
Applying Machine Learning to Solve an

Estimation Problem in Software Inspections

Thomas Ragg 1,2, Frank Padberg 2, and Ralf Schoknecht 2

1 phase-it AG, Vangerowstraße 20, 69115 Heidelberg, Germany
2 Fakultät für Informatik, Universität Karlsruhe,
Am Fasanengarten 5, 76131 Karlsruhe, Germany

{ragg,padberg,schokn}@ira.uka.de

Abstract. We use Bayesian neural network techniques to estimate the
number of defects in a software document based on the outcome of an
inspection of the document. Our neural networks clearly outperform
standard methods from software engineering for estimating the defect
content. We also show that selecting the right subset of features largely
improves the predictive performance of the networks.

1 Introduction

Inspections are used with great success to detect defects in different kinds of
software documents such as designs, specifications, or source code [7] . In an
inspection, several reviewers independently inspect the same document. The
outcome of an inspection is a zero-one matrix showing which reviewer detected
which defect. Some defects will be detected by more than one reviewer, but
usually not all the defects contained in a document are detected. How many
defects actually are contained in a document is unknown. To have a basis for
management decisions such as whether to re-inspect a document or to pass it on,
it is important in software engineering practice to reliably estimate the number
of defects in a document from the outcome of an inspection.

Defect content estimation methods for software inspections currently fall into
two categories : capture-recapture methods [6, 12] and curve-fitting methods
[15] . Both approaches use the zero-one matrix of the inspection as the only
input to compute the estimate. Several studies show that the defect content
estimates computed by these methods are much too unreliable to be used in
practice [2, 4, 12, 14] . Both methods show extreme outliers and a high variation
in the error of the estimates. A possible explanation is that these methods do
not take into account the experience made in past inspections (no learning).

In this paper, we view defect content estimation for software inspections as
a machine learning problem : the goal is to learn from empirical data collected
during past inspections the relationship between certain observable features of
an inspection and the true number of defects in the document being inspected. A
typical example of an observable feature is the total number of different defects
detected in an inspection. With our approach, knowledge gained in the past is
exploited in the estimation process.

To solve the machine learning problem, we apply the following techniques.
We use feature selection based on mutual information. As estimation models,
we train neural networks. For training, we take a Bayesian approach and use
an error function with a regularization term. The selection of the final model
is based on the model evidence. We have applied this framework successfully in
other application domains [10] .

The application of neural networks to defect content estimation in software
inspections is novel, although neural networks have previously been used in soft-
ware reliability. Closest to our work are Khoshgoftaar and Szabo [8] , but their
use of neural network techniques is improper. To estimate the number of defects
in software modules, they use 10 different static code metrics as input features.
Even after having reduced the number of features using principal component
analysis, their training dataset is too small to avoid overfitting a non-linear
model. In addition, when training a network they keep adding hidden units and
layers until the network achieves a prescribed error bound on the training data,
which occurs not until the network has 24 hidden units. No regularization or
model selection techniques are used. As a result, the predictive performance of
their networks is completely insufficient for software engineering practice.

We validate our machine learning approach applying a jackknife technique to
an empirical inspection dataset. We also compare against a particular capture-
recapture method (Mt (MLE) [6]) and against a particular curve-fitting method
(DPM [15]). The machine learning approach achieves a mean of absolute relative
errors of 5 percent. This is an improvement by a factor of 4, respectively, 7, as
compared to the other approaches. In addition, no outlier estimates occur for
this dataset when using machine learning.

2 Feature Selection and Bayesian Learning

2.1 Data Collection and Feature Generation

The machine learning approach requires a database containing empirical data
about past inspections. For each inspection in the database, we need to know
the zero-one matrix of the inspection and the true number num of defects in
the inspected document. The zero-one matrix is compiled during any inspection.
The true number of defects in a document can be approximated by adding up
all the defects detected in the document during development and maintenance.
This is sufficient for practical purposes; defects which are not detected even
during deployment of the software are not relevant for its operational profile.

From the zero-one matrix of an inspection, we generate a set of five candidate
features :
• the total number tdd of different defects detected in the inspection;
• the average, maximum, and minimum number ave, max, min of defects de-

tected by a reviewer;
• the standard deviation std of the number of defects detected by a reviewer.

These features are measures for the overall success of an inspection, respectively,
for the performance of the individual reviewers.

Our empirical dataset consists of 16 inspections which were conducted on
different specification documents during controlled experiments [1] . For each
inspection in the dataset, we know its zero-one matrix as well as the true number
of defects contained in the document, because the defects had been seeded into
the documents.

2.2 Feature Ranking and Subset Selection

Estimating a non-linear dependency between the input features and the target
will be more robust when the input-target space is low-dimensional (”empty
space phenomenon”). As a rule of thumb, we deduce from Table 4.2 in [13] that
for a dataset of size 16 at most two features should be used as input.

To select the two most promising features from our five candidate features,
we use a forward selection procedure based on mutual information. The mutual
information MI (X ; T) of two random vectors X and T is defined as

MI (X ; T) =
∫ ∫

p (x, t) · log
p (x, t)

p (x) p (t)
.

The mutual information measures the degree of stochastic dependence between
the two random vectors [5] . To compute the required densities from the empirical
data, we use Epanechnikov kernel estimators [10, 13] .

As the first step in the selection procedure, that feature f is selected from
the set of candidate features which has maximal mutual information with the
target for the given dataset. For example, to maximize MI (f ; num) the total
number tdd of different defects detected in the inspection is selected. In each
subsequent step, that one of the remaining features is selected which maximizes
the mutual information with the target when added to the already selected
features. For example, to maximize MI ((tdd , f); num) in the second step, the
standard deviation std of the reviewers’ inspection results is selected. This way
the features are ranked by the amount of information which they add about the
target. In our example, the ranking is (tdd , std , max , min , ave). As input to
the neural networks, we use the two features tdd and std .

2.3 Regularization and Bayesian Learning

The functional relationship between the input features and the target which has
been learned from the empirical data must generalize to previously unseen data
points. The theory of regularization shows that approximating the target as good
as possible on the training data, for example, by minimizing the mean squared
error ED on the training data, is not sufficient: it is crucial to balance the
training error against the model complexity [3] . Therefore, we train the neural
networks to minimize the regularized error E = β · ED + α · ER . The
regularization term ER measures the model complexity, taking into account
the weights wk in the network. We choose the weight-decay 1

2

∑
wk

2 as the
regularization term.

The factors α and β are additional parameters. Instead of using cross-
validation, we take a Bayesian approach to determine the weights wk and the
parameters α and β during training [9, 10] . This is done iteratively: we fix α
and β and optimize the weights wk using the fast gradient descent algorithm
Rprop [11] . Afterwards, we update α and β ; see [10] for the update rule. We
alternate several times between optimizing the weights and updating α and β .

2.4 Model Evidence and Selection

To find the model which best explains the given dataset, we systematically vary
the number h of hidden units in the networks from 1 to 10. Since the dataset
is small, we put all hidden units in a single layer, restricting the search space to
models with moderate non-linearity.

For each network topology, that is, for each number of hidden units, we train
50 networks. As the final model, we select the network which maximizes the
posterior probability P (θ |D), where Θ = (w, α, β , h) is the parameter
vector and w is the weight vector of the network. To determine the final model,
we again use a Bayesian approach. We assign the same prior to each topology
h, integrate out α, β, and w, and estimate the posterior probability by the
model evidence P (D | h) for which a closed expression can be given [10] . The
model evidence is known to be in good correlation with the generalization error
as long as the number of hidden units is not too large [3] . Therefore, instead
of choosing the network with the best evidence from all 500 trained networks,
we first choose the topology which has the best average evidence. From the 50
networks with the best-on-average topology we select the network with the best
evidence as the final model.

Table 1 shows the model selection when the second datapoint is left out from
our dataset as the test pattern and the remaining 15 datapoints are used for
training. For 1 to 5 hidden units, the correlation between the model evidence
and the test error of the corresponding 50 networks is strongly negative, whereas
for larger networks the correlation is positive (or absent). The test error grows as

Table 1. Example for model selection.

hidden units 1 2 3 4 5 6 7 8 9 10

mean evidence -22.6 -22.5 -23.6 -24.0 -25.7 -34.3 -35.3 -40.2 -40.7 -40.8

best evidence -19.5 -20.0 -19.2 -19.3 -18.6 -18.5 -18.5 -19.9 -15.9 -16.3

rel. test error 3.5 3.5 3.7 3.7 4.0 4.3 5.0 4.2 3.9 5.2

correlation -0.46 -0.86 -0.67 -0.89 -0.77 0.55 0.44 0.25 0.05 -0.02

the number of hidden units increases. Since the networks with two hidden units
show the best average evidence, the selection procedure chooses the best model
with two hidden units as the final model. The minimal test error is reached with
one or two hidden units; thus, the selection procedure yields a network with
good predictive performance.

3 Validation and Results

To validate the machine learning approach, we apply a jackknife to our empirical
dataset. One by one, we leave out an inspection from the dataset as the test
pattern, use the remaining 15 inspections as the training patterns, and compute
the relative estimation error for the test pattern. For the inspection left out, we
also compute the error for the linear regression model, the capture-recapture
method Mt (MLE) [6] and the curve-fitting method DPM [15] . Recall that the
last two methods take as input only the zero-one matrix of the inspection which
is to be estimated.

The results are given in Table 2. The neural network approach achieves a
mean of absolute relative errors of 5.3 percent. The other methods show high

Table 2. Relative estimation errors for the 16 test patterns.

pattern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mt -20 -27 -17 -24 -22 -25 -14 -25 -39 -67 0 0 -47 -33 -7 -13

DPM -7 -20 -3 -17 -11 -29 18 -7 -34 -61 73 27 -40 -27 113 87

linear 3 -20 3 -3 4 -14 14 -18 0 -22 33 33 -13 7 0 7

NN -3 -3 -3 -3 4 4 4 -14 -17 -17 13 0 0 0 0 0

estimation errors and a high error variation. The mean errors are 12.1 percent
for the linear model, 23.7 percent for Mt, and 35.8 percent for DPM. Clearly,
the machine learning approach yields a strong improvement over the standard
methods from software engineering. The improvement over the linear model
shows that the function to be learned has a non-linear component.

Using more input features for fitting the unknown function decreases the per-
formance of the models significantly. In Figure 1, the number of input features

-30

-28

-26

-24

-22

-20

-18

-16

1 2 3 4 5
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

m
od

el
 e

vi
de

nc
e

re
la

tiv
e

er
ro

r

no. of input features

average evidence
min-max range for evidence
jackknife error

Fig. 1. The jackknife error of the machine
learning approach when using input vectors
of increasing dimensionality.

is varied from 1 to 5 according to the
ranking of the features given in sub-
section 2.2. For each set of features,
the model selection procedure of sub-
section 2.4 is applied to each of the 16
jackknife datasets; then, the average
model evidence and testing error over
the 16 resulting models is computed.
The average model evidence is high-
est when only two features are used,
namely, tdd and std . The average test-
ing error is minimal with these two
input features. This result experimen-
tally justifies having selected two in-
put features as was suggested by the
rule of thumb in subsection 2.2.

The feature tdd is an important input for the estimation because it gives a
lower bound for the number of defects in the document. Yet, two rather different
inspections can lead to the same total number of different defects detected. For
example, in one inspection some reviewers might detect a large number of defects
while others detect only a few defects; in some other inspection, each reviewer
might detect about the same number of defects. The feature std distinguishes
between two such cases, thus being an important supplement to the feature tdd.

The process we have described for building defect content estimation models
for software inspections can easily be deployed in a business environment. The
process can run automatically without constant interaction by a machine learn-
ing specialist. In particular, the estimation models can automatically adapt to
new empirical data.

References

1. Basili, Green, Laitenberger, Lanubile, Shull, Sorumgard, Zelkowitz : ”The Empir-
ical Investigation of Perspective-Based Reading”, Empirical Software Engineering
1:2 (1996) 133-164

2. Biffl, Grossmann : ”Evaluating the Accuracy of Defect Estimation Models Based
on Inspection Data From Two Inspection Cycles”, Proceedings International Con-
ference on Software Engineering ICSE 23 (2001) 145-154

3. Bishop : Neural Networks for Pattern Recognition. Oxford Press, 1995
4. Briand, El-Emam, Freimut, Laitenberger : ”A Comprehensive Evaluation of

Capture-Recapture Models for Estimating Software Defect Content”, IEEE Trans-
actions on Software Engineering 26:6 (2000) 518-540

5. Cover, Thomas : Elements of Information Theory. Wiley, 1991
6. Eick, Loader, Long, Votta, Vander Wiel : ”Estimating Software Fault Content

Before Coding”, Proceedings International Conference on Software Engineering
ICSE 14 (1992) 59-65

7. Gilb, Graham : Software Inspection. Addison-Wesley, 1993
8. Khoshgoftaar, Szabo : ”Using Neural Networks to Predict Software Faults During

Testing”, IEEE Transactions on Reliability 45:3 (1996) 456-462
9. MacKay : ”A practical bayesian framework for backpropagation networks”, Neural

Computation 4:3 (1992) 448-472
10. Ragg, Menzel, Baum, Wigbers : ”Bayesian learning for sales rate prediction for

thousands of retailers”, Neurocomputing 43 (2002) 127-144
11. Riedmiller : ”Supervised learning in multilayer perceptrons – from backpropaga-

tion to adaptive learning techniques”, International Journal of Computer Stan-
dards and Interfaces 16 (1994) 265-278

12. Runeson, Wohlin : ”An Experimental Evaluation of an Experience-Based Capture-
Recapture Method in Software Code Inspections”, Empirical Software Engineering
3:3 (1998) 381-406

13. Silverman : Density Estimation for Statistics and Data Analysis . Chapman and
Hall, 1986

14. Vander Wiel, Votta : ”Assessing Software Designs Using Capture-Recapture
Methods”, IEEE Transactions on Software Engineering 19:11 (1993) 1045-1054

15. Wohlin, Runeson : ”Defect Content Estimations from Review Data”, Proceedings
International Conference on Software Engineering ICSE 20 (1998) 400-409

