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We present a fast and exact novel algorithm to compute maximum likelihood estimates
for the number of defects initially contained in a software, using the hypergeometric
software reliability model. The algorithm is based on a rigorous and comprehensive
mathematical analysis of the growth behavior of the likelihood function for the hyper-
geometric model. We also study a numerical example taken from the literature and
compare the estimate obtained in the hypergeometric model with the estimates obtained
in other reliability models. The hypergeometric estimate is highly accurate.

1. Introduction

The number of defects contained in a software is a quality attribute which can’t be
determined exactly. Therefore, it must be estimated in practice. Probabilistic soft-
ware reliability modeling regards the software tests performed during development
as a large random experiment. The random experiment is formally modelled as a
stochastic process which is parameterized in some way by the number m of defects
initally contained in the software. The results observed in the software tests then
are used to estimate the value of m by applying suitable statistical techniques.

In the hypergeometric software reliability model , 5-14,17-20 testing is a stagewise
process. The result of software test k consists of the number wk of defects which
were detected in the test and the number xk of those defects which were newly
detected. A defect is newly detected if it has not already been detected in one
of the earlier tests. The hypergeometric model is based on an urn model : each
individual test is modelled using a suitable hypergeometric probability distribution
which depends on the number m of defects initially contained in the software and
the number ck−1 of different defects detected in the previous k − 1 tests. The
distributions for the individual tests are combined into a stochastic process which
turns out to be a Markov chain when properly formalized, see section 2.

The hypergeometric model is focused on defect content estimation instead of
modelling the failure process.21 Several features make the hypergeometric model
useful and appealing to software engineers in practice: Being a conceptually simple
and stagewise model, it is applicable to a wide range of development projects,
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2 Maximum Likelihood Estimates for the Hypergeometric Software Reliability Model

including the important case of distributed development and testing. The model
does not assume that defects are removed immediately after having been detected.
Finally, the input data for the model is easily collected during testing. Thus, the
hypergeometric model now is one of the main software reliability models.

Software reliability models often use maximum likelihood estimation to compute
an estimate for the defect content m based on the test results.4,15,21,22 To find a
global maximum of the likelihood function L (m ) for the given test series result,
one usually tries to solve for a zero of the derivative of the log likelihood function.
In the hypergeometric model, the likelihood function contains a large number of
binomials, see subsection 3.1. Thus, the maximum likelihood equation is far too
complicated to be solved exactly. Attempts to approximately solve the maximum
likelihood equation for the hypergeometric model in some special cases have had
limited success, see below. As a consequence, least squares estimates are currently
being used with the hypergeometric model, although minimizing the least squares
sum is computationally expensive.13,14,18

In this paper, we prove that in almost all cases maximum likelihood estimates
exist and are unique in the hypergeometric reliability model. This theoretical result
is important because it provides a solid mathematical basis for highly efficient max-
imum likelihood estimation in the hypergeometric model and allows for a proper
comparison of the hypergeometric model with other reliability models which use
maximum likelihood. We also give a complete analysis of the exceptional cases
where the maximum likelihood estimate does not exist or is not unique. From the
main results, we derive a novel algorithm for computing the maximum likelihood
estimate which is simple, fast, and numerically stable. In particular, computing
the maximum likelihood estimate is computationally much cheaper than comput-
ing the least squares estimate. We also study a numerical example taken from
the literature6 and show that the maximum likelihood estimate is highly accurate
and differs from the least squares estimate. For this example, the maximum likeli-
hood estimate obtained in the hypergeometric model is as accurate as the estimates
obtained with two S-shaped models15,22 and clearly outperforms the estimate ob-
tained with the exponential model.4

The idea underlying the paper is to study the growth quotient

Q (m ) =
L (m )

L (m − 1 )

of the likelihood function. Clearly, the likelihood function is increasing if and only
if the growth quotient is greater than one. In the growth quotient, the binomials
in the likelihood function cancel almost completely. The growth quotient turns out
to be a rational function of m which depends on the wk and the sum of the xk ,
but not on the individual values xk , see subsection 3.1. This result is important in
practice, in particular for distributed testing, since it shows that the order in which
defect samples are drawn does not matter for the value of the maximum likelihood
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estimate. A detailed mathematical analysis of the growth quotient shows that – in
the typical case – the graph crosses the line y = 1 once, coming from above, and
runs below the line beyond the intersection point, see Figure 1. It follows from the
shape of the graph that a unique maximum likelihood estimate exists, being the
greatest integer to the left of the intersection point. To compute this integer, we
present a fast iterative algorithm which is numerically stable, see section 4.

For the special case that each test reveals the same number of defects, that is,
wk is constant, Tohma e.a.20 use several methods to approximate the derivative
of the log likelihood function for the hypergeometric model. For example, Tohma
e.a. approximate the factorials in the likelihood function using Stirling’s formula.
Since the resulting approximate maximum likelihood equations are still compli-
cated, Tohma e.a. apply Newton’s method to find numerical solutions. Examples
given by Tohma e.a. show that the approximation approach can fail to terminate.
The question of existence and uniqueness of maximum likelihood estimates in the
hypergeometric model has not been studied further by Tohma e.a. Our method is
not restricted to special cases, does not involve derivatives or approximations, and
always terminates with the solution.

An approach which is related to our work has been outlined by Darroch3 and
recalled in a recent book by Cai.2 Darroch derives a polynomial equation which is
equivalent to the equation Q (m ) = 1. As opposed to our work, no proof is given
that the polynomial equation has a (unique) zero; such a proof would follow the
proof of our main theorem. The list of exceptions given by Darroch is incomplete.
Cai solves for the zero of the polynomial equation using Newton’s method, which
involves the derivatives of the polynomials and is numerically unstable for long test
series, because the degree of the polynomials equals the number of tests. For exam-
ple, about half of the values listed in Table 4.7 of Cai’s book are imprecise, even
though the test series is short. Our iterative algorithm does not involve derivatives
and is numerically stable even for long test series.

Our method of studying the growth quotient instead of the derivative of the
likelihood function in order to compute maximum likelihood estimates might be
applicable to other software reliability models. This is future work.

This paper is a revised version of a conference paper16 and includes the proofs
of the main results. The conference paper also discusses the recursion formula
underlying least squares estimation for the hypergeometric model.

2. The Hypergeometric Model Revisited

We consider the outcome of test k to be the cumulative number

ck = x1 + x2 + . . . + xk

of different defects detected in the first k tests. Using the ck is equivalent to
using the xk , because xk = ck − ck−1 , but it leads to a convenient mathematical
formulation of the hypergeometric model as a Markov chain, see Proposition 1
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below. For z ≤ m , z − c ≤ w , and w ≤ z , we set

p m, w ( z , c ) =

(
m − c

z − c

)
·

(
c

w − (z − c)

)
(

m

w

) .

The hypergeometric model assumes that detecting a particular defect is stochasti-
cally independent of detecting the other defects. Thus, the outcome of test k may
be modelled by the hypergeometric distribution

p m, wk ( ck , ck−1 )

where the parameters m , wk , and ck−1 are considered fixed.
To properly define the stochastic model for a whole test series, two questions

must be answered : What is the sample space? How is the probability measure
defined on the sample space?

Definition 1 For a sequence of n tests, the sample space Ω n consists of all
n-tuples ( c1, c2, . . . cn ) of natural numbers (zero included) such that the ck are
non-decreasing, ck ≥ ck−1 .

For each value of n there is a separate sample space. This has not been made
explicit in previous papers.

Definition 2 Let w denote the sequence of numbers w1, w2, . . . wn. Suppose
that m and the sequence w are given. The probability to observe the outcome
( c1, c2, . . . cn ) in the test series is defined as

Pm, w ( c1, c2, . . . cn ) =

p m, w1 ( c1 , 0 ) · p m, w2 ( c2 , c1 ) · . . . · p m, wn ( cn , cn−1 ).

It is well-known how to prove by induction on n that Pm, w is a probability
measure on the sample space Ω n.

In the stochastic model just defined, the wk are parameters and not part of the
outcome of the random experiment, although in practice it is not known in advance
how many defects will be detected in the next test. For each set of parameters
m, w1, w2, . . . wn there is a separate probability measure on the sample space.
Strictly speaking, the hypergeometric reliability model thus consists of a whole
family of probability measures for a given sample space Ω n. This has not been
made explicit in previous papers.

Denote by Ck the random variable which yields the cumulative number ck of
different defects detected in the first k tests. By construction of the probability
measures, the probability to observe a total of ck different defects after test k

depends on ck−1 , but not on the earlier observations ck−2, ck−3, . . . c1 .
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Proposition 1 For each probability measure Pm, w on the sample space Ω n,
the stochastic process

C1 , C2 , . . . Cn

underlying the hypergeometric software reliability model is a Markov chain.

The stochastic process X1 , X2 , . . . Xn which yields for each test the number
xk of defects newly detected in the test is not a Markov chain.

3. Maximum Likelihood Estimates

3.1. Growth quotient

Suppose that a particular test series outcome c1 , c2 , . . . cn and the parameters
w1 , w2 , . . . wn are given. We then get a family of probability measures Pm, w

on the sample space Ω n which is parameterized by the number m of defects
initially contained in the software. The likelihood function for the hypergeometric
reliability model is defined as

L (m ) = Pm, w ( c1, c2, . . . cn ).

The number m̂ is a maximum likelihood estimate for the number of defects initially
contained in the software if it satisfies for all m the inequality L ( m̂ ) ≥ L (m ).
A max likelihood estimate depends on the observed test series outcome, but we
suppress the corresponding subscripts to simplify the notation.

Since the likelihood function for the hypergeometric model contains numerous
factorials, it is not clear for which test series outcomes a max likelihood estimate
exists. Instead of solving for the zeros of the maximum likelihood equation in order
to find a global maximum of the likelihood function, we use an elementary approach
to study the growth behavior of the likelihood function. Define the growth quotient
of the likelihood function to be

Q (m ) =
L (m )

L (m − 1 )
.

The likelihood function L (m ) is increasing when the growth quotient Q (m ) is
greater than one and decreasing otherwise. The next two lemmas show that using
the growth quotient has the advantage that the binomials in the formula for the
likelihood function cancel almost completely. For m �= z and m �= 0, we set

q m, w ( z , c ) =
(m− c ) · (m − w )

m · (m − z )
.
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Lemma 1 The growth quotient admits the presentation

Q (m ) = q m, w1 ( c1 , 0 ) · q m, w2 ( c2 , c1 ) ·

q m, w3 ( c3 , c2 ) · . . . · q m, wn ( cn , cn−1 ).

Lemma 1 shows that the growth quotient is a rational function with a nice
presentation where both the numerator and the denominator are given as a product
of linear factors. At least half of the factors cancel :

Lemma 2 The growth quotient admits the cancelled presentation

Q (m ) =
(m − w1 ) · (m − w2 ) · . . . · (m− wn )

mn−1 · (m − cn )
.

If cn = wk for some k, then the factor m − cn in the presentation cancels. If
wj = 0 for some j, then the factor m − wj cancels.

Lemma 2 shows that the degree of the polynomials in both the numerator and
denominator of the growth quotient Q (m ) is bounded by the length n of the test
series. More important, the lemma shows that the order in which defect samples
are drawn does not matter for the value of the maximum likelihood estimate. The
same is true for the numbers xk of defects newly detected in the tests. Only the
total number cn of different defects and the sizes wk of the defect samples enter
the formula for the growth quotient.

3.2. Main theorem

We view the growth quotient as a function Q (x ) of a real-valued variable x . The
number of defects initially contained in a software must be greater or equal to the
total number cn of different defects detected during the test series. To compute
maximum likelihood estimates, we must analyze the behavior of Q (x ) relative to
the line y = 1 for x > cn .

Proposition 2 Suppose that n ≥ 2 .

(1) If cn > wk for all k, then the growth quotient is greater than one near cn ,

Q (x ) > 1

for all x in a suitable right neighborhood of cn .

(2) Special Case A. If cn = wk for some k and wj > 0 for at least one j �= k,
then the maximum likelihood estimate m̂ is equal to cn ,

m̂ = cn .

(3) Special Case B. If cn = wk for some k and wj = 0 for all j �= k, then
any number m ≥ cn is a maximum likelihood estimate.
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Proof. Refer to the cancelled presentation of Q (x ) given in Lemma 2.

(1) Since cn > wk for all k , the factor

x − wn

x − cn

in the presentation does not cancel, but grows arbitrarily large as x approaches cn

from the right. The other factors remain bounded.

(2) Since cn = wk for some k , the term x − cn in the presentation cancels and
the growth quotient is a product of factors

x − wj

x
≤ 1.

Since wj > 0 for at least one j �= k , one of these factors is strictly less than one.
Thus, Q (x ) < 1 for all x > cn .

(3) Since cn = wk for some k and wj = 0 for all j �= k , all the terms in the
presentation cancel. Thus, Q (x ) = 1 for all x > cn . �

Parts (2) and (3) of Proposition 2 are special cases. The condition cn = wk

means that the effort for the first k − 1 and the last n − k tests could have been
saved, because test k would have sufficed to detect all cn defects which are known
by the end of the full test series. Typically, no single test will uncover all defects
known to be in the software by the end of the test series. Thus, the special cases
can be disregarded in software testing practice and part (1) of Proposition 2 is the
typical case.

Proposition 3 Suppose that cn > wj for all j and that n ≥ 2 .

(1) If wk > ck − ck−1 for at least one index k , then the growth quotient is
finally less than one,

Q (x ) < 1

for all sufficiently large x > cn , and approaches one as x grows large.

(2) Special Case C. If wk = ck − ck−1 for all k , then no maximum likelihood
estimate exists.

Proof. Since cn > wj for all j , there are at least two indices j with wj > 0.

(1) Suppose that wk > ck − ck−1 ≥ 0 for a particular index k . Refer to the
cancelled presentation of Q (x ) given in Lemma 2. Since cn > wj for all j , the
term x − cn does not cancel. Since there is at least one index j �= k such that
wj > 0, the numerator and the denominator in the presentation are polynomials
of degree at least two, even after fully cancelling. The numerator can be written as

x n − (
n∑

j = 1

wj ) · x n− 1 + r (x )
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where r (x ) is a polynomial of degree at most n − 2. The denominator equals

x n − cn · x n− 1 .

By assumption, wk > ck − ck−1 . Since wj ≥ cj − cj−1 for any j , we have

n∑
j =1

wj >

n∑
j =1

( cj − cj−1 ) = cn .

It follows that the numerator is strictly dominated by the denominator for suffi-
ciently large values of x and approaches one as x increases.

(2) Suppose that wk = ck − ck−1 for all k. Refer to the presentation of Q (x )
given in Lemma 1. If wj = 0, the factor q x,wj ( cj , cj−1 ) equals one. On the
other hand, if wj = cj − cj−1 > 0, it is straightforward to check that

q x,wj ( cj , cj−1 ) > 1

for all x > cj . Since there are at least two wj > 0, it follows that Q (x ) > 1
for all x > cn . �

Part (2) of Proposition 3 is a special case. The condition wk = ck − ck−1 for
all k means that in each test all detected defects are new. This outcome indicates
a high number of defects in the software. In the hypergeometric reliability model,
such an outcome is the more likely the larger the number of defects contained in the
software is. Typically though, defects will be re-detected in later tests of a series.
Thus, the special case is unlikely to occur in software testing practice and part (1)
of Proposition 3 is the typical case.

Theorem 1 Suppose that cn > wj for all j and wk > ck − ck−1 for at least
one index k. Then, the growth quotient has only a single local extreme point for
x > cn . The extreme point x is a local minimum smaller than one.

Proof. Refer to the cancelled presentation of Q (x ) given in Lemma 2. Since
cn > wj for all j , the term x − cn does not cancel, but for each wj = 0 a
factor x cancels. After fully cancelling and re-numbering the (at least two) wj > 0
suitably, we are left with the presentation

Q (x ) =
(x − w1 ) · (x − w2 ) · . . . · (x − wλ )

x λ−1 · (x − cn )

where 2 ≤ λ ≤ n and wj > 0 for 1 ≤ j ≤ λ .
For values x > cn , the growth quotient Q (x ) is a differentiable function. By

Proposition 2, the growth quotient is greater than one near cn . By Proposition 3,
the growth quotient is less than one for large x and approaches one as x grows
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larger. Therefore, the growth quotient must have a local minimum x > cn and
the derivative Q ′ (x ) must be zero at that point,

Q ′ ( x ) = 0.

We must show that x is the only zero of the derivative for x > cn .
A short computation yields

Q ′ (x ) =
A (x ) · x · (x − cn ) − (λ · x − (λ − 1 ) · cn ) · B (x )

x λ · (x − cn ) 2

with the functions

A (x ) = (x − w2 ) · (x − w3 ) · . . . · (x − wλ ) +
(x − w1 ) · (x − w3 ) · . . . · (x − wλ ) +

. . .
(x − w1 ) · (x − w2 ) · . . . · (x − wλ− 1 )

B (x ) = (x − w1 ) · (x − w2 ) · (x − w3 ) · . . . · (x − wλ ).

Fully expanding the numerator of Q ′ (x ) shows that it is not a polynomial of
degree λ + 1, but actually of degree at most λ . Thus, Q ′ (x ) can have at most
λ zeroes.

Suppose that σ of the λ numbers wj > 0 are pairwise different. Re-order the
numbers wj such that

wj > wj − 1 for 1 < j ≤ σ.

Suppose that wj is a zero of multiplicity µ ( j ) ≥ 1 of the growth quotient Q (x ).
A closer look at the terms A (x ) and B (x ) in the derivative Q ′ (x ) shows that
wj then is a zero of multiplicity µ ( j ) − 1 of the derivative. Therefore, we can
write the numerator of the derivative as

(x − w1 ) µ ( 1 )− 1 · (x − w2 ) µ ( 2 )− 1 · . . . · (x − wσ ) µ ( σ )− 1 · r (x )

with a suitable polynomial r (x ). Since the derivative Q ′ (x ) has at most λ

zeroes, the polynomial r (x ) has degree at most σ .
Recall that cn > wj for all j and that Q (x ) is continuously differentiable for

0 < x < cn . The theorem of Rolle from advanced calculus1 implies that Q ′ (x )
must have a zero between each pair ( wj − 1 , wj ) of different zeroes of Q (x ).
Since we have re-ordered the numbers wj in such a way that w1 , w2 , . . . wσ

are all different, there are σ − 1 such pairs. We also have r ( x ) = 0 because
Q ′ ( x ) = 0. Since r (x ) has degree at most σ , the derivative has no zero for
x > cn other than x . �
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4. Algorithm and Examples

The results proved in subsection 3.2 describe the behavior of the growth quotient
completely for x > cn . The conditions of Theorem 1 are the typical case. In
the typical case, the intermediate-value theorem for continuous functions1 implies
that the graph of the growth quotient must cross the line y = 1 at least once. If
the graph would cross (or touch) the line y = 1 more than once, then the graph
would have a local maximum between these two intersection points, which would
contradict Theorem 1. It follows that for a typical test series, the graph of the
growth quotient Q (x ) crosses the line y = 1 only once for x > cn and runs
below the line afterwards, see Figure 1. In particular, the likelihood function L (m )
is increasing only until the graph of Q (x ) falls below the line y = 1 for the first
time. This fact gives us a fast iterative algorithm for computing the maximum
likelihood estimate in the hypergeometric reliability model :

Step 1. Check whether one of the special cases A, B, or C applies. If no, continue
with Step 2.

Step 2. Compute the maximum likelihood estimate m̂ iteratively as follows.

Step 2a. Set x := cn + 1.

Step 2b. Check whether Q (x ) > 1. If yes, set x := x + 1 and repeat
Step 2b. If no, return the maximum likelihood estimate m̂ = x − 1.

Step 2b of the algorithm selects the greatest integer to the left of the intersection
point as the maximum likelihood estimate m̂ . By definition, Q (x ) < 1 if and
only if L (x ) < L (x − 1 ). Therefore, the integer to the right of the intersection
point is not the maximum likelihood estimate since it has a smaller value of the
likelihood function than the integer to the left of the intersection point.

The growth quotient must be computed in Step 2b of the algorithm in a way
which avoids problems with the precision of the floating point arithmetic when the
number n of tests is large. For example, one might take advantage of the cancelled
presentation of the growth quotient given in Lemma 2 : Re-order the wk according
to their size so that wn is largest. Compute

x − wn

x − cn

and then multiply with the factors
x − wj

x

until the product is less than one, or, all wj have been used up. When computing
Q (x ) this way, all factors have a similar order of magnitude.

In our previous conference paper,16 we have computed the maximum likelihood
estimate for an example with more than a hundred tests without any numerical
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problems in less than a second on a standard personal computer. This result is in
sharp contrast to the difficulties reported by Tohma e.a.20 who use approximations
of the log likelihood function. In addition, our algorithm is simpler and faster
than minimizing the least squares sum in the hypergeometric model by exhaustive
search18 or application of genetic algorithms.14

A typical graph of the growth quotient Q (x ) for x > cn is shown in Figure 1.

0.5

1

1.5

2

2.5

328 366 536

Figure 1: a typical graph of the growth quotient

The example is taken from a paper by Hou e.a.6 A total of cn = 328 different
defects were detected in a series of n = 19 tests. The other input data are listed
in Table 1. In the table, tk denotes the execution time of test k in milliseconds,
from which the numbers wk were computed using a linear function.6,16

Table 1: input data for the example

k xk tk wk

1 15 2450 15

2 29 2450 29

3 22 1960 22

4 37 980 37

5 2 1680 21

6 5 3370 43

7 36 4210 56

k xk tk wk

8 29 3370 48

9 4 960 15

10 27 1920 30

11 27 2880 46

12 22 1440 24

13 21 3260 57

14 22 3840 69

k xk tk wk

15 6 3840 72

16 7 2300 45

17 9 1760 36

18 5 1990 41

19 3 2990 64

In the example, Q ( 366 ) = 1.0089 and Q ( 367 ) = 0.9922. It follows that
the maximum likelihood estimate is m̂ = 366. The local minimum x of the
growth quotient is located between 536 and 537. The least squares estimate for
this example is equal to 388. In particular, the maximum likelihood estimate can
be different from the least squares estimate in the hypergeometric model.

Hou e.a.6 also provide the estimates obtained for this example when using other
software reliability models instead of the hypergeometric model : the exponential
model of Goel e.a.,4 the delayed S-shaped model of Yamada e.a.,22 and the in-
flection S-shaped model of Ohba.15 Most importantly, Hou e.a. report that 30
additional defects have been detected after testing. Therefore, a total of at least
358 defects were contained in this software. This data allows us to compare the
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estimation accuracy of the various reliability models for this example. Table 2
shows the relative estimation errors in percent:

Table 2: estimation errors for the example

model estimate error (percent)

exponential MLE 455 +27.1

delayed S-shaped MLE 351 – 2.0

inflection S-shaped MLE 347 – 3.1

hypergeometric MLE 366 +2.2

hypergeometric LSE 388 +8.4

The hypergeometric model and the S-shaped models yield highly accurate max-
imum likelihood estimates in this example and clearly outperform the exponential
model. As compared to the S-shaped models, the maximum likelihood estimate
in the hypergeometric model shows a slight tendency to overestimate. Since the
number of defects in the software could actually be higher than the known 358
defects, the hypergeometric estimate might be preferable in this case. Also, the
maximum likelihood estimate in the hypergeometric model is more accurate than
the corresponding least squares estimate.
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