowns, both
when running the CARDs on a cold cache and on a warm
one. Moreover, the slowdowns of the CARD running on the
cold cache are less severe than those of the CARD running
on a warmed up cache. Notice however that for big loads
(the last three), the HDC slowdowns of a CARD running
on a cold cache are better than the corresponding ones of
HSCC because HDC is a simpler policy than HSCC. Nev-
ertheless, the warm cache figures show that aggressively
trying to save evicted blocks is not only a waste but also

induces running time penalties.
Some of the remote disk numbers look weird. The 490

MB load takes more time than the 571 MB one. Similar for
the (681 MB, 741 MB) pair. This is also true when running
the load on the physical disk. Therefore, the problem is not
related to the CARD driver. Both the 490 MB and 681 MB
loads include/usr/sharewhich is broader and deeper than
the other workload directories (/usr/bin, /usr/lib, /usr/src).
The running time breakdowns show indeed that/usr/share
needs more time per MB than the other directories.
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6 Related work

Remote I/O systems can be broadly classified in: user-
level, filesystem or low-level systems. User-level systems
are mostly a work-around: block devices [16] or filesys-
tems (PVFS [14]) in user space, remote I/O libraries [10]
over MPI-IO [6]. However, traditional kernels are unaware
of the distributed nature of these systems and their inner
mechanisms and policies fail to match the expectations of
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Figure 5. Speedup/Slowdown CARDs compared to remote disk interfaces

the user space driven computation. The end result is per-
formance penalty. Also, by moving typical kernel code in
user space, the application software complexity grows and
development gets difficult.

Frangipani [21] is a distributed filesystem built on Petal
[17] distributed virtual disks. Petal is a block-oriented
storage system that manages a pool of distributed physical
disks by providing an abstraction calledvirtual disk. It is
globally accessible and offers a consistent view to all its
clients. Petal delegates the meta-data consistency problem
to Frangipani which implements a distributed lock service.

The xFS project [8, 2] introduced the notion of coop-
erative caching. HSCC resembles somewhat toHash Dis-
tributed Cachingas both are serverless and use a hash func-
tion on the block number. HSCC andN-Chance Forwarding
eviction algorithms share the notion ofrecirculation count,
calleddepthin HSCC, although used in different contexts:
therecirculation countapplies to singletons while thedepth
is used for the most recent block copy.N-Chance Forward-
ing and HSCC handle eviction differently.N-Chance For-
warding randomly chooses a node to forward an evicted
singleton. Instead, HSCC takes an informed decision by
sending the block to the node which appears to be the least
loaded one from the local perspective.

PACA [7] is another cooperative file system cache using
an algorithm akin to HSCC. It attempts to avoid replica-
tion and the associated consistency mechanisms by allow-
ing only one cached block copy in the entire cluster-wide
cache. That is possible since PACA uses amemorycopy
mechanism (a sort of Remote DMA) to send the data from
the cache to the user memory. However, every data access
has to go through thismemorycopymechanism which is
clearly much slower than accessing a local block copy.

Sarkar et al. [19] describe a cooperative caching algo-
rithm using hints. Like HSCC, it avoids centralized control.
Reasonably accurate hints help locating a block master copy

in the cache without involving the server. If the hints are not
accurate enough, a fall-back mechanism gets a block copy.
The master copy simplifies eviction: only such copies are
saved. Unlike HSCC, the algorithm interferes with the na-
tive kernel eviction policy by using a “best-guess” replace-
ment strategy when locally storing remotely evicted blocks.
Erroneous decisions are offset by adding an extra cache at
the server node, thediscard cache. Cache consistency is
file-based and not block-oriented as in HSCC.

CARDs are somewhat similar to the SIOS [13] Virtual
Device Drivers (VDD). A VDD amasses the entire disk ca-
pacity of a node (both local and remote disks) much like a
RAID (actually implemented as default technology). Coop-
erative caching is mentioned only once without any details.

Other low level approaches to remote I/O include Swarm
[12] and Network-Attached Secure Disks [11]. Swarm of-
fers the storage abstraction of astriped logwhile NASDs
provide an object-oriented interface.

7 Conclusions

In this paper we presented a flexible solution for a
cluster-wide cooperative caching system using Cluster-
Aware Remote Disks. A collection of CARD drivers can
employ a common cooperative caching policy in order to
globally manage the contents of the buffer caches. We have
implemented CARDs as Linux drivers and two policies to
prove the flexibility of the solution. Our results show that
cooperative caching reduces I/O activity and improves read
latency. Even for heavy workloads our algorithm (HSCC)
could achieve cache hit ratios above 50% without any slow-
down. The best speedup observed was 1.54.
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